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Abstract. Recently, it has been observed that a new method for generating continuous
distributions, T − X family, can be quite effectively used to analyze the data in one
dimension. The aim of this study is to generalize this method to two dimensional
space so that the marginals would have T − X distributions. So, several examples and
properties of this family have been presented. As an application, a special distribution
of this family, called bivariate Weibull-Rayleigh-Rayleigh, is fitted to a data set and is
shown to have a better fit.
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1 Introduction

Statistical distributions are commonly used for describing real world phenomena.
Many generalized classes of univariate distributions have been upgraded to bivari-
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ate and multivariate cases and applied to describe various phenomena. Recently,
several theoretical books on multivariate non-normal distributions have been pub-
lished: Hutchinson and Lai (1990), Joe (1997), Arnold et al. (1999), Kotz et al. (2000) and
Nelsen (2006). Finally, Alzaatreh et al. (2013,a) presented a new method for generating
univariate families of continuous distributions. The resulting family, T − X, has many
new distributions as its members. Let r(t) be the probability density function (p.d.f.)
of a random variable T ∈ [a, b], −∞ ≤ a < b ≤ +∞. Let W(F(x)) be a function of the
cumulative distribution function (c.d.f.) F(x) of any random variable X so that W(F(x))
satisfies the following conditions:

1. W(F(x)) ∈ [a, b]

2. W(F(x)) is differentiable and monotonically non-decreasing.

3. W(F(x))→ a as x→ −∞ and W(F(x))→ b as x→ +∞.

A method for generating new families of distributions is presented in the following
definition.

Definition 1.1. Let X be a random variable with p.d.f. f (x) and c.d.f. F(x). Let T be a
continuous random variable with p.d.f. r(t) defined on [a, b]. The c.d.f. of a new family of
distributions is defined as

G(x) =
∫ W(F(x))

a
r(t)dt, (1.1)

where W(F(x)) satisfies the three conditions mentioned above. The c.d.f. G(x) in (1.1) can be
written as G(x) = R(W(F(x))), where R(t) is the c.d.f. of T. The corresponding p.d.f. associated
with (1.1) is

g(x) = (
∂
∂x

W(F(x)))r(W(F(x))).

When the support of T is [a,+∞), a ≥ 0, W(F(x)) can be defined as − log(1 − F(x)),
F(x)

1−F(x) and− log(1−Fα(x)), where α > 0. When the support of T is (−∞,+∞), W(F(x)) can

be defined as log(− log(1 − F(x))), log F(x)
1−F(x) and log(− log(1 − Fα(x))). This method has

already been discussed in detail in Alzaatreh et al. (2013,a). Various distributions can
be derived through this method. The gamma-half normal distribution and the gamma-
normal distribution were introduced by Alzaatreh and Knight (2013) and Alzaatreh
et al. (2014), respectively. Also the gamma-Pareto and Weibull-Pareto distributions
were introduced by Alzaatreh et al. (2012) and Alzaatreh et al. (2013,b), respectively.
The gamma-uniform and the logistic-uniform distributions were introduced by Torabi



A New Method for Generating Continuous Bivariate Distribution 111

and Montazeri (2012) and Torabi and Montazeri (2014), respectively. In this paper,
a new method is proposed to generate bivariate families of continuous distributions
using the T − X family named (U,V) − X − Y distribution family.

2 New Results and Generalizations

Using the method of generating new distributions, T −X family subsumes many well-
known distributions along with a vast array of new bivariate distributions. This section
will generalize the method of T − X distribution family to derive families of bivariate
distributions by using two other univariate distributions as generators.

