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Abstract. The aim of statistical modeling is to identify the model that most closely ap-
proximates the underlying process. Akaike information criterion (AIC) is commonly
used for model selection but the precise value of AIC has no direct interpretation.
In this paper we use a normalization of a difference of Akaike criteria in comparing
between the two rival models under unified hybrid censoring scheme. Asymptotic
properties of maximum likelihood estimator based on the missing information prin-
ciple are derived. Also, asymptotic distribution of the normalized difference of AICs
is obtained and it is used to construct an interval, say tracking interval, for compar-
ing the two competing models. Monte Carlo simulations are performed to examine
how the proposed interval works for different censoring schemes. Two real datasets
have been analyzed for illustrative purposes. The first is selecting between Weibull
and generalized exponential distributions for main component of spearmint essential
oil purification data. The second is the choice between models of the lifetimes of 20
electronic components.
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1 Introduction

Model selection is an important process in identifying the closest model to the true
model. Several articles have been published on model selection based on complete data,
for example, Kundu et al. (2005) compared the log-normal and generalized exponential
distribution using maximized likelihood method, Dey and Kundu (2009) considered the
problem of discriminating among the log-normal, Weibull and generalized exponential
distributions, Cox (1961) improved the classical hypothesis testing to compare the non-
nested hypothesis, Vuong (1989) tested the equivalence of the two models using the
expectation of the log-likelihood ratio of the two candidate models. The results in
Vuong have been extended and applied in a number of ways, including, Vuong and
Wang (1993), Lien (1987), Commenges et al. (2008), Sayyareh et al. (2011), Commenges et
al. (2012) and Panahi (2016). Akaike (1973) introduced a criterion to select the best model
under parsimony. One problem with AIC is that its values depend on the number of
observations. For this reason, Commenges et al. (2008) and Sayyareh (2012) considered
the normalized difference of AIC as an estimate of a difference of KL risks between
two models and then constructed the tracking interval to verify the equivalence of two
rival models. However, in testing experiments, experimenters may not always be in
a position to observe the times of all inspected items in the test. This may be because
of time limitation and/or other restrictions (such as money and material resources,
etc) on data collection. Data obtained from such experiments are called censored
data. The problem of choosing the closest rival model to the true model becomes
more difficult if the data are censored. Because the distance between the two censored
rival models can be very small, and it may be very difficult to discriminate between
them. The new interval say tracking interval based on normalized difference of AIC
may be used to discriminate between them. The common hybrid censoring schemes
are Type I and Type II hybrid censoring schemes. Both these censoring schemes have
some disadvantages. To overcome these problems, Chandrasekar et al. (2004) proposed
two generalized hybrid censoring schemes. These schemes may be considered as an
extension of Type I and Type II hybrid censoring schemes in some sense. In generalized
Type I hybrid censoring scheme, one prefixes k, r ∈ {1, ..., n} and T ∈ (0,∞) such that
k < r. If the kth failure occurs before time T, the experiment terminates at min(Xr:n,T).



Model Selection Based on Tracking Interval 3

If the kth failure occurs after time T, the experiment terminates at Xk:n. In generalized
Type II hybrid censoring scheme, one prefixes r ∈ {1, ..., n} and T1,T2 ∈ (0,∞) such
that T1 < T2. If the rth failure occurs before time T1, the experiment terminates at
T1; if the rth failure occurs between T1 and T2, the experiment terminates at Xr:n;
otherwise, the experiment terminates at T2. This hybrid censoring scheme guarantees
that the experiment time will not exceed T2. Although these censoring schemes are
improvements over Type I and Type II hybrid censoring schemes but they have some
drawbacks. To overcome these problems, Balakrishnan et al. (2008) proposed a unified
hybrid censoring scheme (UHCS). For more about unified hybrid censored samples, the
reader is referred to Mohie El-Din et al. (2017), Hasaballah (2016), Rastogi and Tripathi
(2013), Balakrishnan and Kundu (2013), Habibi Rad and Izanlo (2011), Huang and Yang
(2010), Panahi (2017). Although some articles have been done on the unified hybrid
censoring scheme but we have not come across any article on the behavior of the two
rival models under unified hybrid censoring scheme. Thus, in this paper, we want to
decide whether or not the two candidate models are two equivalent models. For this
purpose, we obtain the asymptotic normality of the maximum likelihood estimator
under unified hybrid censored sample. We also propose a test statistic that converges
in distribution to the normal distribution and use it to test the null hypothesis that
the rival models are equally close to the data generating model against the alternative
hypothesis that one model is closer. Moreover, based on the Kullback asymmetric we
obtain the tracking interval with a pre-specified probability. This interval helps us to
evaluate proposed models in comparison with each other. Monte Carlo simulations
are performed to study the behavior of the proposed interval and two real datasets are
analyzed for illustrative purposes. The remainder of the paper is organized as follows:
In Section 2, we first describe the unified hybrid censoring scheme and introduce the
Kullback-Leibler divergence. In Section 3, we provide the asymptotic results based on
unified hybrid censoring scheme. Tracking interval for the difference of the expected
KL divergence of two non-nested rival models under unified hybrid censoring scheme
is presented in Section 4. Monte Carlo simulations results and the analysis of two real
datasets are provided in Section 5 and finally we conclude the paper in Section 6. Some
acronyms are presented in the Appendix for quick references.
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2 Model Description and Kullback-Leibler (KL) Divergence

2.1 Unified Hybrid Censoring Scheme (UHCS)

Suppose that n identical units are put on a test, with the lifetimes and ordered lifetimes
of the n items are denoted by X1, ...,Xn and Y1, ...,Yn respectively. Fix k, r ∈ {0, ..., n} and
T1 < T2 ∈ (0,∞), such that k < r. If kth failure occurs before time T1, the experiment
terminate at min {max(Yr,T1), T2}, if the kth failure occurs between T1 and T2, the
experiment terminate at min { Yr, T2} and if the kth failure occurs after time T2, then the
experiment terminates at Yk. Under this censoring scheme, we can guarantee that the
experiment would be completed at most in time T2 with at least k failures and if not,
we can guarantee exactly k failures.

