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Abstract. In this paper, we study the problem of optimal allocation of insurance layers
for a portfolio of i.i.d exponential risks. Using the first stochastic dominance criterion,
we obtain an optimal allocation for the total retain risks faced by a policyholder. This
result partially generalizes the known result in the literature for deductible as well as
policy limit coverages.
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1 Introduction

Let X be a loss faced by a policyholder which is a non-negative random variable,
hereafter called a risk. Consider an insurance agreement under which not the whole
risk is insured, but only a part of it. An example of such a coverage is an insurance
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layer X(d, d + l] which is defined by a pay-off function

X(d, d + l] =


0, if 0 < X ≤ d,
X − d, if d < X ≤ d + l,
l, if d + l < X,

where d and l are pre-specified values called deductible (or retention) and the policy
limit, respectively (Wang , 1996, 2000). It follows from the layer contract that the risk
X(d, d+l] = ((X−d)+∧l) is covered by the insurer and the remaining risk, X−X(d, d+l] =
(X ∧ d) + (X − (l + d))+ is self-insured by the policyholder, where x+ = max{0, x} and
x ∧ y = min{x, y}. Insurance coverages are known as the deductible and the policy
limit are particular cases of layer coverage. That is, when l = ∞, then it is equivalent
to the deductible coverage and if d = 0, it is equivalent to the policy limit coverage (cf.
Klugman et al., 2004). The stochastic properties and applications of the layer policy in
different actuarial aspects have been studied in the literature. Wang (1996) investigated
the problem of determining the premium principle for insurance layers. Goovaerts
and Dhaene (1998) characterized Wang’s class of premium principle. Sung et al. (2011)
studied the optimal insurance policy in which the insurer’s decision-making behavior
is modeled by Kahneman and Tverskys Cumulative Prospect Theory with convex
probability distortions. They showed that, under a fixed premium rate, an insurance
layer can be an optimal insurance policy. Cheung et al. (2012) studied the optimal
reinsurance decision problem in which the Average Value-at-Risk of the retained risk
is minimized under wang’s premium principle. They showed that an insurance layer
is an optimal reinsurance design under a budget constraint on reinsurance premium.
Some other work related to the insurance layer can be found in Cui et al. (2013), Cheung
et al. (2014), Zheng and Cui (2014), Assa (2015), Zhang and Liang (2016) and references
therein.

Assume a policyholder is facing with non-negative random risks X1,X2, . . . ,Xn
which are insured under an insurance layer coverage. Suppose the amounts d and l
are respectively the total deductible and the total policy limit amounts corresponding
to all risks. The policyholder more often has the right to divide d and l into n non-
negative values d1, d2, . . . , dn and l1, l2, . . . , ln, respectively, such that

∑n
i=1 di = d and∑n

i=1 li = l, for which di and li are respectively the deductible and the policy limit of
Xi, i = 1, 2, . . . ,n. In view of these considerations, the covered amount by the insurer
is given by

∑n
i=1[(Xi − di)+ ∧ li] and the retained risk which is not covered by the

insurance layer coverage is given by
∑n

i=1[Xi − (Xi − di)+ ∧ li]. From the viewpoint
of the policyholder, an allocation is optimal which maximizes his/her wealth in some
senses. Let w denote the initial wealth of the policyholder after paying the required
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premium which is assumed to be independent of the choice of d = (d1, d2, . . . , dn) and
l = (l1, l2, . . . , ln). It is of great importance for the policyholder to determine the optimal
vectors d′ and l′ in the set

sn(d, l) = {(d1, d2, . . . , dn), (l1, l2, . . . , ln) |
n∑

i=1

di = d,
n∑

i=1

li = l}.

such that the amount w−∑n
i=1[Xi − (Xi − di)+ ∧ li] is maximized in some senses. Several

