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Abstract. Consider an estimation problem in a one-parameter non-regular distribution
when both endpoints of the support depend on a single parameter. In this paper, we
give sufficient conditions for a generalized Bayes estimator of a parametric function to
be admissible. Some examples are given.
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1 Introduction

Consider a random variable X whose probability density function depends on an un-
known parameter. Under a quadratic loss function, the admissibility of estimators was
discussed by many authors. For a one-parameter exponential family of distributions,
Karlin (1958) gave sufficient conditions for linear estimators of the form aX to be ad-
missible in estimating the mean of X. The result of Karlin was generalized by Ghosh
& Meeden (1977), Ralescu & Ralescu (1981), Hoffmann (1985), Pulskamp & Ralescu
(1991) and Tanaka (2010). Moreover, for the non-regular case when the dimension of
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Figure 1: Plot of the squared-log error loss function.

the minimal sufficient statistic is one, sufficient conditions for admissibility are given
by Karlin (1958), Sinha & Gupta (1984) and Kim (1994) under quadratic loss function,
by Sanjari Farsipour (2003) under entopy loss function, by Tanaka (2011) under LINEX
loss function and by Zakerzadeh & Moradi Zahraie (2015) under squared-log error loss
function. In addition Kim & Meeden (1994), Sanjari Farsipour (2007) and Tanaka (2012)
considered the admissibility of generalized Bayes estimators when the dimension of
the minimal sufficient statistic is two.

Consider the asymmetric squared-log error loss of the form

L(δ, h(θ)) = (ln(∇))2, (1.1)

where ∇ := δ/h(θ) and both h(θ) and δ are positive. This loss function was introduced
by Brown (1968); see also Pal and Ling (1996).

The Bayes estimator for h(θ) under the latter loss function may be given as

δπ(x) = exp {Eθ [ln (h(θ)) |X = x]} ,
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where Eθ(.|X = x) denotes the posterior expectation.
From Figure 1, we see that:

(i) It is asymmetric;

(ii) It is convex when ∇ ≤ e and concave otherwise;

(iii) It has a unique minimum at ∇ = 1;

(iv) It is a balanced loss function in the sense that L(θ, δ) → ∞ as δ → 0 or δ → ∞.
A balanced loss function takes both error of estimation and goodness of fit into
account but the unbalanced loss function only considers error of estimation;

(v) On the basis of this loss, under-estimation/under-prediction is penalized more
heavily, per unit distance, than over-estimation/over-prediction.

For estimation under the loss (1.1), see Sanjari Farsipour & Zakerzadeh (2006),
Mahmoudi & Zakerzadeh (2011), Kiapour & Nematollahi (2011), Nematollahi & Jafari
Tabrizi (2012) and Zakerzadeh & Moradi Zahraie (2015).

Now, suppose that Y1, ...,Yn are independent and identically distributed random
variables according to the probability distribution function

p(y;θ) =
{

q∗(θ)r∗(y) if α(θ) < y < β(θ)
0 otherwise, (1.2)

for some functions α(θ) and β(θ), where θ ∈ Θ =: (θ, θ̄) and Θ is a nondegenerate
interval (possibly infinite) on the real line. Also r∗(y) is a positive measurable function
of y and

q∗−1(θ) =
∫ β(θ)

α(θ)
r∗(y)dy < ∞ for θ ∈ Θ.

The family of distributions with the density (1.2) is referred to as a non-regular
family of distributions.

Before expressing the purpose of this paper, we need the following notations:

Let X1 := min1≤i≤n Yi, Xn := max1≤i≤n Yi, X := (X1,Xn) and x := (x1, xn) be an ob-
served value of X. Suppose IA(x) be the indicator function of set A and, for θ ∈ Θ, define

x + θ := (x1 + θ, xn + θ),
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θx := (θx1, θxn),

χθ := {x ∈ R2|α(θ) < x1 < xn < β(θ)},
and

Θx := {θ ∈ Θ|β−1(xn) < θ < α−1(x1)}.

In (1.2), if both α(θ) and β(θ) are strictly increasing, then X is a sufficient statistic for
θ and its probability density function is given by

f (x;θ) =
{

q(θ)r(x) if x ∈ χθ
0 otherwise, (1.3)

where q(θ) and r(x) are positive. Let π(θ) be an improper prior density over Θ which
is positive. The generalized Bayes estimator of h(θ) with respect to π(θ) is given by
δπ(X), where

δπ(x) = exp


∫
Θ
{ln(h(θ))} q(θ)π(θ)IΘx(θ)dθ∫
Θ

q(θ)π(θ)IΘx(θ)dθ

 , (1.4)

provided that the integrals exist and are finite.

