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Abstract. This note focuses on estimating the quantile function based on the
kernel smooth estimator under a truncated dependent model. The Bahadur-
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1 Introduction

In medical follow-up or in engineering life testing studies, one may not be able
to completely observe the variable of interest, referred to hereafter as lifetime.
Among the different forms in which incomplete data appear, right-censoring
and left-truncation are of the most common. Left-truncation may occur if
the time of origin of the lifetime precedes the time of origin of the study.
Only subjects that fail after the start of the study are followed, otherwise they
are left-truncated. Woodroofe (1985) reviews examples from astronomy and
economy where such data may occur.

Let X1,Xs, ..., XN be a sequence of the lifetime variables which may not
be mutually independent, but have a common unknown continuous distribution
function (d.f.) F with a density function f = F’. Let T1,Ta,...,TN be a
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sequence of independent and identically distributed (i.i.d.) random variables
(rv’s) with a continuous d.f. G; they are also assumed to be independent of the
random variables X;’s. In the left-truncation model, (Xj, T;) is observed only
when X; > T;. Let (X1,T1),...,(X,,T,) be the sample actually observed
(ie., X; > T;), and put v := P(Xy >T;) > 0, where P is the absolute
probability (related to the N-sample). Note that n itself is a rv and that - can
be estimated by n/N (although this estimator cannot be calculated since N is
unknown). For any d.f. L denote the left and right endpoints of its support
by ar, = inf{x : L(z) > 0} and by, = sup{x : L(x) < 1}, respectively. Then,
under the current model, as discussed by Woodroofe (1985), we assume that
ag < ar and bg < br, and define

C(l’) = P(Tl S x S X1|T1 S Xl) = P(Tl S T § Xl) = ’yilG(.’E)(l — F‘(‘T))7

(1.1)
where P(-) = P(+|n) is the conditional probability (related to the n-sample)
and consider its empirical estimate

Cp(z)=n"" iI(Ti <z <X;), (1.2)

where I(+) is the indicator function. Thus, the nonparametric maximum likeli-
hood estimate of F' originally proposed by Lynden-Bell (1971), is given by

Ew=1—flﬁ—mﬁ&0’

assuming no ties in the data. Let
F*(z) = P(X; < 2Ty < X;) =P(X; <z) —1/ G(u)dF(u

be the d.f. of the observed lifetimes. Its empirical estimator is given by

Fx( *1ZIX < ).

On the other hand, the d.f. of the observed T;’s is given by

G* () =P(T1 <2|T1 <Xy)=P(T} <z)=7"" /00 G(z AN u)dF (u),

ar

and is estimated by
G ( nt Z I(T; <)
It can be concluded from (1.1) and (1.2) that

Cla) = G'(a) = F*(@"), Cule)=Ghla)—Fi(a ). (13)
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The quantile function of the distribution function F' is defined as

Qp) = F~'(p) :==inf{t: F(t) >p} 0<p<1.

The role of the quantile function in statistical data modeling was empha-
sized by Parzen (1979). In econometrics, Gastwirth (1971) used the quantile
function to give a succinct definition of the Lorenz curve, which measures in-
equality in distribution of resources and in size distribution.

Several nonparametric estimators of Q(p) for a random (untruncated) sam-
ple from F' appear in the literature. For example, the sample quantile function
is defined by
E Y (p) :=inf{t: F,(t) >p} 0<p<1,

n

where F), is the empirical distribution function based on the sample drawn
from the population distribution function F'.

In the i.i.d. framework, the properties of the estimator F,;! have been
extensively studied (see e.g., Csorgd, 1983; Shorack and Wellner, 1986). Un-
der a ¢-mixing condition (see Doukhan, 1996, for the definition), the Ba-
hadur representation was obtained by Sen (1972) and the extension to the
a-mixing case (see Definition 1.1) was obtained by Yoshihara (1995). Un-
der an a-mixing condition, the strong approximation of the quantile process
VRf(FY()[F, ()= F~1(-)] by a two-parameter Gaussian process at the rate
O((logn)~*) for some A > 0, was obtained by Fotopoulos et al. (1994). The
strong approximation of Fotopoulos et al. (1994) was obtained by Yu (1996)
with a lighter strong mixing decay rate and wider intervals.

For a truncated model with mutually independent X;’s and T;’s, and in-
dependent and identically distributed sequences, Giirler et al. (1993) obtained
weak and strong representations for the quantile function

On(p) == inf{t: F,(t) >p} 0<p<l.