Therefore, under this censoring scheme we can observe the following six Types of
observations as:
Case 1: 0 < Yk < Yr < T1 < T2 the experiment terminate at T1
Case 2: 0 < Yk < T1 < Yr < T2 the experiment terminate at Yr
Case 3: 0 < Yk < T1 < T2 < Yr the experiment terminate at T2
Case 4: 0 < T1 < Yk < Yr < T2 the experiment terminate at Yr
Case 5: 0 < T1 < Yk < T2 < Yr the experiment terminate at T2

Case 4 : 0 < T1 < T2 < Yk < Yr the experiment terminates at Yk (2.1)

2.2 KL Divergence

Consider a sample of independently identically distributed (i.i.d.) random variables,
X1, ...,Xn having probability density function h(.). Let us consider two rival models:

Fα =
{
f α(.), α ∈M ⊂ Rp} and Gβ =

{
gβ(.), β ∈ B ⊂ Rq

}
.

Definition 2.1. (i) ( f ) and (g) are non-overlapping if ( f )
∩

(g) = ϕ; (ii) ( f ) is nested
in (g) if ( f ) ⊂ (g); (iii) ( f ) is well- specified if there is a value α0 ∈ M such that
f α0(.) = h; otherwise it is misspecified. If the model is well-specified then α0 = α∗,
where α∗ = arg maxα∈MEh(L f

n(α)) and refer to as the pseudo-true value of the α. We
consider the f α(.) as a proposed model, then quasi-log-likelihood function is given
by L f

n(α) =
∑n

i=1 log f α(xi). Under the following condition, α̂n is a quasi-maximum
likelihood estimator (QMLE):

L f
n(α̂n) = supα∈ML f

n(α)



Model Selection Based on Tracking Interval 5

The KL information in favor of h(x) against f α(.) is defined in Kullback and Leibler
(1951) to be(Pardo, 2005):

DKL(h, f α) =

∫ ∞

−∞
h(x) log

h(x)
f α(x)

dx = Eh

(
log

h(X)
f α(X)

)
We can say that ( f ) is closer to h than (g) if KL(h, f α∗) < KL(h, gβ∗). We cannot esti-

mate KL(h, f α∗) because the entropy of h, Eh
(

log h(X)
)
, cannot be correctly estimated.

However, we can estimate the difference of risks∆USCH( f α∗ , gβ∗) = KL(h, f α∗)−KL(h, gβ∗),
a quantitative measure of the difference of misspecification by [−n−1(L f

n(α̂n) − Lg
n(β̂n))].

This result may not be completely satisfactory in practice if n is not very large because
the distribution we will use is f α̂n rather than f α∗ . Thus it is reasonable to consider the
risk Eh

{
log(h(X)/ f α̂n(X))

}
that we call the expected KL risk and denote by EKL(h, f α̂n).

3 Asymptotic Results

In this section, we consider the difference quasi-log-likelihood functions of the UHCS(r, k,T1,T2).
From (2.1), the quasi-log-likelihood function of combined Cases 1-6 can be written as:

L f
n(α) =

d∑
i=1

log f α(yi) + (n − d) log F
α
(s)

Here, s(s ∈ {
T1,T2, yk, yr

}
) denotes the stopping point and d(d ∈ {d1, d2, k, r}) is the

number of failures that occur before time point s. On the other word,

d =


⌣

d case1
r case2 & case4
d2 case3 & case5
k case6

and

d =


T1 case1
yr case2 & case4
T2 case3 & case5
yk case6
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where,
⌣

d = d1 = d2. Therefore, the differences of the quasi-log-likelihood functions of
the two rival models can be obtained as:

L f/g
n (α̂n, β̂n) = L f

n(α̂n) − Lg
n(β̂n) =

d∑
i=1

log
f α̂n(yi)

gβ̂n(yi)
+ (n − d) log

F
α̂n(s)

G
β̂n(s)
. (3.1)

where, α̂n is the quasi-maximum likelihood estimator for the parameter α. Now, we
first prove the asymptotic normality property of MLE under unified hybrid censoring
scheme.

The minimum assumptions, Q, for non-degenerate interval M are:
Q1: The parameter space M is an open interval in R.
Q2: (∂/∂α ) f α (x) is a strictly monotone function on M for each x.
Q3: For all α ∈ M, the partial derivative (∂/∂α ) f α (x), is integrable on R, the partial
derivative (∂/∂α ) Fα (x), exists for x ∈ χ,; and satisfies

(∂/∂α ) Fα (x) =
∫ x

−∞
(∂/∂α ) f α (u) du

Q4: For every α, we have,

| ∂
∂α

f α(x) |≤ K1, |
∂2

∂α2 f α(x) |≤ K3, |
∂3

∂α2 f α(x) |≤ K3,

where,
∫

Kidµ(x) < ∞; i = 1, 2, 3.
Q5: For every α, 1

F
α

(x)
is bounded by υ(x), where, E(υ(X)) ≤ C; C is positive constant.

Q6: For every α,we have, ℘ =
∫ (

∂
∂α ln f α(x)

)2
f α(x)dµ(x) < ∞.

Lemma 3.1. Based on the missing information principle, the normalized forms of the ∂∂α log L f
n(α)

and ∂2

∂α∂α′ log L f
n(α) under unified hybrid censored sample are:

U1 =
1
n

(
n∑

i=1

∂
∂α0

log f α(wi)) −
n−d∑
i=1

∂
∂α0

log f α(zi) +(n − d)
∂
∂α0

log(F(s))
}

and

U2 =
1
n

(
n∑

i=1

∂2

∂α0∂α′0
log f α(wi)) −

n−d∑
i=1

∂2

∂α0∂α′
log f α(zi) +(n − d)

∂2

∂α0∂α′
log(F(s))

}
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Proof. The Taylor expansion of n−1 ∂L
f
n(α)
∂α around α = α0 gives:

n−1∂L
f
n(α)
∂α

= n−1∂L
f
n(α)
∂α

∣∣∣α=α0 + n−1(α − α0)
∂2L f

n(α)
∂α ∂α′

∣∣∣α=α0 + op(1)

= U1 +U2(α − α0) + op(1) (3.2)

where,

U1 =
1
n

(
d∑

i=1

∂
∂α

log f α(yi)) + (n − d)
∂
∂α

log(F(s))


α=α0

U2 =
1
n

(
d∑

i=1

∂2

∂α ∂α′
l og f α(yi)) + (n − d)

∂2

∂α ∂α′
log(F(s))


α=α0

Now, using the missing information principle (Louis, 1982; Lin and Balakrishnan,
2011), the observed information under unified hybrid censoring scheme is

d∑
i=1

log f α(yi) =
n∑

i=1

log f α(wi) −
n−d∑
i=1

log f α(zi | Y ) (3.3)

where, W = (w1, ...,wn) stands for the complete data and Z = (z1, ..., zn−d) represents the
complete data of size n − d, from the left truncated population with density function:

h∗ =
f α(z)

F
α
(s)

; z > s.