optimization criteria such as maximizing the expected utility, minimizing the variance,
minimizing the probability of ruin can be considered to deal with this problem. For
more details on these optimization criteria, the readers are referred to Van Heerwaarden
et al. (1989), Denuit and Vermandele (1998). Using the notion of majorization and
various types of stochastic orderings, the above problem for the particular cases of the
policy limit (di = 0, i = 1, 2, . . . , n) and the deductible policy (li = ∞, i = 1, 2, . . . ,n) have
been studied by many researchers. Cheung (2007) investigated the optimal allocation
of the deductibles and the policy limits when the risks are independent and ordered in
the sense of the hazard rate order. Lu and Meng (2011) consider the same problems
for the case when the risks are ordered according to the likelihood ratio order and each
risk has log-concave density. Hu and Wang (2014) further investigated the optimal
allocation of the deductibles and the policy limits and generalized several results of
Cheung (2007) and Lu and Meng (2011). Fathi Manesh and Khaledi (2015) and Fathi
Manesh et al. (2016) recently studied these optimization problems with the assumption
that the risks are exchangeable with decreasing joint density function. For more results
on the optimal allocation of the deductibles and the policy limits, we refer the reader
to Hua and Cheung (2008a,b), Zhuang et al. (2009), Xu and Hu (2012) and references
therein.

In this paper, we use to the maximization of the expected utility of wealth criterion
to find the optimal allocation of the deductibles and the policy limits in layer policies.
Let u(x) be the increasing utility function of the policyholder. Then, from the viewpoint
of the policyholder, the optimization allocation problem of layers is formalized as{

max(d,l)∈sn(d,l) E[u
(
w −∑n

i=1[Xi − (Xi − di)+ ∧ li]
)
],

where u is an increasing utility function.
(1.1)

or, equivalently,{
min(d,l)∈sn(d,l) E[ũ

(∑n
i=1[Xi − (Xi − di)+ ∧ li]

)
],

where ũ(x) = u(w − x) is a decreasing function.
(1.2)
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In this paper, we consider the problem given in (1.1) for a particular case when
X1,X2, . . . ,Xn are identical and independent exponential risks. We use the notion of ma-
jorization which is one of the basic tools in probability and statistics to establish various
inequalities. For any real vector x = (x1, x2, . . . , xn) ∈ Rn, denote x(1) ≤ x(2) ≤ . . . ≤ x(n)
the increasing arrangement of x1, x2, . . . , xn. A vector x ∈ Rn is said to be majorized by
another vector y ∈ Rn (denoted by x ≤m y) if

∑ j
i=1 x(i) ≥

∑ j
i=1 y(i) for j = 1, 2, . . . , n − 1

and
∑n

i=1 x(i) =
∑n

i=1 y(i). A real valued function ϕ defined on a setA ⊂ Rn is said to be
Schur-convex (Schur-concave) onA, if ϕ(x) ≤ (≥)ϕ(y) for any x, y ∈ A such that x ≤m y.
For more details, the reader is referred to Marshall et al. (2011).

Now, we recall the definition of the first stochastic dominance ordering used later
in this paper. Let X and Y be two random variables with distribution functions F and
G, survival functions F̄ and Ḡ, respectively. The random variable X is said to be smaller
than the random variable Y in the first stochastic dominance order (denoted as X ≤st Y),
if E[ϕ(X)] ≤ E[ϕ(Y)] for all increasing functions ϕ for which the expectations exist. It
is well known that X ≤st Y if and only if F̄(t) ≤ Ḡ(t) for all t. For more details on the
first stochastic dominance order, see, e.g. Müller and Stoyan (2002), Denuit et al. (2005)
and Shaked and Shanthikumar (2007). The optimal allocation in (1.2) minimizes the
retained risks, according to the first stochastic dominance order.

Let X1,X2, . . . ,Xn be a set of n risks faced by a policyholder and d = (d1, d2, . . . , dn)
and l = (l1, l2, . . . , ln) be the deductibles and limits vectors, respectively. In the following,
we review some results related to the optimization problem for deductible (li = ∞, i =
1, . . . ,n) as well policy limit (di = 0, i = 1, 2, . . . , n) coverages which are particular cases
of layer coverage. For the case when Xi’s are independent and identically distributed,
Xu and Hu (2012) proved that

l ≥m l∗ =⇒
n∑

i=1

ϕ(Xi − li) ≥st

n∑
i=1

ϕ(Xi − l∗i ), (1.3)

where ϕ is an arbitrary convex function. Fathi Manesh and Khaledi (2015) proved that

l ≥m l∗ =⇒
n∑

i=1

(Xi − li)+ ≥st

n∑
i=1

(Xi − l∗i )+, (1.4)

when Xi’s are exchangeable with decreasing joint density function. Fathi Manesh et al.
(2016) showed that

d ≥m d∗ =⇒
n∑

i=1

(Xi ∧ di) ≤st

n∑
i=1

(Xi ∧ d∗i ), (1.5)
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when Xi’s are exchangeable with log-concave joint density function.

