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Abstract. In the restricted elliptical linear model, an approximation for the risk of a
general shrinkage estimator of the regression vector-parameter is given. Superiority
condition of the shrinkage estimator over the restricted estimator is investigated under
the elliptical assumption. It is evident from numerical results that the shrinkage esti-
mator performs better than the unrestricted one in the multivariate t-regression model.
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1 Introduction

Conventional estimators, such as the maximum likelihood and least squares estimators,
are only based on the sample responses. An improved estimator, on the other hand,
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incorporates both the sample and non-sample (prior) information in the definition of
the estimator. Among the popular improved estimators, shrinkage estimators perform
better than the conventional ones under certain conditions. If improvement in the
risk or prediction error is more desirable than unbiasedness, shrinkage estimators are
preferred.

On the other hand, if the validity of the prior assumption is not tested, neither
the restricted nor unrestricted (conventional) estimator makes use of the available
information in an optimal way. The Stein-type shrinkage estimator incorporates this
uncertain prior information, and combines the restricted and unrestricted estimators
in a superior manner.

Employing shrinkage estimation in the analysis started after the seminal work of
Stein (1956). Since then, considerable researches focusing on shrinkage estimation of lo-
cation parameters have been conducted. For instance, we refer to Sen and Saleh (1985),
Saleh and Sen (1987), Saleh and Kibria (1993), Kibria and Saleh (2003), Nkurunziza
(2011, 2012), and Chen and Nkurunziza (2016).

Stein (1981) derived an expression for the risk of general shrinkage estimators in
normal models. Ullah et al. (1983) discussed the properties of shrinkage estimators in
regression models when disturbances are not normal. Green and Strawderman (1991)
showed how to combine biased and unbiased estimators using the Stein shrinkage
concept. Verma and Singh (2002) studied a general class of shrinkage estimators in
multivariate t-regression models. Saleh (2006) provided a comprehensive discussion
of Stein-type estimators under different statistical models. Arashi and Tabatabaey
(2008) evaluated the performance of Stein-type shrinkage estimators in multivariate
t-regression models under stochastic restrictions. Tsukuma (2009) studied shrinkage
estimation in restricted elliptical models. Saleh and Kibria (2010) developed shrinkage
estimation in elliptical regression models, and applied shrinkage estimation in ridge
and logistic regression models in 2011 and 2013, respectively. The contributions of
Nkurunziza (2011, 2012) and Nkurunziza and Ahmed (2010, 2011) to the field of matrix
shrinkage estimation should be also acknowledged.

For practical sake, it is of most importance to develop shrinkage estimators in re-
gression models with restricted parameter spaces. The rest of this paper is organized
as follows. Section 2 is devoted to the formulation of the general form of shrinkage
estimator in the elliptical regression model with restricted parameter space. In Section
3 we find the risk function of the shrinkage estimator under some level of approxima-
tion, while some numerical studies through a Monte Carlo simulation and a real data
example are provided in Section 4. Proof of the main result is given in the Appendix.
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2 Model and Estimators

Consider the linear model
y=Xp+u, (2.1)

where y is an n X 1 vector of responses, X is an n X p matrix of n observations on p
explanatory variables (of full column rank p), B is a px1 vector of regression coefficients
and u is the n X 1 vector of random errors distributed according to the law belonging
to the class of elliptically contoured distributions (ECDs) by the characteristic function
@u(t) = Y(o*tTVt), where V € S(n) is known, S(1) denotes the set of all positive definite
matrices of order(n X n), 0 € R* is unknown and ¢ : [0, 0] — R is the characteristic
generator.

This paper deals with a class of ECDs preserving a specific property for the density
function. We further suppose that # has a density function of the form

fa) =102V 1/2h(” i ”) f W(b)g(ult)d (2.2)

where /1(.) is a non-negative function over R* such that f(.) is a density function with
respect to (w.r.t.) a o-finite measure u on IR?, g(.|t) is the density function of N, (O, 152 V)
and W(.) is a weighting function. We refer to Provost and Cheong (2002), Nkurunziza
(2013) and Nkurunziza and Chen (2013) for more details and applications.