Note that, the sequences of random variables W′s and Z′s are independent. For
simplicity, we use f α(zi) instead of f α(zi | Y ) in what follows. Thus, U1 can be rewritten
as

U1 =
1
n

(
n∑

i=1

∂
∂α0

log f α(wi)) −
n−d∑
i=1

∂
∂α0

log f α(zi) +(n − d)
∂
∂α0

log(F(s))
}

≡ 1
n

(U∗1 −U∗∗1 ) (3.4)

where, ∂∂α0
log f α(.) means that ∂∂α log f α(.)

∣∣∣α=α0 . Also, U2 ≡ 1
n (U∗2−U∗∗2 ) can be obtained

similarly. □
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Theorem 3.1 (Asymptotic distribution of the Maximum Likelihood Estimator). Assume
that f α(.) is a well specified model satisfying conditions Q1-Q6 and (α̂n = max L f

n(α)) . Then
as n → ∞, the asymptotic distribution of the MLE,

√
n (α̂n − α0) is, N(0, J−1

fUHCS
), where,

J fUHCS ≡ ℘ + (1 − ⌣pi)ξ and

for i = 1, 2, 3, 4;
⌣
pi = lim

n→∞
d
n
=



lim
n→∞

⌣
d
n i f d =

⌣

d (Case 1)

lim
n→∞

r
n i f d = r (Cases 2 & 4)

lim
n→∞

d2
n i f d = d2 (Cases 3 & 5)

lim
n→∞

k
n i f d = k (Cases 6)

and

ξ =


ξ⌣

d
i f d =

⌣

d (Case 1)
ξr i f d = r (Cases 2 & 4)
ξd2 i f d = d2 (Cases 3 & 5)
ξk i f d = k (Cases 6)

Proof. Using Lemma 3.1 and the Cramér (1946), 1
n U∗1 =

1
n

n∑
i=1

∂
∂α0

log f α(wi)
P−→ 0 and we

will prove that

1
n

U∗∗1 =
1
n

n−d∑
i=1

∂
∂α0

log f α(zi) − (n − d)
∂
∂α0

log(F(s)) P−→ 0

We can rewrite U∗∗1 as

U∗∗1 =
n−d∑
i=1

∂
∂α0

log f α(zi) −
n−d∑
i=1

E
(
∂
∂α0

log f α(Zi)
)

+

n−d∑
i=1

E
(
∂
∂α0

log f α(Zi)
)
− (n − d)

∂
∂α0

log(F(s))

From Q3, we have

E
(
∂
∂α0

log f α(Z)
)
=

∞∫
s

(
∂
∂α0

log f α(z)
)

f α(z)

F
α
(s)

dµ(z)
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=

∂
∂α0

F
α
(s)

F
α
(s)

=
∂
∂α0

log(F
α
(s)) (3.5)

So, we get

sup


∣∣∣∣∣∣∣∣∣∣∣∣
n−d∑
i=1

∂
∂α0

log f α(zi)

n − d
−

n−d∑
i=1

E
(
∂
∂α0

log f α(Zi)
)

n − d

∣∣∣∣∣∣∣∣∣∣∣∣


P−→ 0

Thus,
U∗∗1
n

P−→ 0. Now, by using Slutskys theorem, the result follows (U1
P−→ 0). Similarly,

we can write

U∗2 =
n∑

i=1

∂2

∂α0∂α′0
log f α(wi)

and

U∗∗2 =
n−d∑
i=1

∂2

∂α0∂α′0
log f α(zi) − (n − d)

∂2

∂α0∂α′0
log(F(s))

We know that,
U∗2
n

P−→ −℘ and,

U∗∗2
n
=

n − d
n

 1
n − d

n−d∑
i=1

∂2

∂α0∂α′0
log f α(zi) −

n−d∑
i=1

E
(
∂2

∂α0∂α′0
log f α(Zi)

)


−1
n

(n − d)
∂2

∂α0∂α′0
log(F(s)) −

n−d∑
i=1

E
(
∂2

∂α0∂α′0
log f α(Zi)

) (3.6)

The first term in (3.6) converges in probability to zero. So, based on (3.5) and after
some simplification, we obtain

∂2

∂α0∂α′0
log F

α
(s) =

∂2

∂α0∂α′0
F
α
(s)

F
α
(s)

−
[
E
(
∂
∂α0

log f α(Z)
)]2

(3.7)

and

E
(
∂2

∂α0∂α′0
log f α(Z)

)
=

∂2

∂α0∂α′0
F
α
(s)

F
α
(s)

−
∞∫

s

(
∂
∂α0

ln f α(z)
)2 f α(z)

F
α
(s)

dµ(z) (3.8)
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Thus, from (3.6), (3.7) and (3.8), we have

1
n − d

n−d∑
i=1

{
∂2

∂α0∂α′0
log(F(s)) − E

(
∂2

∂α0∂α′0
log f α(Zi)

)}

=
1

n − d

n−d∑
i=1

Var
(
∂
∂α0

log f α(Zi)
)
= B∗i ; i = 1, 2, 3, 4

where, B∗i ( f or i = 1, 2, 3, 4) converge to some bounded value, say (ξ ∈ (ξ⌣
d
, ξr, ξd2 , ξk)).