The exponential distribution is one of the simplest models for insurance risks which
has been extensively considered in the actuarial context (see for example Dufresne and
Gerber (1988), Panjer and Willmot (1992), Cheng et al. (2002), Borovkov and Dickson
(2008) and Jin et al. (2016) ). In this paper, we partially generalize the above results for
the case when the n risks X1,X2, . . . ,Xn are independent and identical exponential risks
and prove that

d ≥m d∗ =⇒
n∑

i=1

[Xi − (Xi − di)+ ∧ li] ≤st

n∑
i=1

[Xi − (Xi − d∗i )+ ∧ li], (1.6)

when l1 = . . . = ln = l′ and

l ≥m l∗ =⇒
n∑

i=1

[Xi − (Xi − di)+ ∧ li] ≥st

n∑
i=1

[Xi − (Xi − di)+ ∧ l∗i ], (1.7)

when d1 = d2 = . . . = dn = d′.

2 Main Results

The following lemma, whose proof is given in Appendix, is about the optimal allocation
problem given in (1.1), for the case when n = 2.

Lemma 2.1. Let X1 and X2 be independent and identical exponential risks with common rate
λ. Then,

(a) for (d1, d2), (d∗1, d
∗
2) ∈ R+2

and l′ ∈ R+,

(d∗1, d
∗
2) ≤m (d1, d2) =⇒ Xl′,l′

d1,d2
≤st Xl′,l′

d∗1,d
∗
2
,

(b) for (l1, l2), (l∗1, l
∗
2) ∈ R+2

and d′ ∈ R+,

(l∗1, l
∗
2) ≤m (l1, l2) =⇒ X

l∗1,l
∗
2

d′,d′ ≤st Xl1,l2
d′,d′ ,

where Xl1,l2
d1,d2
=
∑2

i=1[Xi − (Xi − di)+ ∧ li].

Next, we generalize the result of Lemma 2.1 (a) from n = 2 to n > 2.
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Theorem 2.1. Let X1,X2, . . . ,Xn be independent and identical exponential risks with common
rate λ. Then for d,d∗ ∈ R+n

and l′ ∈ R+,

d ≥m d∗ =⇒
n∑

i=1

[Xi − (Xi − di)+ ∧ l′] ≤st

n∑
i=1

[Xi − (Xi − d∗i )+ ∧ l′].

Proof. Combining Lemma 2.1 and Theorem 1.A.3 of Shaked and Shanthikumar (2007),
we obtain

2∑
i=1

[Xi − (Xi − di)+ ∧ l′] +
n∑

i=3

[Xi − (Xi − di)+ ∧ l′] ≤st

2∑
i=1

[Xi − (Xi − d∗i )+ ∧ l′]

+

n∑
i=3

[Xi − (Xi − di)+ ∧ l′],

where d = (d1, d2, d3, . . . , dn), d∗ = (d∗1, d
∗
2, d3, . . . , dn) and (d1, d2) ≥m (d∗1, d

∗
2). Now, the

required result follows from Lemma 3.A.2.b of Marshall et al. (2011). □

Since, (d̄, . . . , d̄) ≤m (d1, d2, . . . , dn) ≤m (
∑n

i=1 di, 0, . . . , 0), it follows from Theorem
2.1 that, when the policy limits corresponding to the risks are equal, the vector
(
∑n

i=1 di, 0, . . . , 0) maximizes the expected utility of the policyholder’s wealth given in
(1.1) which is the best allocation of deductibles. On the other hand (d̄, . . . , d̄) minimizes
the expected utility which is the worse allocation of the deductibles.

Suppose that X1,X2 and X3 are independent exponential random variables with
rate 0.1. In Figure 1, we graph the survival function of the random variable

∑3
i=1[Xi −

(Xi−di)+∧l′] for the selected deductibles allocations (8, 8, 8) ≤m (4, 8, 12) ≤m (4, 6, 14) ≤m
(0, 8, 16) ≤m (0, 0, 24) and l′ = 20. The figure demonstrates the concept of Theorem 2.1.

The following theorem generalizes the result of Lemma 2.1 (b) from n = 2 to n > 2.
Its proof is similar to that of Theorem 2.1 and hence is omitted.