Under our assumptions, the generalized least squares (GLS) estimator of 8 is of
the form f = (XTV-1X)"1XTv-1ly = C'X"V~ly, C = X"V~1X, with the variance-
covariance matrix cov(ﬁ) = aiC‘l, GZIP = —2¢’(0)0?, where ¢’ (0) is the first derivative of
Y at zero. An unbiased estimator of ai is given by S2 = aT V-'ir/(n — p), it = y — XB.

Let the exact linear restriction on f in model (2.1) is of the form Rf = r, where R is
a known | X p matrix of full row rank (J < p) and r is a known | X 1 vector. Under the
linear restriction Rf = r, the restricted GLSE is given by

BY=B+C'R'Vi(r-RB),  Vi=(RC'RT), 23)

with the variance-covariance matrix cov(ﬁR) =0?QC1, Q= [I - C‘lRTVlR].

Saleh and Kibria (2010) considered restricted estimators of the form given in (2.3)
and respective shrinkage estimators in their study. Lets = &' V'at/979, o = C%B.
Srivastava and Chandra (1991) suggested to replace 3 in the restricted estimator ﬁR by
(I = ksD)B, where k € R is a fixed scalar and D € S(p).
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Replacing 8 by the term (I — ksD)B, gives a new estimator given by

A

Bsc

(I-ksD)B + C'R"Vy(r — R(I — ksD)B)
B" - ksQDp.

Following Verma and Singh (2002), we consider a more general class of shrinkage
estimators in the elliptical regression model of the form

B = B - s)QDB, (2.4)

where the function g(s), having validity conditions of Taylor series expansion, satisfies
some mild regularity conditions.

Indeed, the coefficient ks in Srivastava and Chandra (1991) is replaced by the general
function g(s).

One must also note that ﬁGR is not a restricted estimator since RﬁGR = RﬁR -
8(s)RQDP = r — g(s)RQDP # r. In fact, the general function g(s) will result in the

. ~GR . e .
estimator B to not satisfy the restriction, even if D = Q1.

3 Approximate Risk Function

In this section, we provide the approximate risk function of the shrinkage estimator

ﬁGR of f in the elliptical regression model. For any estimator f* of B, the risk function
is evaluated according to Risk(8") = E(B* — B)'Q(B" — B), where Q is a positive defi-
nite weight matrix, respectively. For our purpose, we need the following regularity
conditions to hold.

(A1) Let first three derivatives of g(s) w.r.t. s be bounded such that g(s = 0) = 0.
(A2) ¢(s) = O(071), as O — oo, with 0 = vTo, v = C1B.

h .
(A3) Letx®™ = E(t™") = [(1) Wo(H)dt. Fori =1,2,3, x exists.

Theorem 3.1. Assume (A1)-(A3). Then, ignoring the terms of order O(0=3), the risk function
of ﬁGR is given by

TiT ol
trQ™ —Zﬁ Cz2 Q”Cap

Risk(3™) = xV0Q - 21 - p)g' ()2 [K@)[ 0 o2



Shrinkage Estimation 53

n-p+2 , 1T 1 3) (p + 6)a*trQ™
5 8 0pC Q Czﬁ)—K N S—
262 62
nm-p+2)2¢”©0) ., m—-p+2)0o* , "
T g0 T e $0mQ
2 T 2 T
gt gcip+ S opTct g clp
202 ;AT .1 ¢"(0)
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20* 1 1
+%g’(0)(n -p+ 2)ﬁTC7TQ"**C7ﬁ)] /

where Q* = C"2QQQC™2 , Q* = C-2QQODC2 , and Q** = C-:DTQQQDC2.
For the proof, see Appendix.

3.1 Superiority Conditions

In this section, we derive the necessary conditions under which the shrinkage estimator

R . . AR . e . .
p is superior to f in risk sense, in the elliptical regression model. The following
result is a direct conclusion from Theorem 3.1.