Since any admissible estimator should be a generalized Bayes estimator, it is enough
to focus on generalized Bayes estimator with respect to improper priors. Further, the
generalized Bayes estimator based on Y1, ...,Yn depends only on the sufficient statistic.
Therefore, we can start from the probability density function (1.3).

The rest of this paper is organized as follows. In Section 2, using Karlin’s technique,
we derive sufficient conditions for admissibility of generalized Bayes estimators in the
one parameter non-regular family of distributions with the density of the form (1.3)
under the loss (1.1). In Section 3, we treat the estimation of a bounded parametric
function and then we consider an estimation problem with a special class of prior
densities. Some examples are given.
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2 Main Results

In this section, we restrict estimators to the class

∆ := {δ|C1 and C2 are satisfied},

where

C1: Eθ[{ln(δ(X))}2] < ∞ for all θ ∈ Θ,

C2:
∫ b

a Eθ[{ln( δ(X)
h(θ) )}2]π(θ)dθ < ∞ for all a < b (a, b ∈ Θ).

Our purpose is providing sufficient conditions for admissibility of the generalized
Bayes estimator (1.4). The next lemma is the main tool for us.

Lemma 2.1. Let S(θ) be a continuous and non-negative function over Θ. Suppose that there
exists a positive function R(θ) such that∫ b

a
S(θ)dθ ≤

√
S(b)

√
R(b) +

√
S(a)

√
R(a),

for all a and b, when θ < a < b < θ̄. If there exists v ∈ Θ such that

lim
u→θ̄

∫ u

v

dθ
R(θ)

= lim
u→θ

∫ v

u

dθ
R(θ)

= ∞,

then S(θ) = 0 for almost all θ ∈ Θ.

The proof is discussed by Karlin (1958).

We need the following proposition for the proof of our main theorem.

Proposition 2.1. Suppose [a, b] ⊂ Θ be a finite interval. If we define

K(x, θ) :=
∫ θ

θ

{
ln

(
δπ(x)
h(t)

)}
q(t)π(t)IΘx(t)dt, (2.1)

then K(x, b) = K(x, b)Iχb(x).
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Proof. If β−1(xn) > b, then from definition of IΘx(b) and this fact that Iχθ(x) = IΘx(θ), we
have Iχb(x) = 0. If α−1(x1) < b, then from definition of Iχb(x), we have Iχb(x) = 0. Since
in these cases K(x, b) = 0, K(x, b) = K(x, b)Iχb(x). □

The following theorem provides sufficient conditions for ∆-admissibility of (1.4)
under the loss (1.1).

Theorem 2.1. Suppose that δπ ∈ ∆ and put

γ(θ) :=
1

q(θ)π(θ)

∫
R2

K2(x, θ)r(x)Iχθ(x)dx.

If γ(θ) < ∞ for all θ ∈ Θ and there exists v ∈ Θ such that

lim
u→θ̄

∫ u

v

dθ
γ(θ)

= lim
u→θ

∫ v

u

dθ
γ(θ)

= ∞, (2.2)

then δπ(X) is ∆-admissible for h(θ) under the loss (1.1).

Proof. According to the definition of admissibility, if δπ is not ∆-admissible, then there
exists an estimator δ ∈ ∆ such that

Eθ[L(δ(X), h(θ))] ≤ Eθ[L(δπ(X), h(θ))] (2.3)

for all θ ∈ Θ with strict inequality for at least one θ. From Condition C1, we see that
(2.3) is equivalent to

Eθ

{ln
(
δ(X)
δπ(X)

)}2 ≤ 2Eθ

[{
ln

(
δπ(X)
h(θ)

)} {
ln

(
δπ(X)
δ(X)

)}]
, (2.4)

for all θ ∈ Θ. Multiplying both sides of (2.4) by π(θ), and integrating with respect to θ
over the finite interval [a, b] ⊂ Θ, we obtain∫ b

a
Eθ

{ln
(
δ(X)
δπ(X)

)}2π(θ)dθ ≤ 2
∫ b

a
Eθ

[{
ln

(
δπ(X)
h(θ)

)} {
ln

(
δπ(X)
δ(X)

)}]
π(θ)dθ.

An application of the Fubini’s theorem gives∫ b

a

∫
R2

{
ln

(
δ(x)
δπ(x)

)}2

r(x)Iχθ(x)dxq(θ)π(θ)dθ (2.5)

≤ 2
∫

R2
r(x)

∫ b

a

[{
ln

(
δπ(x)
h(θ)

)} {
ln

(
δπ(x)
δ(x)

)}]
q(θ)π(θ)IΘx(θ)dθdx,
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which is guaranteed by Condition C2. From Proposition 2.1, right hand side of (2.5) is
rewritten as

2
∫

R2
r(x)

{
ln

(
δ(x)
δπ(x)

)}
K(x, b)Iχb(x)dx (2.6)

−2
∫

R2
r(x)

{
ln

(
δ(x)
δπ(x)

)}
K(x, a)Iχa(x)dx.