Let r(u, v) be the p.d.f. of random vector (U,V), where U ∈ [a1, b1], V ∈ [a2, b2],
−∞ ≤ a1 < b1 ≤ +∞, −∞ ≤ a2 < b2 ≤ +∞. Also let W1(F1(x)) and W2(F2(y)) be two
functions of the c.d.f. F1(x) and c.d.f. F2(y) of random variables X and Y, respectively,
which satisfy the following conditions:

1. W1(F1(x)) ∈ [a1, b1] and W2(F2(y)) ∈ [a2, b2]

2. W1(F1(x)) and W2(F2(y)) are differentiable and not decreasing

3. limx→−∞W1(F1(x)) = a1, limx→+∞W1(F1(x)) = b1

4. limy→−∞W2(F2(y)) = a2, limy→+∞W2(F2(y)) = b2.

Definition 2.1. Let X be a random variable with p.d.f. f1(x) and c.d.f. F1(x) and Y be another
random variable with p.d.f. f2(y) and c.d.f. F2(y). Let (U,V) be the continuous bivariate
random vector with p.d.f. r(u, v) and c.d.f. R(u, v) defined on [a1, b1] × [a2, b2]. The c.d.f. of a
new bivariate family of distributions is defined as

G(x, y) =
∫ W1(F1(x))

a1

∫ W2(F2(y))

a2

r(u, v)dvdu. (2.1)

which can be written as
G(x, y) = R(W1(F1(x)),W2(F2(y))).

The corresponding p.d.f. associated with (2.1) is

g(x, y) = (
∂
∂x

W1(F1(x)))(
∂
∂y

W2(F2(y)))r(W1(F1(x)),W2(F2(y))). (2.2)
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The c.d.f. in (2.1) is a composite function of W1, W2, F1, F2 and r. It is easy to show
that (2.1) and (2.2) satisfy the conditions of c.d.f. and p.d.f., respectively. With regard
the range of (U,V), different forms of W1(F1(x)) and W2(F2(y)) can be obtained. In this
article, when (U,V) has the supportℜ2, we will focus on the forms W(F(x)) = log F(x)

1−F(x)
and W(F(x)) = log(− log(1 − F(x))). When (U,V) has the supportℜ2

+, we will focus on
the forms W(F(x)) = F(x)

1−F(x) and W(F(x)) = − log(1 − F(x)). The bivariate normal and
bivariate logistic distributions are examples with supportℜ2. Moreover, the bivariate
Weibull, bivariate gamma and bivariate Gumbel distributions have supportℜ2

+, (Kotz
et al. (2000)). In the following, some properties of the (U,V)−X−Y distribution family
are presented.

Lemma 2.2. Let (X,Y) be a bivariate random vector that follows the p.d.f. (2.2). Define
U =W1(F1(X)) and V =W2(F2(Y)). Then, the random vector (U,V) has p.d.f. r(u, v).

Proof. The proof is straightforward, hence omitted. □

The following theorem provides the marginals of the (U,V) − X − Y distributions.

Theorem 2.3. Let (X,Y) follow the p.d.f. (2.2). Then the marginals are

gX(x) = (
∂
∂x

W1(F1(x)))rU(W1(F1(x)))

and

gY(y) = (
∂
∂y

W2(F2(y)))rV(W2(F2(y))).

In addition,

EX,Y(X) = EU(F−1
1 (W−1

1 (U)))

and

EX,Y(Y) = EV(F−1
2 (W−1

2 (V))),

where U and V follow the marginals of the p.d.f. r(U,V) (rU and rV).

Proof. Integrating (2.2) with respect to x and y, respectively, the marginals gX(x) and
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gY(y) will be obtained. In addition,

EX,Y(X) =
∫

X

∫
Y

x(
∂
∂x

W1(F1(x)))(
∂
∂y

W2(F2(y)))r(W1(F1(x)),W2(F2(y)))dydx

=

∫
X

x(
∂
∂x

W1(F1(x)))
∫

Y
(
∂
∂y

W2(F2(y)))r(W1(F1(x)),W2(F2(y)))dydx

=

∫
X

x(
∂
∂x

W1(F1(x)))rU(W1(F1(x)))dx

= EU(F−1
1 (W−1

1 (U))).