Thus, −U∗∗2
n

P−→ (1 − ⌣pi)ξ, and combining these results gives, U2 =
1
n (U∗2 −U∗∗2 ) P−→ −J fUHCS ,

where
J fUHCS ≡ ℘ +

(
1 − ⌣pi

)
ξ (3.9)

Now, from (3.2) and (3.3), we have√
nJ fUHCS(α̂n − α0) =

√
nU1/

√
J fUHCS

−U2/J fUHCS

=

(
nJ fUHCS

)−1/2
(

n∑
i=1

∂
∂α0

log f α(wi)) −
n−d∑
i=1

∂
∂α0

log f α(zi) + (n − d) ∂∂α0
log(F(s))

)
−U2/J fUHCS

(3.10)

where, −U2/J fUHCS

P−→ 1. So, it suffices to show that the numerator is asymptotically
N(0, 1). Using (3.5) and Slutsky Theorem, we have

√
n − d√

n

 1√
n − d

n−d∑
i=1

ϖ(zi;α) −
n−d∑
i=1

E(ϖ(Zi;α))


 D−→ N

(
0, (1 − ⌣pi)ξ

)
. (3.11)

Now, using Slutsky theorem again, we obtain, 1√
n

n∑
i=1

∂
∂α0

log f α(wi),
1√
n

n−d∑
i=1

{ϖ(zi;α) − E(ϖ(Zi;α))}
]

D−→ (C1,C2) ,

where,ϖ(z;α) = ∂
∂α0

log f α(z) and C1 =
1√
n

n∑
i=1

∂
∂α0

log f α(wi) ∼ N (0, ℘) and C2 ∼ N
(
0, (1 − ⌣pi)ξ

)
are independent. Now, using the Continuous Mapping Theorem and (3.10) and (3.11),
we conclude that

n−d∑
i=1

∂
∂α0

log f α(yi) + (n − d)
∂
∂α0

log(F(s)) D−→ N(0, ℘ + (1 − ⌣pi)ξ)
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and the proof is complete. □

In the previous theorem based on the unified hybrid censored data, we proved
that

√
n(α̂n − α0) =Op(1). So, for mis-specified models, we can conclude that,

√
n(α̂n −

α∗) =Op(1), (see Vuong, 1989). Now based on the following lemma, we consider the
asymptotic distribution of the difference quasi-log-likelihood function for mis-specified
models.

Remark 1. Suppose that Y1, ...,Yd are distributed as the order statistics of a random
sample of size d from truncated distribution at s by probability density function (pdf )

h*. Now, if r
n → p and k

n → p∗ as n→∞ such that Yr
P−→ ζp and Yk

P−→ ζp∗, the pth and p∗th
percentile of true distribution respectively, then from Vuong (1989) and the property of
Continuous Mapping, we have

1
n

d∑
i=1

log
f α̂n(yi)

gβ̂n(yi)
P−→ ⌣

pEh∗

[
log

f α∗(Y)
gβ∗(Y)

]
;

and
1
n

(n − d) log
F
α̂n(s)

G
β̂n(s)

P−→
(
1 − ⌣p

)
log

F
α∗(
⌣

ζp)

G
β∗(
⌣

ζp)

where, for simplicity, we replace
⌣
pi; i = 1, ..., 4 by

⌣
p through the paper and

⌣

ζp =



ζF(T1); i f F(T1) > p
ζp; i f p∗ < F(T1) < p < F(T2)
ζF(T2); i f p∗ < F(T1) < F(T2) < p
ζp ; i f F(T1) < p∗ < p < F(T2)
ζF(T2); i f F(T1) < p∗ < F(T2) < p
ζp∗; i f F(T1) < F(T2) < p∗ < p

Then the difference quasi-log-likelihood function of two rival models converges in
probability as below:

1
n

L f/g
n

(
α̂n, β̂n

) P−→
{
⌣
pEh∗

[
log

f α∗(Y)
gβ∗(Y)

]
+

(
1 − ⌣p

)
log

F
α∗(
⌣

ζp)

G
β∗(
⌣

ζp)


where,

α∗ = arg max
{
⌣
pEh∗

[
log f α(Y)

]
+

(
1 − ⌣p

)
log F

α
(
⌣

ζp)
}
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β∗ = arg max
{
⌣
pEh∗

[
log gβ(Y)

]
+

(
1 − ⌣p

)
log G

β
(
⌣

ζp)
}

are pseudo-true values of α and β, respectively. Also quasi-maximum likelihood esti-
mator of α say α̂n, can be obtained as a solution of ∂∂αL f

n (α) = 0.

Theorem 3.2 (Asymptotic Distribution of the L f/g
n (α̂n, β̂n) Statistic). Under suitable reg-

ularity conditions of Vuong (1989), suppose that the proposed model is mis-specified and
f α∗ , gβ∗, then,

√
n

1
n

L
f /g
n

(
α̂n, β̂n

)
− ⌣pEh∗

[
log

f α∗(Y)
gβ∗(Y)

]
−

(
1 − ⌣p

)
log

F
α∗(
⌣

ζp)

G
β∗(
⌣

ζp)


D−→ N

(
0, ω2

∗UHCS

)
(3.12)

where,

ω2
∗UHCS = Varh

(
log

f α∗(W)
gβ∗(W)

)
+ (1 − ⌣p)Varh∗

(
log

f α∗(Z)
gβ∗(Z)

)
(3.13)

and w = (w1, ...,wn), z = (z1, ..., zn−d) are defined as before in (3.3).

Proof. From the Taylor expansion of L f
n(α∗) around α̂n, we can write

L f
n(α̂n) = L f

n(α∗) +
n
2

(α̂n − α∗)′U2(α̂n − α∗) + op(1)

and
Lg

n(β̂n) = L f
n(β∗) +

n
2

(β̂n − β∗)′
⌣

U2(β̂n − β∗) + op(1)

where, U2 is defined as before for rival model f α(y) and similarly
⌣

U2 is given by

⌣

U2 =
1
n

(
n∑

i=1

∂2

∂β ∂β′
l og gβ(yi)) −

n−d∑
i=1

∂2

∂β ∂β′
l og gβ(zi))

+(n − d)
∂2

∂β ∂β′
log(F(s))

}
Thus,

L f/g
n (α̂n, β̂n) = L f/g

n (α∗, β∗) +
n
2

(α̂n − α∗)′U2(α̂n − α∗)

−n
2

(β̂n − β∗)′
⌣

U2(β̂n − β∗) + op(1)
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From (3.9), U2
P−→ −J fUHCS . Similarly,

⌣

U2
P−→ −JgUHCS . Also, it is known that,

√
n(α̂n −

α∗) and
√

n(β̂n − β∗) are Op(1). So, we have

√
n

1
n

L f/g
n

(
α̂n, β̂n

)
− ⌣pEh∗

[
log

f α∗(Y)
gβ∗(Y)

]
−

(
1 − ⌣p

)
log

F
α∗(
⌣

ζp)

G
β∗(
⌣

ζp)


=
√

n
{1

n
L f/g

n
(
α∗, β∗

) −⌣pEh∗

[
log

f α∗(Y)
gβ∗(Y)

]
−

(
1 − ⌣p

)
log

F
α∗(
⌣

ζp)

G
β∗(
⌣

ζp)

 + op(1)

However, from the multivariate central limit theorem, the first term in the right
hand side converges in distribution to N(0, ω2

∗UHCS). It now suffices to show that

ω2
∗UHCS = Varh

(
log

f α∗(W)
gβ∗(W)

)
+ (1 − ⌣p)Varh1∗

(
log

f α∗(Z)
gβ∗(Z)

)
.