Theorem 2.2. Let X1,X2, . . . ,Xn be independent and identical exponential risks with common
rate λ. Then for l, l∗ ∈ Rn and d′ ∈ R+,

l ≥m l∗ =⇒
n∑

i=1

[Xi − (Xi − d′)+ ∧ li] ≥st

n∑
i=1

[Xi − (Xi − d′)+ ∧ l∗i ]. (2.1)

Since, (l̄, . . . , l̄) ≤m (l1, l2, . . . , ln) ≤m (
∑n

i=1 li, 0, . . . , 0), where l̄ = 1
n
∑n

i=1 li, it follows
from the above theorem that, when the deductibles are the same, the vector (l̄, . . . , l̄) at
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Figure 1: Survival functions of risk
∑3

i=1[Xi − (Xi − di)+ ∧ l′].

which the expected utility of policyholder’s wealth is maximized is the best allocation
of the limits. On the other hand, (

∑n
i=1 li, 0, . . . , 0) is the worse allocation.

In Figure 2, we graph the survival function of
∑3

i=1[Xi − (Xi − d′)+ ∧ li] for the limits
allocations (8, 8, 8) ≤m (4, 8, 12) ≤m (4, 6, 14) ≤m (0, 8, 16) ≤m (0, 0, 24) and d′ = 8, where
Xi’s are independent and identical exponential risks with rate λ = 0.1. The figure
demonstrates the concept of Theorem 2.2.
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Remark 1. The random variable X is said to be smaller than the random variable Y in
the second stochastic dominance order (known as the increasing concave order and
denoted by X ≤icv Y), if E[ϕ(X)] ≤ E[ϕ(Y)] for all increasing concave functions ϕ for
which the expectations exist. It is clear that the first stochastic dominance order implies
the second stochastic dominance order. Thus, the first stochastic dominance can be
replaced by the second stochastic dominance in Theorems 2.1 and 2.2.

Now, a possible question is that whether there are a jointly optimal deductible and
limit allocations for the problem given in (1.1). Combining the results of Theorems 2.1
and 2.2, the jointly optimal, consistent candidate of deductible and limit allocations is
d∗ = (d, 0, . . . , 0) and l∗ = (l/n, . . . , l/n). Next, a counterexample is given to illustrate that
d∗ and l∗ might not be the jointly optimal allocation.

Examples 2.1. Let X1 and X2 be independent exponential risks with common rate
λ = 0.1. Let d = d1 + d2 = 3, l = l1 + l2 = 12 and F̄l1,l2

d1,d2
denote the survival function of∑2

i=1[Xi − (Xi − di)+ ∧ li]. We prepared a graph of F̄6,6
0,3(x) and F̄12,0

0,3 (x) in Figure 3. We also

evaluated F̄6,6
0,3(x) − F̄12,0

0,3 (x) at different values of x to show that d∗ = (0, 3) and l∗ = (6, 6)

is not the jointly optimal allocations. For example, F̄6,6
0,3(2.5) − F̄12,0

0,3 (2.5) = −0.04726 and

F̄6,6
0,3(3)− F̄12,0

0,3 (3) = 0.103079 which shows that F̄6,6
0,3(x) is not less than F̄12,0

0,3 (x) for all x ≥ 0.
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Appendix

We need the following lemma to prove Lemma 2.1.

Lemma 2.2. Let X1 and X2 be independent and identical exponential risks with common rate
λ. Then for 0 ≤ d1 ≤ d2 and l1, l2 ≥ 0,

F
Xl1 ,l2

d1 ,d2

(t) =



1 − (tλ + 1)e−λt, if 0 ≤ t < d1,

1 − (d1λ + 1)e−λt − λ(t − d1)e−λ(l1+t), if d1 ≤ t < d2,

1 − (λ(d1 + d2 − t) + 1)e−λt − λ(t − d2)e−λ(t+l2)

−λ(t − d1)e−λ(t+l1), if d2 ≤ t < d1 + d2,

1 − (λd1 + 1)e−λ(t+l2) − (λd2 + 1)e−λ(t+l1)

−(λ(t − d1 − d2) − 1)e−λ(l1+l2+t), if d1 + d2 ≤ t.