In the left-truncation and right censorship model (LTRC), Tse (2005), obtained
strong Gaussian approximations of the product-limit (PL) quantile process

pu(p) == VA (Q(0)[Qn(p) — Q(P), (1.4)

using a two-parameter Kiefer-type process at the rate O((log n)3/?n=1/8) (where
ﬁn(t) is replaced by the PL estimator for the LTRC model.)

Under a-mixing and left-truncation, Lemdani et al. (2005) established
strong consistency, asymptotic normality and the Bahadur representation of
quantile function @, (-). The strong Gaussian approximation of the PL-quantile
process has been constructed by Bolbolian et al. (2010) at the rate O((logn)~?)
for some A > 0.

The kernel smooth quantile estimator of Q(p), 0 < p < 1, can also be
defined for the left-truncated data. For 0 < p < 1, it is given by

t—p
dt
)

Qn(p) == hﬁl/ol @n(t)K(
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where {h,,n > 1} is a bandwidth sequence of positive numbers such that
hn, — 0 as n — oo, and K(-) is a probability density function which is zero
outside a finite interval (—1,1).

The kernel smooth quantile estimator of (Q(p), was first mentioned in
Parzen (1979), in the ii.d. framework (with no truncation, where Q, is re-
placed by the sample quantile function F;!). Subsequently, a number of schol-
ars discussed its properties for independent random variables. Yang (1985)
established the asymptotic normality and mean consistency of @, (p), and ob-
tained its Bahadur representation. Under an a-mixing condition, Wei et al.
(2010) obtained a Bahadur representation and strong consistency of the kernel
smooth quantile estimator @y, (-).

Under random censorship or randomly truncated data, Xiang (1995) and
Yong et al. (2006) established a similar Bahadur representation of @, (p), the
latter also giving strong consistency and asymptotic normality of the estimator.

The main aim of this paper is to derive a Bahadur-type representation of
Qn(+), for the case of truncated data where the underlying lifetimes are assumed
to be strongly mixing. As a result, we obtain strong uniform consistency. The
counterpart of these results for the censored dependent model was established
by Ajami et al. (2011).

We consider the strong mixing dependence, which amounts to a form of
asymptotic independence between the past and future as shown by its defini-
tion.

Definition 1.1. Let {Z;,i > 1} denote a sequence of random variables.
Given a positive integer m, set

a(m) = supsup{|P(ANB) — P(A)P(B)|; A€ ]-'f,B € Fism}s
k>1A,B

where FF denote the o-field of events generated by {Z;;i < j < k}. The se-
quence is said to be strong mixing (@-mixing) if the mixing coefficient a(m) — 0
as m — 0o.

Among various mixing conditions used in the literature, a-mixing, is rea-
sonably weak and has many practical applications. Many processes and time
series exist that fulfill the strong mixing condition. As a simple example we
can consider the Gaussian AR(1) process for which

Zy = ply_1 + &y,

where |p| < 1 and e’s are i.i.d. random variables with standard normal dis-
tribution. It can be shown (see Ibragimov and Linnik, 1971, pp. 312-313)
that {Z;} satisfies a strong mixing condition. The stationary autoregressive-
moving average (ARMA) processes (Doukhan, 1994), which are widely applied
in time series analyses, are a-mixing with an exponential mixing coefficient, i.e.,
a(n) = O(e¥™) for some v > 0. The threshold models, the EXPAR models
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(see Ozaki, 1979), the simple ARCH models (see Engle, 1982), their exten-
sions (see Diebolt and Guégan, 1993) and the bilinear Markovian models are
geometrically strongly mixing under a number of general ergodicity conditions.

2 Main Result

Before we state our result we list all the assumptions used throughout this
paper. Let 0 < pg < p1 < 1 be such that ar +§ < Q(po) < Q(p1) < bp — ¢ for
some § > 0.

Assumptions.

Al. {X;};>1 is a sequence of stationary a-mixing rv’s with mixing coeflicient
a(n) = O(e (o8 ™™ for some v > 0.

A2. F is twice continuously differentiable on [Q(pg) — d,Q(p1) + d] and f is
bounded away from zero there.

A3. G is continuously differentiable on [Q(pg) — J,Q(p1) + d] and g = G’ is
bounded away from zero there. We also assume that ag < ap.

A4. K is a probability density function with finite support (—1,1).

A5. [% tK(t)dt = 0.