From (3.3) we can write

ω2
∗UHCS =

1
n

Var

 d∑
i=1

log
f α∗(Yi)
gβ∗(Yi)

+ (n − d) log
F
α∗(s)

G
β∗(s)


=

1
n

Var


 n∑

i=1

log
f α∗(Wi)
gβ∗(Wi)

−
n−d∑
i=1

log
f α∗(Zi)
gβ∗(Zi)

+(n − d) log
F
α∗(s)

G
β∗(s)




Now, If, n−d
n → 1 − ⌣

p as n → ∞ such that s →
⌣

ξp in probability, then using
Continuous Mapping Theorem

ω2
∗UHCS = Varh

(
log

f α∗(W)
gβ∗(W)

)
+ (1 − ⌣p)Varh1∗

(
log

f α∗(Z)
gβ∗(Z)

)
Hence, we propose the following statistic:

ω̂2
UHCS =

1
n

n∑
i=1

log
f α̂n(wi)

gβ̂n(wi)

2

−
1

n

n∑
i=1

log
f α̂n(wi)

gβ̂n(wi)




2

+(
n − d

n
)

 1
n − d

n−d∑
i=1

log
f α̂n(zi)

gβ̂n(zi)

2

−
 1

n − d

n−d∑
i=1

log
f α̂n(zi)

gβ̂n(zi)




2 (3.14)

□
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4 Tracking Interval for a Difference of KL Divergences

In this section, we propose the tracking interval for ∆UHCS( f α̂n , gβ̂n) = EKL(h, f α̂n) −
EKL(h, gβ̂n), which should contain the difference of risks with a given probability. Voung
test is useful for testing the two non-nested models, but the confidence intervals are
equivalent to encapsulating the results of many hypotheses tests. So, we propose an
interval, say tracking interval, for comparing the rival models which contain the accept-
able hypotheses. This interval is not a usual confidence interval because∆UHCS( f α̂n , gβ̂n)
changes with n. Although it converges toward ∆UHCS( f α∗ , gβ∗), we wish to approach
∆UHCS( f α̂n , gβ̂n) for values of n for which the Akaike correction is not negligible. We
can say that the expected KL risk, EKL(h, f α̂n), is the sum of the mis-specification risk
KL(h, f α∗) plus the statistical risk 1

2n Tr(Σ fΩ
−1
f ) as (Linhart and Zucchini, 1986):

EKL (h, f α̂n) = KL (h, f α∗) +
1

2n
Tr (Σ fΩ

−1
f )

∣∣∣
α∗
+ o(n−1)

where, Σ f = E
(
∂ log f α(Y)
∂α .

∂ log f α(Y)
∂α′

)
and Ω f = E

(
∂2 log f α(Y)
∂α∂α′

)
. Note that if ( f ) is well-

specified, we have KL(h, f α∗) = 0, EKL (h, f α̂n) = p
2n + o(n−1) and Σ f = Ω f = ℘. Also,

based on Commenges et al. (2008), we have

EKL(h, f α̂n) = KL( f α∗ , h) +
1

2n
Tr(Σ fΩ

−1
f ) + op(n−1)

After estimating Eh(log f α∗(X)) by Eh( 1
n L f

n(α̂n)), we can write,

EKL(h, f α̂n) = −Eh(n−1L f
n(α̂n)) + F(h) +

1
n

Tr(Σ fΩ
−1
f ) + op(n−1) (4.1)

Here, because of the overestimation bias, the factor 1/2 in the last term disappears.
Akaike criterion follows from (4.1) by multiplying by 2n, deleting the constant term,
F(h), which we cannot estimate, and replacing the expected value of the normalized
version of maximized likelihood function by its empirical version. Thus, we can
estimate the difference of risks ∆UHCS( f α̂n , gβ̂n) as:

∆UHCS( f α̂n , gβ̂n) = Eh

{
−1

n

[
L f/g

n (α̂n, β̂n) − Tr(Σ fΩ
−1
f ) + Tr(ΣgΩ

−1
g )

]}
Thus, using the Akaike approximation, Tr(Σ fΩ

−1
f ) ≈ p, the simple estimator of

∆UHCS( f α̂n , gβ̂n) is

DUHCS( f α̂n , gβ̂n) =
1

2n

[
AIC( f α̂n) − AIC(gβ̂n)

]
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= −1
n

[
L f/g

n (α̂n, β̂n) − (p − q)
]

where, p and q are the number of parameters in two rival models. Also

Eh

[
DUHCS( f α̂n , gβ̂n) − ∆UHCS( f α̂n , gβ̂n)

]
is an o(n−1). Thus, in contrast with AIC, DUHCS( f α̂n , gβ̂n) has an interpretation since
its expectation tracks the quantity of main interest ∆UHCS( f α̂n , gβ̂n) with a pretty good
accuracy. Now, we emphasis on the case where f α∗ , gβ∗ . Thus using Theorem 2, we
have

n1/2
(
DUHCS( f α̂n , gβ̂n) − ∆UHCS( f α̂n , gβ̂n)

) d−→ N(0, ω2
UHCS)

From this the tracking interval for ∆UHCS( f α̂n , gβ̂n) is given by

[An,Bn] (4.2)

where,
An = DUHCS( f α̂n , gβ̂n) − n−1/2 zα/2 ω̂ UHCS

Bn = DUHCS( f α̂n , gβ̂n) + n−1/2 zα/2 ω̂ UHCS.

This interval has the property

Ph

[
An < ∆UHCS( f α̂n , gβ̂n) < Bn

]
→ 1 − α

where Ph represents the probability with density h. Tracking interval helps us to
evaluate proposed models in comparison with each other. In other words, if the
calculated distance includes zero, it can be concluded that based on the predetermined
confidence, both proposed models are equivalent.