Proposition 3.1. Under the assumption of Theorem 3.1 and ignoring the terms of order
T 1 1T 1
ok okt Tc% “(C2 ch (0

O( ty(@QZ ))/ O( tr(gz ))/ O(ﬁ Q ‘B)/ O(ﬁ 63 ‘B

% ), we have
~GR ~R trQ*x— ﬁTc%TQ**C%ﬁ
Risk(3™) = Risk(B") + 21~ p)g' O Do | - = + 27—
n—p+2 T

The following result, provides the necessary conditions for superiority of the shrink-
age estimator over the restricted GLSE, in the elliptical regression model.

Proposition 3.2. Under the assumptions of Proposition 3.1, the restricted GLSE is inadmissible
if the function g’(0) satisfies the inequality

T ok
2 (d_ 28TQQQDB ) S 0
B

0<g/(0) < —— =
§O <=2\ spracans reiTgmclg
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4 Tllustrations

In this section, we provide some numerical results to support our findings. For different
. N . o ~GR .
choices of D and g(s) satisfying the regularity conditions of f , several particular

. . . . ~GR .
estimators may be obtained. Here, we study the numerical properties of f~ in the
elliptical regression model, in the special case where g(s) is equal to ks/(s + 1), for some

positive values k. Hence, the specific form of ﬁGR is given by

~GR AR ks

B =P —S+1QD[S’. (4.1)

One must note that any candidate for the g(s) function in (2.4) should satisfy the
proposed regularity conditions (A1)-(A2). Boundedness of polynomial and fractional
functions can be tested relatively easily as well as the condition g(0) = 0. For checking
condition (A2), consider that g(s) = g(ﬁTﬁ/ 0). Hence, for any function g(x) = p(x)/q(x)
for which the degree of g(:) is larger than or equal to the degree of p(:), the condition
satisfies. Again, for fractional functions, one may simply check whether Og(it’ i1/0) is
bounded. For these reasons, we started by taking g(s) = ks/(s + 1) to study a simple
example satisfying our conditions.

In this section, we consider the multivariate t-distribution as the distribution of the
error term in (2.1).

4.1 Simulation

In this section, we carry out a Monte Carlo simulation experiment to investigate the
(quadratic) risk performance of the proposed estimators. For this purpose, this sim-
ulation is based on a multivariate t-regression model with y = 9 degrees of freedom.
In our sampling experiment, the sample size is n with p as the number of predictors.
We set B = (0,0,0, 13;_3)X1)T in our scheme. For simulation purposes, we consider the

particular restriction R = 0, with R = (I3:03x(,—3)). Hence, we generate responses using
y = XP + u, where u is generated according to the t-distribution 7,(0, I,, ), and the ith
covariate generated from N,(0,I;). The whole process is repeated N = 1000 times to
evaluate the risk of the estimators. The performance of an estimator g, say f*, will be
measured in terms of the empirical risk evaluated by Risk(ﬁ*) = % Y fil (ﬁ: — ﬁ)T(ﬁ: -P),

where fi: is the estimator value in ith replication. Table 1 summarizes the relative risk
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Table 1: Simulated (empirical) relative risk values of restricted estimators with respect
to p for different parameter values n and p.

n
10 30 50 100
1.4898 1.0029 1.0013 1.0001
1.0046 1.0032 1.0006 1.0001
1.45 1.0018 1.0005 1.00004

® U1 W

Table 2: Simulated (empirical) relative risk values of shrinkage estimators with respect
to p for different parameters values n, p and k.