Our main result is the following theorem:

Theorem 2.1. Let {h,} be a sequence of positive bandwidths tending to zero
as n — oo such that

o0 1/2

(logn)
Z o < oo for some n>0. (2.1)

n=

Under the stated assumptions,

uniformly on pg < p < p1, where
an = h2 Vv n~2(logn) " v (n"Y2(h, logn)®/*),
for some A >0 and a Vb =max (a,b).
Proof. See the Appendix. O
Strong consistency of @, (p) can be stated as a corollary to Theorem 2.1.
Corollary 2.1. Assume that the conditions of Theorem 2.1 are satisfied, and

4
nh;

—— =0 — 00. 2.3
loglogn a8 e (2:3)
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Then, we have

. n
limsup , /———— sup [Q.(p) —Q(p)|=0 a.s.
n—00 loglogn py<p<p,

Remark 2.1. If the bandwidth A, is chosen to be h, ~ an™? with a > 0,
B> 1 and for some 7 > B+ 1 such that (2.1) is obtained, then condition (2.3)
is satisfied.

Remark 2.2. By choosing > 2, we see that the classical kernel-method
condition nh,, — oo clearly implies (2.1).

3 Appendix

Without loss of generality, under Assumption A2, we can assume that our
probability space is so rich that the approximation

sup  |pa(p) = (1 = p)B(Q(p).n)| = O((logn) ™) a.s., (3.1)

Po<p<p1
of Bolbolian et al. (2010) holds, where p,,(-) is defined in (1.4) and A > 0. Here
B(t,n) is a two-parameter zero-mean Gaussian process which is defined by

B(t,n) = W +/ WCZC(U), ag <t< bF, (32)

where k(x,n) is a generalized Kiefer process with a covariance function
Elk(s,t)k(s',t")] = T'(s,s") min(¢,t'),

where

(s, s") = Cov(ga(s )+ Z [Cov(g1(s), 9;(5") + Cov(gi(s), 9;(5))];

gi(s) = I(X; < s) — F*(s). Let I'*(s,s,t,t') = min(¢,t")I'(s,s’). Finally,
without loss of generality, we put arp = 0.

In order to prove the main theorem, we need the following lemmas. The
first lemma gives the functional law of the iterated logarithm for the generalized
Kiefer process k(z,n).

Lemma 3.1. Let Assumption A1 is satisfied. Then the sequence
{(2nloglogn)k(-,n),n > 1}

of functions on [0,00) is with probability 1 relatively compact in the supremum
norm and has the unit ball B in the reproducing kernel Hilbert space H(T'™*) as
its set of limits.
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Proof. Theorem 2 of Lai (1974) (see the remark on Page 19) implies that the
conclusion holds for the sequence {(2nloglogn)k(-,n),n > 1}. O

As a consequence of Lemma 3.1, we have

k(z,n)

li —=0(1 .S, 3.3
lrrlnjo%p OSSBEOO 2nloglogn (1) as (3:3)
we have
) B(z,n)
limsup sup ——— =0(1) a.s., 3.4
ey Ogmrg)b Vloglogn W (3.4)
where b < bp.

Lemma 3.2. Let {h,} be a sequence of positive bandwidths tending to zero
as n — 0o such that (2.1) is satisfied. Under Assumptions A1-A3, we have

sup  sup [B(Q(p + hnt),n) = BQp),m)| = O ((hnlogn)*/*)  as.

po<p<p1 [t|<1

(3.5)
Proof. 1t is easy to see that, for n large enough
< |HQLmOn _ KOG/
- C(Q(p+ hat)) C(Q(p))
* <Q(Po)—5ﬁir11ifSQ(P1)+5 C(U))
« s Bl i0Qe -+ 1t - Q)
= Il + IQ (36)

Because f(+) is continuous on [Q(pg)—d, Q(p1)+4] and bounded away from zero,
it can be concluded from the Mean Value Theorem that, for n large enough

sup  sup |Q(p + hat) — Q(p)| < Mha, (3.7)

po<p<p1 |[t|<1

where M is a positive constant. For n large enough, it can be obtained from
Assumption A3, (3.7) and the Mean Value Theorem that

sup  sup |G(Q(p + hnt)) — G(Q(p))| = O(hn) (3.8)

po<p<p: |[t|<1
Moreover, with Assumption A2, (1.1) and (3.8), we have,

sup  sup |C(Q(p + hnt) — C(Q(p))| = O(hn) (3.9)

po<p<p1 [t|<1
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Now, with (3.3) and (3.9), we have,

sup  sup Ir = O(h,+/loglogn) a.s. (3.10)

po<p<p1 |[t|<1

To deal with I, first note that

n—1/2
WS e e i QW ) ) = KQG). )
+ sup |k(u,n)| 1 B 1
0<u<oo \/ﬁ O(Q(p + hnt) C(Q(p))
=: 13+I4