EX,Y(Y) can be easily obtained too. □

One can notice that the marginal densities are the same as the T − X family of
distributions which have already been introduced by Alzaatreh et al. (2013,a). Some
general models of the (U,V)−X−Y distribution family will be studied in the following.

3 Some General Models

Let the support of the r(u, v) beℜ2, then various forms of W1(F1(x)) and W2(F2(y)) can
be used in (2.2). We present some examples in the following.

Example 3.1. In (2.2), W1(F1(x)) = log F1(x)
1−F1(x) and W2(F2(y)) = log F2(y)

1−F2(y) , then

g(x, y) =
f1(x) f2(y)

F1(x)F2(y)(1 − F1(x))(1 − F2(y))

× r(log
F1(x)

1 − F1(x)
, log

F2(y)
1 − F2(y))

)

=
h1(x)h2(y)
F1(x)F2(y)

r(log
F1(x)

1 − F1(x)
, log

F2(y)
1 − F2(y))

),

where h1(x) and h2(y) are the hazard functions of random variables X with c.d.f. F1(x)
and Y with c.d.f. F2(y), respectively. The support of g(x, y) depends on the supports of
F1(x) and F2(y).

Define F1(x) = ex

1+ex and F2(y) = ey

1+ey , then g(x, y) = r(x, y). Hence the (U,V) − X − Y
family can be a generalization of the (U,V) family.
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In Gray (1990), Gray has investigated and introduced some of the Shannon entropy
properties in the univariate and multivariate cases. Also the reader can refer to Cover
and Thomas (2006) and Shannon (1948).

Theorem 3.1. Given the bivariate random vector (U,V) with p.d.f. r(u, v) and the bivariate
random vector (X,Y) with p.d.f. (3.1), the Shannon entropy of (X,Y) is

ηX,Y = ηU,V + EU(U) + EV(V) + 2E(log(1 − eU

1 + eU ))

+ 2E(log(1 − eV

1 + eV )) − EU(log( f1(F−1
1 (

eU

1 + eU ))))

− EV(log( f2(F−1
2 (

eV

1 + eV )))),

where ηU,V is the Shannon entropy of the bivariate random vector (U,V).

Proof. According to the definition of Shannon entropy, ηX,Y is

ηX,Y = −EX,Y(log(g(X,Y)))
= −EX,Y(log( f1(X))) − EX,Y(log( f2(Y))) + EX,Y(log(F1(X)))
+ EX,Y(log(F2(Y))) + EX,Y(log(1 − F1(X)))
+ EX,Y(log(1 − F2(Y)))

− EX,Y(log r(log
F1(X)

1 − F1(X)
, log

F2(Y)
1 − F2(Y)

))

= −EX,Y(log( f1(X))) − EX,Y(log( f2(Y)))

+ EX,Y(log
F1(X)

1 − F1(X)
) + EX,Y(log

F2(Y)
1 − F2(Y)

)

+ 2EX,Y(log(1 − F1(X))) + 2EX,Y(log(1 − F2(Y)))

− EX,Y(log r(log
F1(X)

1 − F1(X)
, log

F2(Y)
1 − F2(Y)

)).

Define U = log F1(X)
1−F1(X) and V = log F2(Y)

1−F2(Y) . Then

−EX,Y(log r(log
F1(X)

1 − F1(X)
, log

F2(Y)
1 − F2(Y)

)) = −EU,V(log r(U,V)) = ηU,V.

Also

EX,Y(log
F1(X)

1 − F1(X)
) = EU(U)
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and

EX,Y(log
F2(Y)

1 − F2(Y)
) = EV(V),

where EU(U) and EV(V) are the expectations of random variables U and V, respectively,
whose density functions will be obtained from marginals of r(u, v). Then the results are
obtained. □

Example 3.2. In (2.2), let define W1(F1(x)) = log(− log(1 − F1(x))) and W2(F2(y)) =
log(− log(1 − F2(y))). Then

g(x, y) =
f1(x) f2(y)r(log(− log(1 − F1(x))), log(− log(1 − F2(y))))

(1 − F1(x))(1 − F2(y)) log(1 − F1(x)) log(1 − F2(y))
.