Proof. It is easy to see that for x1, x2 ∈ R+,

xl1,l2
d1,d2
=



x1 + x2, x1 < d1, x2 < d2,
x1 + d2, x1 < d1, d2 ≤ x2 < d2 + l2,
x1 + x2 − l2, x1 < d1, d2 + l2 ≤ x2,
d1 + x2, d1 ≤ x1 < d1 + l1, x2 < d2,
d1 + d2, d1 ≤ x1 < d1 + l1, d2 ≤ x2 < d2 + l2,
d1 + x2 − l2, d1 ≤ x1 < d1 + l1, d2 + l2 ≤ x2,
x1 − l1 + x2, d1 + l1 ≤ x1, x2 < d2,
x1 − l1 + d2, d1 + l1 ≤ x1, d2 ≤ x2 < d2 + l2,
x1 − l1 + x2 − l2, d1 + l1 ≤ x1, d2 + l2 ≤ x2.

Now, the distribution function of Xl1,l2
d1,d2

for t ∈ R can be expressed as

F
Xl1 ,l2

d1 ,d2

(t) =
∫ ∞

0

∫ ∞
0

I(xl1,l2
d1,d2
≤ t) f (x1, x2)dx2dx1,

where I(A) = 1 is if A occurs and I(A) = 0 otherwise. If 0 ≤ t < d1, then
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F
Xl1 ,l2

d1 ,d2

(t) =
∫ d1

0

∫ d2

0
I(x1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

=

∫ t

0

∫ t−x1

0
λ2e−λ(x1+x2)dx2dx1

= 1 − (tλ + 1)e−λt.

For d1 ≤ t < d2,

F
Xl1 ,l2

d1 ,d2

(t) =
∫ d1

0

∫ d2

0
I(x1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ d2

0
I(d1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ ∞
d1+l1

∫ d2

0
I(x1 − l1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

=

∫ d1

0

∫ t−x1

0
λ2e−λ(x1+x2)dx2dx1 +

∫ d1+l1

d1

∫ t−d1

0
λ2e−λ(x1+x2)dx2dx1

+

∫ t+l1

d1+l1

∫ t+l1−x1

0
λ2e−λ(x1+x2)dx2dx1

= 1 − (d1λ + 1)e−λt − λ(t − d1)e−λ(l1+t).

Next, if d2 ≤ t < d1 + d2, then

F
Xl1 ,l2

d1 ,d2

(t) =
∫ d1

0

∫ d2

0
I(x1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1

0

∫ d2+l2

d2

I(x1 + d2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1

0

∫ ∞
d2+l2

I(x1 + x2 − l2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ d2

0
I(d1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1
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+

∫ ∞
d1+l1

∫ d2

0
I(x1 − l1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

=

∫ t−d2

0

∫ d2

0
λ2e−λ(x1+x2)dx2dx1 +

∫ d1

t−d2

∫ t−x1

0
λ2e−λ(x1+x2)dx2dx1

+

∫ t−d2

0

∫ d2+l2

d2

λ2e−λ(x1+x2)dx2dx1 +

∫ t−d2

0

∫ l2+t−x1

d2+l2
λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ t−d1

0
λ2e−λ(x1+x2)dx2dx1 +

∫ t+l1

d1+l1

∫ l1+t−x1

0
λ2e−λ(x1+x2)dx2dx1

=1 − (λ(d1 + d2 − t) + 1)e−λt − λ(t − d2)e−λ(t+l2) − λ(t − d1)e−λ(t+l1).

Finally, if d1 + d2 ≤ t < ∞, then

F
Xl1 ,l2

d1 ,d2

(t) =
∫ d1

0

∫ d2

0
I(x1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1

0

∫ d2+l2

d2

I(x1 + d2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1

0

∫ ∞
d2+l2

I(x1 + x2 − l2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ d2

0
I(d1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ d2+l2

d2

I(d1 + d2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ ∞
d2+l2

I(d1 + x2 − l2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ ∞
d1+l1

∫ d2

0
I(x1 − l1 + x2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ ∞
d1+l1

∫ d2+l2

d2

I(x1 − l1 + d2 ≤ t)λ2e−λ(x1+x2)dx2dx1

+

∫ ∞
d1+l1

∫ ∞
d2+l2

I(x1 − l1 + x2 − l2 ≤ t)λ2e−λ(x1+x2)dx2dx1.
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Therefore,