Using the same proof as Is, we have

sup  sup Iy = O(h,/loglogn) a.s. (3.11)

po<p<p1 |[t|<1

Moreover,
sup  sup |[E(Q(p + hnt),n) — k(Q(p),n)]
po<p<p1 [t|<1

< sup sup |k(z+y,n) — k(z,n)|
Q(po)<z<Q(p1) O0<y<Mhn

Similar to the proof of Theorem 8.2.1 in Csérgd, (1983) and with the use of
Lemma 3.4 in Berkes and Philipp (1977), we obtain

sup sup  |k(z +y,n) —k(z,n)] = OnY?(hylogn)**) a.s.
Q(po)<z<Q(p1) 0<y<Mh,
(3.12)
Therefore,
sup sup I3 =0 ((hn log n)3/4) a.s. (3.13)
Po<p<p1 [t|<1
With (3.11) and (3.13) we have
sup supl; =0 ((hn log n)3/4> a.s. (3.14)
po<p<p1 [t|<1
Now with (3.6), (3.10) and (3.14) we obtain the result. O

Lemma 3.3. Under the conditions of Lemma 3.2,

sup  sup |Bn(p + hnt) — Bu(p)| = O ((log n)~V (hy log n)3/4) as.,
po<p<p: [t|<1

where B, (t) = \/ﬁ(@n(t) - Q(ﬂ)
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Proof. With the use of triangle inequality, we have

sup |ﬂn(p + hnt) - 5n(p)|
[t[<1

1—p—hpt
f(Q(p + hnt))

< sup
t1<1

Bn(p + hnt) — B(Q(p + hnt),n)

1-p
ﬂn(p) - f(Q(p)) B(Q(p)v n)

4 su 1—p—hpt
|t\§p1 F(Q(p + hnt))

= L+ Ly+ L3,

+

B(Qp+ hut), ) - %B(Q@m\

for all pg < p < p;. Using (3.1), we obtain
Ly + Ly = O ((log n)_’\) a.s., (3.15)
uniformly on pg < p < p;. For L3, we have for n large enough

1—p—hpt 1—p

La < o | 5@ hat) ~ T@0 |1P@@)
# s0p |BQG + ). )~ B(@(p).)] (3.16)

for all pg < p < p1, where M is a positive constant. Because f(t) is continuously
differentiable on [Q(po) — §, Q(p1) + d] and bounded away from zero, the first
term of (3.16) is not larger than Ch,|B(Q(p),n)| uniformly on py < p < py,
where C' is a positive constant. Therefore equations (3.2) and (3.4) imply

L= p = hnt 1-p = oglogn) a.s
U | Q0+ ) ‘f(@@))"B (@), W] = Olhn Vioglogn) - a-s.,
(3.17)

uniformly on py < p < p;. With the use of (3.16), (3.17) and Lemma 3.2, we
have

L;=0 ((hn log n)3/4) . (3.18)

Therefore, the lemma is proved via (3.15) and (3.18). O

Proof of Theorem 2.1. Considering Assumption A4, we have

Q= = w2t [ a0 - sl K ()t 2,00

# ([ 10Q(t)K (52 ae-aw)

= Il +12—|—I3
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Implementing Lemma 3.3, we have

L] < nY/? |s‘u<p Bn(p + hnt) — Bu(p)|
<1

= 0O (n*1/2(10g n)~*V (n"Y2(hy, log n)3/4) a.s., (3.19)
uniformly on pg < p < p;. Theorem 1 of Lemdani et. al. (2005) implies

_Pr- FH(Q(p))
f(Q(p))

where A > 0. Using Assumptions A4, A5 and the Taylor expansion of Q(-)
about p and Lemma 2.2 in Yong et al. (2006), we get

I, + 0 Y2(ogn)™) a.s., (3.20)

no=(f 11 QU + 1K (0 - Q)
O(h?

) (3.21)

uniformly on py < p < p;. The result follows from (3.19)-(3.21).
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