5 Monte Carlo Simulations and Data Analysis

5.1 Simulations

In this section, we present some simulation results to examine the behavior of the
two rival models using the tracking interval for different choices of k, r, T1 and T2
values. All the programs are written in R. we consider an i.i.d. sample of size n from
Weibull distribution W(θ = 2, λ = 1) which plays the role of the true distribution h.
Recently, Gupta and Kundu (2003) observed that the generalized exponential (GE)
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and Weibull (W) distributions provide a very similar data fit. So, we consider the
two non-nested rival models as W (say g), gβ=(θ,λ)

W = θλxλ−1e−θxλ , and GE (say f ),

f α=(p,b)
GE = pbe−bx(1 − e−bx)

p−1
, where g and f are the well-specified and mis-specified

models respectively. Since model (g) is well-specified, we know that gβ0=(θ0,λ0)(.) = h,
that the miss-specification error KL(h, gβ0=(θ0,λ0)) is zero and that Tr(ΣgΩ

−1
g ) ≈ 2. As

for the model (f ), we must compute the quantities of interest by simulation. We
generate 104 Monte-Carlo data-sets of size n=50 from a W(θ = 2, λ = 1) and then find
the closest rival model to the true model. We consider different k, r, T1 and T2 values.
For each case, we estimate the unknown parameters of different rival models using
the maximum likelihood method under UHCS. Then we compute the DUHCS( f α̂n , gβ̂n),
ω̂UHCS and construct a 0.95 tracking interval from (4.2). The results are reported in
Tables 1 and 2 respectively. From the Tables 1 and 2 the following general observations
can be made. From Table 1, it is observed that for r=19, k=11 and T1=0.5, the tracking
interval contain zero, which indicates that the W and GE are equal or observationally
equal to estimate the true model and for other values of r, k, T1, as expected, both
limits of tracking intervals are positive, which indicates that the W is better than the
GE distribution to estimate the true model. Note that, we say one model is better
than the other one when the tracking interval does not contain zero. Similarly, from
Table 2, it is clear that the W is better than the GE distribution to estimate the true
model as r increases from 19 for all values of r, k, T2. Moreover, for fixed r, k, T2, the
length of the tracking interval decrease as T1 increases. Similarly, for fixed r, k, T1, it
is observed that as T2 increases the length of the tracking interval decreases, i.e. the
distance between them increases. Similarly, we obtain the results when the two rival
models are GE(p̂, b̂) and W(θ = 0.5, λ = 1). In this case we choose the same sample size
n and k, r, T1 and T2 values. We plot the fitted probability distribution function and
the relative histogram for the above rival models under (T2=3,T1=1.5, r=19,k=33) and
(T2=3.5,T1=0.25, r=46,k=43) in Figure 5.1 and Figure 5.1 respectively (similar results
have been observed for other cases). From Figure 5.1 and Figure 5.1, it is observed that,
W(θ = 0.5, λ = 1) is not a preferable fitted model. Therefore, it is expected that the GE
will be chosen as the closest model to the true model by tracking interval. The results
are reported in Tables 3 and 4 respectively. From Tables 3 and 4, it is quite clear that the
GE is better than the postulated Weibull density to estimate the true model in almost
all cases.

From the simulation study, it is recommended that the tracking interval can be used
quite effectively even when r and k are small for all possible choices of T1 and T2 values.
So, this study justifies the use of this interval to compare the two rival models under
unified hybrid censored samples.
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Table 1: Choice between GE(p̂, b̂) and W(θ̂, λ̂) models using tracking interval.
n = 50 T2 = 3

r k T1

0.5 1.5 2.5

19 11 Lower -0.1379899 0.03562426 0.02190979
Upper 1.5273790 0.07671079 0.03343329
Length 1.6653689 0.04108653 0.01152350

33 19 Lower 0.1569406 0.03681046 0.02256008
Upper 0.3387795 0.07609499 0.03431710
Length 0.1818389 0.03928453 0.01175702

33 27 Lower 0.1544227 0.03486241 0.02287221
Upper 0.3385860 0.07602677 0.03468798
Length 0.1841633 0.04116437 0.01181578

33 31 Lower 0.1529401 0.03505620 0.02238116
Upper 0.3433301 0.07569645 0.03411655
Length 0.1903900 0.04064025 0.01173539

46 21 Lower 0.02485793 0.02390466 0.01850428
Upper 0.05416066 0.05103080 0.03027675
Length 0.02930273 0.02712614 0.01177246

46 43 Lower 0.02394826 0.02301148 0.02347404
Upper 0.05455199 0.05056110 0.03603083
Length 0.03060373 0.02754962 0.01255679
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Figure 1: The two fitted rival models for T2 = 3,T1 = 1.5, r=19,k=33, Weibull (dashed
line) and GE (solid line).

Figure 2: The two fitted rival models for T2 = 3.5,T1 = 0.25, r=46,k=43, Weibull (dashed
line) and GE (solid line).

5.2 Data Analysis

Data-Set 1: The data-set consists of the main component of spearmint essential oil
purification obtained by the experimental pilot plant. For illustrative purpose, we will
be considering the purification of the main component of spearmint essential oil with
sample size n = 35 (see Panahi and Sayyareh, 2014). Before progressing further, we
have first fitted the Burr XII distribution to the complete data-set. The q-q plot and the
fitted probability distribution function (pdf) and the relative histogram of this data are
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Table 2: Choice between rival models GE(p̂, b̂) and W(θ̂, λ̂) using tracking interval.
n = 50 T1 = 0.25

r k T2

0.7 1.75 3.5

19 11 Lower -2.485056 -0.2635314 -0.040380
Upper 4.646851 1.6412690 1.422563
Length 7.131907 1.9048004 1.462943

33 19 Lower 0.2547185 0.1501532 0.1559652
Upper 1.0866718 0.3473781 0.3382471
Length 0.8319533 0.1972249 0.1822819

33 27 Lower 0.2077799 0.1569685 0.1569654
Upper 0.6077219 0.3386884 0.3379971
Length 0.3999420 0.1817199 0.1810317

33 31 Lower 0.1804022 0.1553873 0.1577691
Upper 0.4111724 0.3404237 0.3351119
Length 0.2307701 0.1850364 0.1773428

46 21 Lower 0.2532064 0.02431987 0.02422751
Upper 0.9614531 0.05485407 0.05302312
Length 0.7082466 0.03053419 0.02879561