Define F1(x) = 1−e−ex
and F2(y) = 1−e−ey

, then g(x, y) = r(x, y). Then the (U,V)−X−Y
family can be a generalization of the (U,V) family in this case, too.

Figure 1 indicates the relation between the (U,V)−X−Y family and the (U,V) family
when the support of r(u, v) isℜ2.

Similar to Theorem 3.1, Shannon entropy of (X,Y) for the p.d.f. given in Example
3.2 can be obtained as

ηX,Y = ηU,V − EU(U) − EV(V) − E(eU) − E(eV) − E(log f1(F−1
1 (1 − e−eU

)

−E(log f2(F−1
2 (1 − e−eV

))).

Some special models of the (U,V) − X − Y distribution family will be studied in
Section 4.

4 Some Special Models

4.1 Bivariate Normal-X-Y Distribution Family

Two random variables X and Y are said to have a bivariate normal distribution with
parameters µ1, µ2, σ1, σ2 and ρ if their joint p.d.f. is given by

fBnorm(u, v) =
1

2πσ1σ2
√

1 − ρ2
exp(− 1

2(1 − ρ2)
((

u − µ1

σ1
)2

+ (
v − µ2

σ2
)2 −

2ρ(u − µ1)(v − µ2)
σ1σ2

)),
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where µ1, µ2 ∈ ℜ, σ1, σ2 ∈ ℜ+, ρ ∈ (−1, 1) and u, v ∈ ℜ .
Using this p.d.f. and the (U,V) − X − Y family method, the bivariate normal-X-Y

distribution family can be introduced and examined.
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1. Let in (3.1) r(x, y), F1(x) and F2(y) be the bivariate normal p.d.f., the exponential c.d.f.
with parameter a and the exponential c.d.f. with parameter b, respectively. Then the
bivariate normal-exponential-exponential type 1 (BNEE1) p.d.f. is obtained as

g(x, y) =
ab

(1 − e−ax)(1 − e−by)
fBnorm(log(eax − 1), log(eby − 1))

=
ab

2πσ1σ2
√

1 − ρ2(1 − e−ax)(1 − e−by)
exp(− 1

2(1 − ρ2)
(

(
log(eax − 1) − µ1

σ1
)2 + (

log(eby − 1) − µ2

σ2
)2 −

2ρ(log(eax − 1) − µ1)(log(eby − 1) − µ2)
σ1σ2

)),

where x, y ≥ 0, a, b, σ1, σ2 ∈ ℜ+, ρ ∈ (−1, 1), µ1, µ2 ∈ ℜ.
Figure 2 shows the BNEE1 p.d.f. for µ1 = µ2 = 0, σ1 = σ2 = 1, ρ = 0 and some values

of a and b. Figure 3 also shows the BNEE1 p.d.f. for a = b = 0.5 and some variate values
of µ1, µ2, σ1, σ2 and ρ.

Shannon entropy of the bivariate normal-X-Y type 1 distribution family using The-
orem (3.1) will be obtained as

ηX,Y = ηU,S + µU + µV + 2EU(log(1 − eU

1 + eU )) + 2EV(log(1 − eV

1 + eV ))

−EU(log( f1(F−1
1 (

eU

1 + eU )))) − EV(log( f2(F−1
2 (

eV

1 + eV )))),

where ηU,V is the Shannon entropy of the bivariate normal distribution, U and V are the random
variables with normal p.d.f. and µU and µV are the expectations of random variables U and
V, respectively. Estimates of the Shannon entropy of the bivariate normal p.d.f. have been
obtained by Misra et al. (2005).