F
Xl1 ,l2

d1 ,d2

(t) =
∫ d1+l1

0

∫ d2+l2

0
λ2e−λ(x1+x2)dx2dx1 +

∫ d1

0

∫ l2+t−x1

d2+l2
λ2e−λ(x1+x2)dx2dx1

+

∫ d1+l1

d1

∫ l2+t−d1

d2+l2
λ2e−λ(x1+x2)dx2dx1 +

∫ l1+t−d2

d1+l1

∫ d2

0
λ2e−λ(x1+x2)dx2dx1

+

∫ l1+t

l1+t−d2

∫ l1+t−x1

0
λ2e−λ(x1+x2)dx2dx1 +

∫ l1+t−d2

d1+l1

∫ d2+l2

d2

λ2e−λ(x1+x2)dx2dx1

+

∫ l1+t−d2

d1+l1

∫ l1+l2+t−x1

d2+l2
λ2e−λ(x1+x2)dx2dx1

= 1 − (λd1 + 1)e−λ(t+l2) − (λd2 + 1)e−λ(t+l1) − (λ(t − d1 − d2) − 1)e−λ(l1+l2+t).

Hence, the proof is completed. □

Proof of Lemma 2.1. We first prove part (a) of the lemma. We need to show that
FXl′ ,l′

d1 ,d2

(t) ≥ FXl′ ,l′
d∗1 ,d
∗
2

(t) for all t. Without loss of generality, assume that d1 ≤ d2 and d∗1 ≤ d∗2.

From Lemma 2.2,

FXl′ ,l′
d1 ,d2

(t) =



1 − (tλ + 1)e−λt, if 0 ≤ t < d1,

1 − (d1λ + 1)e−λt − λ(t − d1)e−λ(l′+t), if d1 ≤ t < d2,

1 − (λ(d1 + d2 − t) + 1)e−λt − λ(2t − d1 − d2)e−λ(t+l′), if d2 ≤ t < d1 + d2,

1 − (λd1 + λd2 + 2)e−λ(t+l′) − (λ(t − d1 − d2) − 1)e−λ(t+2l′), if d1 + d2 ≤ t.

It is easy to see that
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FXl′ ,l′
d1 ,d2

(t) − FXl′ ,l′
d∗1 ,d
∗
2

(t) =



0, 0 ≤ t < d1,

λ(t − d1)e−λt − λ(t − d1)e−λ(l′+t) ≥ 0, d1 ≤ t < d∗1,

λ(d∗1 − d1)e−λt − λ(d∗1 − d1)e−λ(l′+t) ≥ 0, d∗1 ≤ t < d∗2,

λ(d∗1 + d∗2 − t − d1)e−λt

−λ(d∗1 + d∗2 − t − d1)e−λ(l′+t) ≥ 0, d∗2 ≤ t < d2,

0, d2 ≤ t < d1 + d2,

0, d1 + d2 ≤ t

and the required result. Now, to prove Part (b), We need to show that F
X

l∗1 ,l
∗
2

d′ ,d′
(t) ≥ F

Xl1 ,l2
d′ ,d′

(t)

for all t. From Lemma 2.2,

F
Xl1 ,l2

d′ ,d′
(t) =



1 − (tλ + 1)e−λt, if 0 ≤ t < d′,

1 − λ(t − d′)(e−λ(t+l2) + e−λ(t+l1))
−(λ(2d′ − t) + 1)e−λt, if d′ ≤ t < 2d′,

1 − (λd′ + 1)(e−λ(t+l1) + e−λ(t+l2))
−(λ(t − 2d′) − 1)e−λ(t+l1+l2), if 2d′ ≤ t,

It is easy to see that

F
X

l∗1 ,l
∗
2

d′ ,d′
(t) − F

Xl1 ,l2
d′ ,d′

(t) =



0, 0 ≤ t < d′,

λ(t − d′)(e−λ(t+l2) + e−λ(t+l1)

−e−λ(t+l∗2) − e−λ(t+l∗1)), d′ ≤ t < 2d′,

(λd′ + 1)(e−λ(t+l1) + e−λ(t+l2)

−e−λ(t+l∗1) − e−λ(t+l∗2)), 2d′ ≤ t.

Now, by the assumption (l∗1, l
∗
2) ≤m (l1, l2) and the fact that g(x1, x2) =

∑2
i=1 e−λxi is a

Schur-convex function, the required result follows. □