Using the Cauchy-Schwartz inequality, (2.6) is less than

2
{∫

R2

{
ln

(
δ(x)
δπ(x)

)}2
r(x)Iχb(x)dx

}1/2 {∫
R2K2(x, b)r(x)dx

}1/2
. (2.7)

Hence, if we define

T(θ) :=
∫

R2

{
ln

(
δ(x)
δπ(x)

)}2

r(x)Iχθ(x)dx,

then, combining (2.5) and (2.7), we have∫ b

a
T(θ)π(θ)q(θ)dθ ≤ 2

{
T(b)π(b)q(b)

}1/2 γ1/2(b)

+ 2
{
T(a)π(a)q(a)

}1/2γ1/2(a).

Now from (2.2) and Lemma 2.1, we obtain T(θ) = 0 for almost all θ ∈ Θ. From
Condition C1, δ(x) = δπ(x) for almost all x ∈ χθ and the proof is completed. □

By putting (1.4) in (2.1), we get

K(x, θ) =

∫ θ̄
θ

∫ θ
θ

{
ln

(
h(s)
h(t)

)}
q(s)π(s)IΘx(s)q(t)π(t)IΘx(t)dtds∫ θ̄

θ
q(u)π(u)IΘx(u)du

,

which is easier to handle than (2.1). Note that the above result is obtained by using

this fact that
∫ θ̄
θ

∫ θ
θ

can be written as
∫ θ
θ

∫ θ
θ
+

∫ θ̄
θ

∫ θ
θ

, and since
∫ θ
θ

∫ θ
θ

is equal to zero,∫ θ̄
θ

∫ θ
θ
=

∫ θ̄
θ

∫ θ
θ

.

In the next example, we apply the result of Theorem 2.1.
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Examples 2.1. Suppose that Y1, ...,Yn (n > 2) are independent and identically dis-
tributed random variables according to the probability density function

p(y;θ) =
{

1 if θ < y < θ + 1
0 otherwise,

where θ(∈ R) is unknown. Then, the probability density function of X is given by (1.3)
when q(θ) = 1, r(x) = n(n−1)(xn−x1)n−2 and χθ = {x ∈ R2|θ < x1 < xn < θ+1}. We want
to estimate h(θ) = eηθ under the loss (1.1), when η , 0 is a real number. The generalized
Bayes estimator with respect to π(θ) = 1 is given by δπ(x) = exp(η(x1 + xn − 1)/2). We
can obtain r(x + θ) = r(x) and K(x + θ, θ) = K(x, 0). Hence

γ(θ) =
∫

R2
K2(x, 0)r(x)Iχ0(x)dx <∞,

and consequently, δπ(X) is ∆-admissible from Theorem 2.1.

In the above example, the moment generating function of Y1, {(eη − 1)/η}eηθ, is a
multiple of h(θ).

3 Two Special Cases

In this section, we consider two special cases. In the first case, we suppose that h(θ) is
bounded and, in the second case, we consider a special class of priors densities.

3.1 h(θ) is Bounded

It is difficult to express γ(θ) explicitly and it can have a complicated form. So, in order
to apply Theorem 2.1, we have to seek a suitable upper bound of γ(θ). For the case
when h(θ) is bounded, we can get the following corollary.

Corollary 3.1. Suppose that h(θ) is bounded and δπ ∈ ∆. For θ ∈ Θ and x ∈ χθ, put

K̃(x, θ) :=

∫ θ̄
θ

q(s)π(s)IΘx(s)ds
∫ θ
θ

q(t)π(t)IΘx(t)dt∫ θ̄
θ

q(u)π(u)IΘx(u)du
,

and

γ̃(θ) :=
1

q(θ)π(θ)

∫
R2

K̃2(x, θ)r(x)Iχθ(x)dx.



Admissibility using Squared-log Error Loss 27

If γ̃(θ) < ∞ for all θ ∈ Θ and there exists v ∈ Θ such that

lim
u→θ̄

∫ u

v

dθ
γ̃(θ)

= lim
u→θ

∫ v

u

dθ
γ̃(θ)

= ∞,

then δπ(X) is ∆-admissible for h(θ) under the loss (1.1).

Proof. It can be easily shown that there exists a constant C such that |K(x, θ)| ≤ CK̃(x, θ),
for all (x, θ) ∈ {(x, θ)|x ∈ χθ, θ ∈ Θ}. This completes the proof by Theorem 2.1. □

We now give an application of the above corollary.