Let a random sample of size n be taken from the bivariate density in (4.1), then the corre-
sponding log-likelihood function can be written as

l(µ1, µ2, σ1, σ2, ρ, a, b) = n log a + n log b − n log 2π − n log σ1 − n log σ2

−
n∑

i=1

log(1 − e−axi ) −
n∑

i=1

log(1 − e−byi ) − n
2

log(1 − ρ2)

− 1
2(1 − ρ2)

n∑
i=1

(
log(eaxi − 1) − µ1

σ1
)2 − 1

2(1 − ρ2)

n∑
i=1

(
log(ebyi − 1) − µ2

σ2
)2

+
ρ

1 − ρ2

n∑
i=1

(log(eaxi − 1) − µ1)
σ1

(log(ebyi − 1) − µ2)
σ2

.
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By differentiating (4.1) with respect to µ1, µ2, σ1, σ2, ρ, a and b, we get

∂
∂µ1

l(µ1, µ2, σ1, σ2, ρ, a, b) =
1

(1 − ρ2)σ2
1

n∑
i=1

(log(eaxi − 1) − µ1)

−
ρ

σ1σ2(1 − ρ2)

n∑
i=1

(log(ebyi − 1) − µ2),

∂
∂µ2

l(µ1, µ2, σ1, σ2, ρ, a, b) =
1

(1 − ρ2)σ2
2

n∑
i=1

(log(ebyi − 1) − µ2)

−
ρ

σ1σ2(1 − ρ2)

n∑
i=1

(log(eaxi − 1) − µ1),

∂
∂σ1

l(µ1, µ2, σ1, σ2, ρ, a, b) =
−n
σ1
+

1
(1 − ρ2)σ1

n∑
i=1

(log(eaxi − 1) − µ1)2

−
ρ

σ2
1σ2(1 − ρ2)

n∑
i=1

(log(eaxi − 1) − µ1)(log(ebyi − 1) − µ2),

∂
∂σ2

l(µ1, µ2, σ1, σ2, ρ, a, b) =
−n
σ2
+

1
(1 − ρ2)σ2

n∑
i=1

(log(ebyi − 1) − µ2)2

−
ρ

σ2
2σ1(1 − ρ2)

n∑
i=1

(log(ebyi − 1) − µ2)(log(eaxi − 1) − µ1),

∂
∂ρ

l(µ1, µ2, σ1, σ2, ρ, a, b) =

nρ
1 − ρ2 −

ρ

(1 − ρ2)2 (
n∑

i=1

(
log(eaxi − 1) − µ1

σ1
)2 + (

log(ebyi − 1) − µ2

σ2
)2)

+
1 + ρ2

(1 − ρ2)2

n∑
i=1

(log(eaxi − 1) − µ1)
σ1

(log(ebyi − 1) − µ2)
σ2

,

∂
∂a

l(µ1, µ2, σ1, σ2, ρ, a, b) =

n
a
−

n∑
i=1

xie−axi

1 − e−axi
− 1

(1 − ρ2)σ2
1

n∑
i=1

(log(eaxi − 1) − µ1)
xie−axi

1 − e−axi

+
ρ

σ1σ2(1 − ρ2)

n∑
i=1

(log(ebyi − 1) − µ2)
xie−axi

1 − e−axi
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and
∂
∂b

l(µ1, µ2, σ1, σ2, ρ, a, b) =

n
b
−

n∑
i=1

yie−byi

1 − e−byi
− 1

(1 − ρ2)σ2
2

n∑
i=1

(log(ebyi − 1) − µ2)
yie−byi

1 − e−byi

+
ρ

σ1σ2(1 − ρ2)

n∑
i=1

(log(eaxi − 1) − µ1)
yie−byi

1 − e−byi
.

Setting seven equations equal to zero and solving simultaneously, we get the maximum
likelihood estimates for µ1, µ2, σ1, σ2, ρ, a and b.