k
n p 001 0.05 0.1 0.15 0.2 1 2
10 3 1.1166 1.2954 1.5682 3.0521 3.9878 5346  0.7372
5 11380 1.3080 1.5755 1.9253 23894 3.0701  0.1559
8 3.9852 4.0633 4.0187 4.0120 3.997 0.0325  0.011
30 3 1.0128 1.0128 1.0125 1.9019 22920 4.2558  0.5671
5 1.0513 1.1504 1.472 1.8252 1.7991 1.5601 0.9147
8 14568 1.2864 1.6273 21341 3.0599 0.3037 0.4077
50 3 1.0226 1.1145 1.0013 14 15803 55785 0.7677
5 1.0374 1.2050 1.472 1.8252 22964 0.8185 0.1342
8 1.0467 1.2634 1.6273 21341 2.8279 0.36621 0.0483
100 3 1.0249 1.3316 1.2929 1.4869 1.7247 4.8288  0.4478
5 1.0721 1.195 14489 1.7861 22424 1.1763 0.1431
8 1.1018 1.2840 1.6948 23055 3.2270 0.3687 0.04969
values evaluated according to Izliz(ff% and Table 2 summarizes the relative risk values
evaluated according to %ﬁ(ﬁ) From Tables 1 and 2, the larger k is, the worse is the

performance of the shrinkage estimator. It is also realized that for k < 1, the shrinkage
estimator still performs better than the restricted estimator. Changing the values p and
n does not lead in substantial changes or any specific trend. However, as one may
expect, when 7 gets larger, the performance of 8 becomes better.
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Table 3: Simulated (empirical) relative MSPE values of estimators with respect to .

k
0.01 0.05 0.1 0.5 1 5 10 20 100
%2@2) 1.0030 1.0039 1.0049 1.0127 1.0224 1.0977 1.1804 1.2716 0.285

4.2 Real Example

The data we use here is from a clinical trial on 34 male patients with 3 covariates, body
weight (WT) in kg, serum creatinine (5C) concentration in mg/deciliter, and age in years,
and one outcome variable, endogenous creatinine(CR) clearance. Shih and Weisberg
(1986) fitted a multivariate t-regression model to this data. Here, we calculate the
empirical mean squared prediction error to investigate the (quadratic) risk performance
of the estimators. To this end, we consider the particular restriction R = 0, where
R = (1 —10). With N = 1000 replications, the empirical mean square prediction error

2
of the estimators is evaluated using the formula MSPE(/") = & N (yi - f/:) , where

#/; is the prediction value in the ith replication of #, and the prediction obtains by using

fi* as the estimator of f. Table 3 summarizes the relative MSPE values according to
&EA(EL. We also found that M
MSPE(B™") MSPEB")
the shrinkage estimator is still superior. However, as the k factor goes to infinity, the
shrinkage estimator is dominated by the GLS estimator. This scenario is the same for

the comparison between the shrinkage and restricted GLS.

= 1.003. From Table 3, For larger values of k,

5 Conclusions

In this paper, following the general class of estimators proposed by Srivastava and
Chandra (1991), we defined a class of shrinkage estimators for the regression vector-
parameter in the elliptical regression model. The approximate risk function was ob-
tained using the Taylor series expansion of some order. Further, superiority condition
of any estimator in this class was investigated and compared to the restricted estimator
in the elliptical regression model. Some numerical studies were conducted to show the
superiority of a specific member in the class over the restricted estimator in the risk
sense. In this respect, we illustrated the findings by a Monte Carlo simulation and a
real data example in the context of clinical trials.

There are some plausible extensions that can be considered for future researches.
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The result of this paper can be extended for stochastic restrictions in which the form of
elliptical distribution is of importance. The proposed framework is general and can be
used in the context of ridge/Liu estimator for multicollinear situations. To this end, the
GLS estimator must be replaced by the ridge/Liu estimator. On the other hand, there
are some limitations. One of them is the specific choice taken for g(s) in the numerical
studies. Hence, the superior performance did not check numerically for all members
of the class.
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Appendix
In this section, we provide the sketch of proof of Theorem 3.1.

Let, for any scalar t € R*, z = 0‘1t%C%ﬁ, 6= a‘lt%C%ﬁ, and v = 62tV i Ac-
cording to our assumption (see Eq.(2.2)), z|t ~ N(8,I) and ot ~ )((zn_p) are independent.
Expanding ¢(s) in third order Taylor series about point s = 0, we have

2 3
B ="~ {g<0> +58/(0)+ 2,8(0) + %g"'(sw} QDp, ()

where sp = ws, 0 < w < 1.