Examples 3.1. In Example 2.1, consider the estimation problem of

h(θ) = Pθ(Y1 ≤ 1) = (1 − θ)I{0<θ<1}(θ) + I{θ<0}(θ),

which is clearly bounded. The generalized Bayes estimator of h(θ) with respect to
π(θ) = 1 is given by

δπ(x) =



1 if x1 < 0
exp

{
(1−x1)(ln(1−x1)−1)+1

x1+xn−1

}
if xn − 1 < 0 < x1 < 1

exp
{

(1−x1)(ln(1−x1)−1)−(2−xn)(ln(2−xn)−1)
x1+xn−1

}
if 0 < xn − 1 < x1 < 1

exp
{−(2−xn)(ln(2−xn)−1)

x1+xn−1

}
if 0 < xn − 1 < 1 < x1

0 if 1 < xn − 1 < x1 < 2.

Since K̃(x + θ, θ) = K̃(x, 0) and hence

γ̃(θ) =
∫

R2
K̃2(x, 0)r(x)Iχ0(x)dx <∞,

δπ(X) is ∆-admissible under the loss (1.1) from Corollary 3.1.

3.2 π(θ) Has a Special Form

Let the random variable X have a density of the form (1.3) and suppose that h(θ) is
strictly increasing and differentiable. Consider the class of prior density functions
treated by Sinha & Gupta (1984) and Kim & Meeden (1994) in the form

πg(θ) := h′(θ)
q(θ) g(h(θ)), θ ∈ Θ, (3.1)
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for a positive function g(.) defined on the range of h. In this case, the generalized Bayes
estimator of h(θ) with respect to πg(θ) is given by δπg(X), where

δπg(x) = exp


∫

h(Θ) {ln(z)} g(z)Ih(Θx)(z)dz∫
h(Θ) g(z)Ih(Θx)(z)dz

 . (3.2)

From (3.2) certain integrability conditions would have to be imposed on g for δπg to be
well defined.

The following Corollary gives sufficient conditions for (3.2) to be ∆-admissible.

Corollary 3.2. Suppose that h(θ) is strictly increasing and differentiable, and δπg ∈ ∆.
For θ ∈ Θ and x ∈ χθ, put

Kg(x, θ) :=
∫ h(θ)

h(θ)

{
ln

(
δπg(x)

z

)}
g(z)Ih(Θx)(z)dz,

and

γg(θ) :=
1

h′(θ)g(h(θ))

∫
R2

K2
g(x, θ)r(x)Iχθ(x)dx.

If γg(θ) < ∞ for all θ ∈ Θ and there exists v ∈ Θ such that

lim
u→θ̄

∫ u

v

dθ
γg(θ)

= lim
u→θ

∫ v

u

dθ
γg(θ)

= ∞,

then δπg(X) is ∆-admissible for h(θ) under the loss (1.1).

The proof is omitted because it is an immediate consequence of Theorem 2.1.

We now close this section with an applications of Corollary 3.2 in which we work
with the choice of g(u) = u−α(α > 1).

Examples 3.2. Suppose that Y1, ...,Yn (n > 2) are independent and identically dis-
tributed random variables according to the probability density function

p(y;θ) =
{

1
θ if ξθ < y < (ξ + 1)θ
0 otherwise,
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where ξ ∈ (0,∞) is known and θ ∈ (0,∞) is unknown. In this case, the probability
density function of X is given by (1.3), when q(θ) = θ−n, r(x) = n(n − 1)(xn − x1)n−2 and
χθ = {x ∈ R2|ξθ < x1 < xn < (ξ + 1)θ}. Consider the estimation of h(θ) = θβ where
β > 0. Let the prior density of θ be πα(θ) = βθn−βα−1, where α > 0, which is (3.1) with
g(u) = u−α. The generalized Bayes estimator of h(θ) is given by

δπα(x) = e
1
α exp

β( ln
(

xn
ξ+1

)
(

xn
ξ+1

)βα − ln
(

x1
ξ

)
(

x1
ξ

)βα )/( 1(
xn
ξ+1

)βα − 1(
x1
ξ

)βα )
 .

We can obtain r(θx) = θn−2r(x) and Kg(θx,θ) = θ−βαKg(x, 1). These imply that

γg(θ) =
θn−β(α+1)−1

β

∫
R2

K2
g(x, 1)r(x)Iχ1(x)dx.

Therefore, from Corollary 3.2, for α = n−1
β −1 where 0 < β < n−1, δπα(X) is∆-admissible

under the loss (1.1).

In the above example, all moments are multiples of h(θ) = θβ for appropriate β’s.
For instance, the mean (= (ξ + 1/2)θ) and the variance (= (1/12)θ2) are multiples of θ
and θ2, respectively. Furthermore, the quantiles qp = (ξ + p)θ, where 0 < p < 1 are
multiples of θ.
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