46 43 Lower 0.04456699 0.02662280 0.02323126
Upper 0.09242408 0.05551849 0.05186485
Length 0.04785709 0.02889569 0.02863359
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Table 3: Choice between GE(p̂, b̂) and W(0.5, 1) models using tracking interval.
n = 50 T2 = 3

r k T1

0.5 1.5 2.5

19 11 Lower -0.2402059 -0.7639319 -0.9119689
Upper 0.8269709 -0.5969956 -0.7761555
Length 1.0671767 0.1669363 0.1358134

33 19 Lower -0.4397094 -0.7702901 -0.9151429
Upper -0.1385257 -0.6030702 -0.7819565
Length 0.3011838 0.1672199 0.1331864

33 27 Lower -0.4382440 -0.7599943 -0.9112897
Upper -0.1450885 -0.5942433 -0.7785755
Length 0.2931556 0.1657510 0.1327142

33 31 Lower -0.4339584 -0.7658978 -0.9113656
Upper -0.1438790 -0.6024916 -0.7866310
Length 0.2900794 0.1634061 0.1247346

46 21 Lower -0.8106185 -0.8214801 -0.9140763
Upper -0.6540409 -0.6667408 -0.7782674
Length 0.1565776 0.1547394 0.1358088

46 43 Lower -0.8224319 -0.8127864 -0.9189451
Upper -0.6692899 -0.6600130 -0.7851536
Length 0.1531420 0.1527734 0.1337915
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Table 4: Choice between GE(p̂, b̂) and W(0.5, 1) models using tracking interval.
n = 50 T1 = 0.25

r k T2

0.7 1.75 3.5

19 11 Lower -0.2055429 -0.2539600 -0.2390979
Upper 0.9700580 0.8553028 0.8154895
Length 1.1756008 1.1092628 1.0545874

33 19 Lower -0.1765929 -0.4374647 -0.4253552
Upper 0.6783682 -0.1436175 -0.1373006
Length 0.8549611 0.2938472 0.2880546

33 27 Lower -0.2835752 -0.4285991 -0.4309602
Upper 0.1806446 -0.1356765 -0.1461760
Length 0.4642198 0.2929226 0.2847842

33 31 Lower -0.38126949 -0.4324393 -0.4294791
Upper -0.03669811 -0.1409502 -0.1421811
Length 0.34457139 0.2914891 0.2872980

46 21 Lower -0.1958578 -0.7992035 -0.8070888
Upper 0.5593171 -0.6415557 -0.6501842
Length 0.7551749 0.1576478 0.1569047

46 43 Lower -0.7212354 -0.8130397 -0.8124846
Upper -0.5503377 -0.6537241 -0.6560068
Length 0.1708977 0.1593156 0.1564778
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Figure 3: The q-q plot of data-set 1.

Figure 4: The fitted pdf and the relative histogram for data-set 1.

presented in Figure 5.1 and Figure 5.1 respectively.
These plots show a strong relationship supporting the appropriateness of the Burr

XII distribution. For comparison purposes, we fit Burr XII (BXII), Weibull (W), general-
ized exponential (GE) and Burr III (BIII) distributions to the complete observation. The
estimated parameter values, AIC values, Kolmogorov-Smirnov (K-S) distances and the
corresponding p-values are presented in Table 5.
From the K-S distances, AIC values and p-values of Table 5, it is quite clear that the Burr
XII model with estimated parameters p = 3.755 × 102 and b = 10.3203 provides much
better fit than other distributions. The BXII was originally proposed by Burr (1942) and
received more attention by the researchers due to its broad applications in the study of
engineering, reliability, life testing, and several industrial and economic experiments.
See for example, Ali Mousa and Jaheen (2002); Wu and Yu (2005); Rastogi and Tripathi
(2012).

Now, we want to decide which of the two rival models is closer to the true model
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Table 5: Estimated parameters, K-S distances and AIC values for different distribution
functions of data-set 1.

Distribution Estimated parameters K-S (p-value) AIC

W p = 3.719 × 102, b = 10.3074 0.0926 (0.8978) -94.0252
BXII p = 3.755 × 102, b = 10.3203 0.0924 (0.8987) -94.0265
BIII p = 5927 × 10−5, b = 26.844 0.4994 (small) -2.49693
GE p = 1.179 × 104, b = 18.489 0.109 ( 0.760) -92.0116

f (p,b)
W = pbxb−1e−pxb

, f (p,b)
BXII = pbxb−1(1 + xb)

−p−1
, f (p,b)

BIII = pbx−b−1(1 + x−b)
−p−1

and

f (p,b)
GE = pbe−bx(1 − e−bx)

p−1
.

(Burr XII) of this data. For this purpose, we assume that the true model is unknown
and compare two rival models using tracking intervals. We assume the following six
different cases of censoring schemes:
Case 1: T1=0.56, T2=0.61, k=17, r=20.
Case 2: T1=0.56, T2=0.61, k=17, r=25.
Case 3: T1=0.56, T2=0.61, k=17, r=33.
Case 4: T1=0.53, T2=0.61, k=21, r=29.
Case 5: T1=0.53, T2=0.60, k=23, r=32.
Case 6: T1=0.53, T2=0.59, k=28, r=33.

For all cases of censoring schemes, we consider two different cases of rival models:
A: W and GE distributions (two mis-specified models).
B: BXII and W distributions (BXII and W are well-specified and miss-specified mod-
els respectively).

In all the cases we have estimated the unknown parameters using the MLEs and
then constructed the tracking intervals. The results are reported in Table 6.