Suppose a and b are known, then according to Lemma 2.2, the (log(eaX − 1), log(ebY − 1)) in
(4.1) follows a bivariate normal p.d.f. with parameters µ1, µ2, σ1, σ2 and ρ. Then the estimates
of µ1, µ2, σ1, σ2 and ρ can be obtained as

µ̂1 =
1
n

n∑
i=1

log(eaxi − 1),

µ̂2 =
1
n

n∑
i=1

log(ebyi − 1),

σ̂1 =

√√
1
n

n∑
i=1

(log(eaxi − 1) − µ̂1)2 =

√√
1
n

n∑
i=1

log
eaxi − 1

(
∏n

i=1(eaxi − 1))
1
n

,

σ̂2 =

√√
1
n

n∑
i=1

(log(ebyi − 1) − µ̂2)2 =

√√
1
n

n∑
i=1

log
ebyi − 1

(
∏n

i=1(ebyi − 1))
1
n

and

ρ̂ =
1
n

n∑
i=1

(log(eaxi − 1) − µ̂1)(log(ebyi − 1) − µ̂2)
σ̂1σ̂2

.

2. In Example 3.2, let r(x, y), F1(x) and F2(y) be the bivariate normal p.d.f., exponential c.d.f.
with parameter a and exponential c.d.f. with parameter b, respectively. Then the bivariate
normal-exponential-exponential type 2 (BNEE2) p.d.f. will be obtained as

g(x, y) =
1

xy
fBnorm(log(ax), log(by))

=
1

2πσ1σ2
√

1 − ρ2xy
exp(− 1

2(1 − ρ2)
((

log(ax) − µ1

σ1
)2

+ (
log(by) − µ2

σ2
)2 −

2ρ(log(ax) − µ1)(log(by) − µ2)
σ1σ2

), (4.1)
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where x, y ≥ 0, a, b, σ1, σ2 ∈ ℜ+, µ1, µ2 ∈ ℜ and ρ ∈ (−1, 1).
This is the bivariate log normal p.d.f. with parameters µ1 − log a, µ2 − log b, σ1, σ2 and ρ (see

Cheng (1986)).
The marginal p.d.f. of the bivariate normal-X-Y family, gX(x) can be obtained from Theorem

2.3 as
gX(x) = f1(x)W′

1(F1(x)) fnorm(W1(F1(x))).

The obtained marginal p.d.f. follows the normal-X p.d.f. which can be obtained by the
method of the T − X family. Some properties of case 2 can be obtained similar to case 1.

Analysis of these families of distributions needs a separate study but a simulated study of
BNEE2 p.d.f. with different parameters has been done. Samples of size n = 200 were produced
for m = 300 times. This p.d.f. has been determined with seven parameters µ1, µ2, σ1, σ2, ρ, a and
b The bivariate random vector (U,V) was simulated from the bivariate normal distribution and
then X = 1

a eU and Y = 1
b eV were generated. The R software (mvnorm package) was used. The

results have been shown in Table 1. Table 1 shows the mean, variance, skewness, and kurtosis
of X and Y and covariance of (X,Y) for some values of µ1, µ2, σ1, σ2, ρ, a and b. A glance at Table
1 shows that when µ1 and µ2 increase the means of X and Y increase. When ρ increases, the
covariance of (X,Y) increases. When a and b increase the means of X and Y decrease.
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4.2 Bivariate Gamma-X-Y Distribution Family

Mckay (1934) introduced a kind of bivariate gamma distribution with p.d.f.

fBG(u, v) =
ca+b

Γ[a]Γ[b]
ua−1(v − u)b−1e−cv, a, b, c > 0, v > u > 0.

The marginal distributions of X and Y are gamma with shape parameters a and a + b, re-
spectively, but they have a common scale parameter 1

c .