ATy—14 2,-1 T T.1-1
. - _ Ve _ _otTv o _ T —1[ ££+26£] :
Since fore =z -0, s = 2T = 2rlaTy T o6 0) |1+ 575 , utilizing s in

(5.1) and using the fact that g(0) = 0, we get
~GR ~R 1 _ eTe+26Te\ " |
P -B =F -p-t %[U(6T5)1(1+T) 8'(0)

eTe+20Te\ ",
—) g"(0)

1 5 T2
+20 (6°0) (1+ 5T

QDC 2 (¢ + 6).

3(676)73 ele+26"¢
+ 1+
6 576

-3
) glll(so)
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Further, note that ,BGR -p = t‘%QC‘%(z - 0) - g(s)QDt‘%C‘%z. Then, the risk
expression is of the form

Risk(™) = E@™ -pTQBE™ - ) = EE+(7Q'e)
—2E+ " g(s) {7 Q" (e + 0)} + Et ' g(s) {(e + )" Q™ (e + 8)} ,

where Q" = C"2QQQC~7 , Q* = C2QQQDC~7 , and Q™ = C-:DTQQQDC3. Ex-
panding ¢(s) in the third order Taylor series about the point s = 0 and using the fact
that g(s = 0) = 0, we obtain Risk(ﬁGR) = EE;+ 1(eTQ%¢) — EE; [t‘l (Bt + Ct)], where

_ ele+26Te\ 1 _ eTe+207e)\ .,
B, = —20(576)" {(1 + T) §(0) + 50(0"0)! (1 + T) g (0)+

2 T T _\"3
V7 T2 ele+26 ¢ " T e
g((s 6) (1+T) g (So)}é‘ Q (£+6)
and
T T.\"1 T T \=2
_ T ool ee+20 e , 1, 102 ee+20 e '
Cs = {v(é o) (1 + —6T6 ) g'(0) + 20 0°6) 1+ —6T6 3" (0)+
2
3 ~ eTe+207e\ " » -
g((‘JT(S) 3(1+T) g (s0) % (e+6)TQ™ (e + o).

Consider the approximations

1

T 25T -1
(1 + %668) 1- (076) " (e7e + 267 ¢)

+4(676) 26 e) (0 e + eTe) — 8(67€)*(676) 3

1

T T _\"2
(1 + LZ‘55) 1- 407667,

676
then, B; and C; can be approximated by the expressions
Bi(6) = —206"8)" {[1-(676)7(e"e +26"e) + 4(678) 26" e)(8"e + £ e)
-8(87)°(676) %] g'(0) + %v(éT(S)‘l (1-46"6)"6"e) g”(O)} eTQ™ (e + 6)
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v(ele +267¢) 07e) (0 e+ Te)

% ’ _ ’
- {_Z@g (O) +2 t262 8 (O) 8v t363 8 (0)
6T£ 3 / UZ 77 6T€ /7’ *%
+16v(t482 g'(0) - 228 0) + 4vz—t363g (O)} e'Q"(e + 0),

and C(0) = 75:(8(0))? (v* - 40%(t0) 16" ¢) (¢ + 8)TQ™*(e + 6). Similar to Singh et al.
(1994), it can be shown that, as 6 — oo, Q%I — 2t71g(s)eT Q™ (& + 6) — By(0)| LN 0, and
031t~ g(5)* (e + 8)T Q™" (e + 8) — C(O)] D> 0. Also [, {2t g(s)e™ Q" (e + 8)} — Ex(B4(6))| =
0(07%) and [E, {¢! 9(5)*(e + 6)TQ™" (e + 8)} — Ex(Ci(0))] = O(07%). Then, the approxi-
mate risk expression is of the form Risk(ﬁGR) = EE;t '(eTQ%e)-EF; [t‘1 (B#(0) + Ct(6))]+
O(072). The required result follows by taking the expectation over the measure W(:).