First, we consider W and GE distributions as rival models (case A). For cases 2,3,4,5
and 6, it is observed that zero is well inside these intervals, so there is no confidence
that we incur a lower risk using W rather than GE distribution. It is not surprising
because the AICs of W and GE are very similar for cases 2, 3, 4, 5 and 6. But case 1,
shows that both limits of the tracking intervals are negative, which indicates that the
W is better than the GE density to estimate the true model for this data. As expected
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Table 6: Tracking intervals for two rival models (A and B) and six censoring schemes
(six cases) of data-set 1. The first, second and third rows represent the lowers, uppers
and the corresponding lengths.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Case A
-0.5690 -0.2610 -0.0485 -0.0863 -0.1170 -0.1200
-0.0881 0.00354 0.0384 0.0574 0.0551 0.0443
0.4809 0.2645 0.0869 0.1437 0.1721 0.1643

Case B
-1.25038 -1.51952 -2.13109 -1.82189 -1.71994 -1.75670
-1.16977 -1.45008 -2.04956 -1.75577 -1.65886 -1.68663
0.08061 0.06944 0.08153 0.06612 0.06108 0.07007

for case B, both limits of the tracking intervals are negative, which indicates that the
BXII is better than the W density to estimate the true model for all cases. Furthermore,
one of the most important applications of the tracking interval is selecting the closer
model as a preferred model which is important when the two rival models are very
close. Therefore, we present the following data-set.
Data-Set 2: In this example we provide another data analysis for more illustrative
purposes. The data have been taken from Murthy et al. (2004) and it represents the
lifetimes of 20 electronic components. Teimouri and Gupta (2013) observed that three-
parameter Weibull distribution works quite well for this data. The data are given below:

0.03 0.12 0.22 0.35 0.73 0.79 1.25 1.41 1.52 1.79

1.80 1.94 2.38 2.40 2.87 2.99 3.14 3.17 4.72 5.09

We fit Burr XII (BXII), Weibull (W), inverse Weibull (IW) and generalized exponential
(GE) distributions to the complete observations. The plot of the empirical and the fitted
cumulative distribution functions for different distributions are presented in Figure 5.2.
The estimated parameter values, AIC values, Kolmogorov-Smirnov (K-S) distances and
the corresponding p-values are presented in Table 7. From minimum Kolmogorov
distance, minimum AIC value and high p-value, the W distribution function appears
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Figure 5: Empirical survival function and the fitted survival functions for data-set 2.

Table 7: Estimated parameters, K-S distances and AIC values for different distribution
functions of data-set 2.

Distribution Estimated parameters K-S (p-value) AIC
W p= 0.42616, b= 1.19617 0.1268 (0.8652) 69.5739

BXII p= 0.86983, b= 1.45335 0.2302 (0.2053) 77.4807
IW p= 0.71570, b= 0.62782 0.2368 (0.1803) 87.4368
GE p= 1.13901, b= 0.55959 0.1573 (0.6488) 70.2204

f (p,b)
W = pbxb−1e−pxb

, f (p,b)
BXII = pbxb−1(1 + xb)

−p−1
, f (p,b)

IW = pbx−b−1e−px−b
and

f (p,b)
GE = pbe−bx(1 − e−bx)

p−1
.

to be a more appropriate statistical distribution function in complete case. We also
consider a graphical method based on total time on test (TTT) transform. This provides
a very good idea about the shape of the hazard function of a distribution. It has been
shown that the hazard function of F(t) increases (decreases) if the scaled TTT transform,

φF(t) = H−1
F (t)/H−1

F (1), where H−1
F (t) =

∫ F−1(t)
0 S(u)du; 0 ≤ u ≤ 1, is concave (convex). In

addition, for bathtub (unimodal) shaped hazard rate, the TTT transform is first convex
(concave) and then concave (convex). The plot of the scaled TTT transform of this data-
set, Figure 5.2, indicates that the empirical hazard function is increasing and therefore,
the W and GE distributions can be used to analyze the data. So, we consider W (say
f ) and GE (say g) as rival models. First, we obtain the tracking interval of two rival
models for complete data. This interval is (-0.0190596, -0.0131105). It implies that the W
is better than the GE density to estimate the true model (three-parameter Weibull). But,
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Figure 6: Scaled TTT transform of the lifetimes of 20 electronic components.

in this case the length of the tracking interval is small (as we expected). This indicates
that the W and GE distributions are similar in information criteria sense. Therefore,
even if the two CDFs are close, the tracking interval works well. Now we consider six
different cases of censoring schemes:
Case 1: T1=1.9, T2=2.8, k=7, r=10.
Case 2: T1=1.9, T2=2.8, k=7, r=13.
Case 3: T1=1.9, T2=2.8, k=7, r=17.
Case 4: T1=1.7, T2=2.8, k=11, r=14.
Case 5: T1=1.7, T2=2.6, k=11, r=18.
Case 6: T1=1.7, T2=2.3, k=16, r=19.

For cases 1, 2, 3, 4, 5 and 6, the tracking intervals are (-0.62290, -0.19374), (-
0.37699, -0.163914), (-0.312841, -0.158006), (-0.25213, -0.10619), (-0.381619, -0.167256)
and (-0.252133, -0.106190) respectively. Interestingly, for all cases, both limits of the
tracking intervals are negative, which indicates that the W is better than the GE density
to estimate the true model. Also for all cases, the plots of the fitted probability distri-
bution functions (W and GE) and the relative histogram of this data confirm the results
of tracking intervals. (These plots are not reported here).

6 Conclusion

In this paper we have considered the problem of comparing between two rival models
using the statistic based on the normalization of a difference of Akaike criteria under
unified hybrid censoring scheme. We have also obtained the asymptotic distribu-
tion of the maximum likelihood estimator under unified hybrid censoring scheme. It
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is observed that the asymptotic distribution of the maximum likelihood estimator is
asymptotically normal. Moreover, using the missing information principle we calcu-
lated the variance of the normalized difference of AIC’s for constructing an interval
say tracking interval. The proposed interval contains the difference of KL risks with a
fixed probability. This interval has another interpretation for the use of AIC’s. In fact
we are not in a situation to detect the best model but we are in search for a model which
has relatively less risk compared to other models. Using a Monte Carlo simulation,
we compared the two rival models and it is observed that the tracking intervals work
quite well for different censoring schemes. Also it is observed that for fixed r, k and T1
when T2 increases and for fixed r, k and T2 when T1 increases, the length of tracking
interval decreases. The statistic DUHCS and the tracking interval for difference of risks
are easy to compute and could be useful in a wide variety of applications. Although it
may be mentioned that our interval can be extended for other censoring schemes also.
More work is needed in these directions.

Appendix (Acronyms)

EKL(h, f α∗): The expected Kullback-Leibler risk(or simply Kullback-Leibler
risk).
UHCS (r, k, T1, T2): The unified hybrid censoring scheme with parameters r, k, T1
and T2.
f α(zi | Y ): The conditional probability density function of zi; i = 1, ..., n− d
given observed sample.
op(1): Convergence in probability to zero.
Op(1) : Bounded in probability as n goes to infinity.
AIC: Akaike information criterion.
KL: Kullback-Leibler divergence.
h : True model.
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