1. In (2.2), let r(x, y) be the bivariate gamma p.d.f. Also, let W1(F1(x)) = F1(x)
1−F1(x) and W2(F2(y)) =

F2(y)
1−F2(y) , then the bivariate gamma-X-Y p.d.f. is obtained for F1(x) ≤ F2(y) as

g(x, y) =
f1(x) f2(y)

(1 − F1(x))2(1 − F2(y))2 fBG(
F1(x)

1 − F1(x)
,

F2(y)
1 − F2(y)

)

=
ca+be−

cF2(y)
1−F2(y) f1(x) f2(y)

Γ[a]Γ[b](1 − F1(x))2(1 − F2(y))2 (
F1(x)

1 − F1(x)
)a−1×

(
F2(y)

1 − F2(y)
− F1(x)

1 − F1(x)
)b−1. (4.2)

Now, let F1 and F2 be the normal density functions, then the bivariate gamma-normal-
normal type 1 distribution family (BGNN1) will be obtained. The marginal density functions
of X and Y can be, respectively, obtained from Theorem 2.3 as

gX(x) =
ca f1(x)

Γ[a](1 − F1(x))2 (
F1(x)

1 − F1(x)
)a−1e−

cF1(x)
(1−F1(x))

and

gY(y) =
ca+b f2(y)

Γ[a + b](1 − F2(y))2 (
F2(y)

1 − F2(y)
)a+b−1e−

cF2(y)
(1−F2(y)) .

2. Let, in (2.2), r(x, y) be the bivariate gamma p.d.f. Also let W1(F1(x)) = − log(1 − F1(x)) and
W2(F2(y)) = − log(1 − F2(y)). Then

g(x, y) =
f1(x) f2(y)

(1 − F1(x))(1 − F2(y))
fBG(− log(1 − F1(x)),− log(1 − F2(y)))

=
ca+b f1(x) f2(y)

Γ[a]Γ[b](1 − F1(x))(1 − F2(y))
ec log(1−F2(y))

× (− log(1 − F1(x)))a−1(− log(1 − F2(y)) + log(1 − F1(x)))b−1.
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The marginal density functions of X and Y can be obtained as

gX(x) =
ca f1(x)
Γ[a]

(− log(1 − F1(x)))a−1(1 − F1(x))c−1

and

gY(y) =
ca+b f2(y)
Γ[a + b]

(− log(1 − F2(y)))a+b−1(1 − F2(y))c−1.

The marginals follow the gamma-X family that have been introduced by Alzaatreh et al.
(2014).

4.3 Bivariate Weibull-X-Y Distribution Family

The bivariate Weibull p.d.f. is defined for 0 < α ≤ 1, ξ1, ξ2, k > 0, ϕ = 1
α and t, s ≥ 0 as follows:

fBW(t, s) = k2ξ
ϕ
1 ξ
ϕ
2 tkϕ−1skϕ−1

× {(ξϕ1 tkϕ + ξ
ϕ
2 skϕ)2α−2 + (ϕ − 1)(ξϕ1 tkϕ + ξ

ϕ
2 skϕ)α−2}

× exp(−(ξϕ1 tkϕ + ξ
ϕ
2 skϕ)α).

The marginal distributions are Weibull with parameters 1
ξ and k. For more information the

reader can refer to Kotz et al. (2000).
1. Let, in (2.2), r(x, y) be the bivariate Weibull p.d.f. with 0 < α ≤ 1, k > 0. Suppose
W1(F1(x)) = F1(x)

1−F1(x) and W2(F2(y)) = F2(y)
1−F2(y) , then the bivariate Weibull-X-Y p.d.f. is given as

g(x, y) =
f1(x) f2(y)

(1 − F1(x))2(1 − F2(y))2 fBW(
F1(x)

1 − F1(x)
,

F2(y)
1 − F2(y))

).

Then

g(x, y) =
k2ξ
ϕ
1 ξ
ϕ
2 f1(x) f2(y)

(1 − F1(x))2(1 − F2(y))2 (
F1(x)

1 − F1(x)
)kϕ−1(

F2(y)
1 − F2(y)

)kϕ−1

×{(ξϕ1 (
F1(x)

1 − F1(x)
)kϕ + ξ

ϕ
2 (

F2(y)
1 − F2(y)

)kϕ)2α−2

+(ϕ − 1)(ξϕ1 (
F1(x)

1 − F1(x)
)kϕ + ξ

ϕ
2 (

F2(y)
1 − F2(y)

)kϕ)α−2}

×exp(−(ξϕ1 (
F1(x)

1 − F1(x)
)kϕ + ξ

ϕ
2 (

F2(y)
1 − F2(y)

)kϕ)α).
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2. Let r , F1(x) and F2(y) be the bivariate Weibull, Rayleigh with parameter b1 and Rayleigh
with parameter b2, respectively. Also, in (2.2), let W1(F1(x)) = − log(1 − F1(x)) and W2(F2(y)) =
− log(1 − F2(y)), then the bivariate Weibull-Rayleigh-Rayleigh type 2 (BWRR2) p.d.f. will be
obtained as follows:

g(x, y) =
k2ξ
ϕ
1 ξ
ϕ
2

(b1b2)2 xy(
x√
2b1

)2kϕ−2(
y
√

2b2

)2kϕ−2 × {(ξϕ1 (
x√
2b1

)2kϕ
+ ξ

ϕ
2 (

y
√

2b2

)2kϕ
)2α−2

+ (ϕ − 1)(ξϕ1 (
x√
2b1

)2kϕ
+ ξ

ϕ
2 (

y
√

2b2

)2kϕ
)α−2

× exp(−(ξϕ1 (
x√
2b1

)2kϕ
+ ξ

ϕ
2 (

y
√

2b2

)2kϕ)α )}, (4.3)

where 0 < α ≤ 1, k, b1, b2 > 0, ϕ = 1
α and x, y ≥ 0. The marginal p.d.f. of X will be as:

gX(x) =
xξ1k

b2
1

(
ξ1x2

2b2
1

)k−1exp(−ξ1
x2

2b2
1

)k, x > 0.

This p.d.f. is the Weibull-Rayleigh p.d.f. that has been introduced by Ganji et al. (2016).

5 Application

In this section, the BWRR2 in (4.3) is applied to a real data set. The data set represents the scores
of 25 first year graduate students in Probability-I and Inference-I in a premier Institute in India.
This data set has been analyzed by Al-Mutairi et al. (2011). The data are

X = (53, 55, 85, 87, 22, 23, 25, 93, 51, 62, 53, 32, 43, 47, 30, 88, 59, 49, 42,
71, 41, 82, 75, 93, 37),

Y = (89, 90, 59, 50, 25, 29, 54, 62, 39, 25, 89, 32, 33, 63, 38, 77, 55, 41, 31,
66, 57, 32, 43, 88, 34).

They fitted these data to the marginals of Bivariate distribution with Weighted Exponen-
tial marginals (BWE). They used Kolmogrov-Smirnov distance and corresponding p-values
between the empirical distribution function of the marginals. We fit the marginals of BWRR2
to these data. Kolmogrov-Smirnov test statistics (K-S), p-value for the fitted distributions,
Akaike Information criterion (AIC) and Bayesian information criterion (BIC) are reported in
Table 2. The results in Table 2 show that the marginals of the BWRR2 are much better than
BWE. The maximum likelihood estimates of the parameters of the marginals of X and Y are
(20.5554, 1.3770, 9.8349) and (20.1717, 1.3408, 9.2528), respectively.
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Table 2: The Kolmogrov-Smirnov distance and corresponding p-values, AIC and BIC
for the scores data

Distribution Variable K-S p-value AIC BIC
BWE X 0.208 0.329 241.6494 244.0872

Y 0.225 0.286 237.5752 240.0130
BWRR2 X 0.1127 0.9086 230.7994 234.4560

Y 0.1288 0.8012 227.4621 231.1187

6 Conclusion

This study introduces a new generating method for bivariate distributions. This technique is a
generalization of the T − X univariate distribution family. In addition to the afore-mentioned
examples, this technique can be used to examine the bivariate Gumbel-X-Y distribution, bivari-
ate Pareto-X-Y and many other distributions whose properties and usages can be examined.
Lastly, we discuss the application of a special distribution of this family. This method can be
generalized to multivariate distributions. The aim of this study was merely to introduce a
new method and to present several examples. Separate studies are required to describe more
properties and applications.
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