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Abstract. Ranked Set Sampling (RSS) is a statistical method for data
collection that leads to more efficient estimators than competitors based
on Simple Random Sampling (SRS). We consider testing the correla-
tion coefficient of bivariate normal distribution based on Bivariate RSS
(BVRSS). Under one-sided and two-sided alternatives, we show that the
new tests based on BVRSS are more powerful than the usual uniformly
most powerful tests based on bivariate SRS. Furthermore, the proposed
tests for repeated and unrepeated samples are compared.
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1 Introduction

In a real life situations when the measurements on the variable of interest
is costly or time consuming and ranking of the sample items based on
a correlated variable can be easily done, by judgment without actual
measurement, RSS method can be used and it is superior to the SRS
method. The RSS was first proposed by McIntyer (1952) for estimating
the mean of pasture yields. Takahasi and Wakimoto (1968) described
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the mathematical theory of RSS. Dell and Clutter (1972) showed that
the RSS mean is unbiased and more efficient than the SRS mean even
when the ranking is imperfect. RSS strategy has emerged as a powerful
tool and a serious alternative to the commonly used SRS methods.

In the past two decades, many researchers used the RSS method
in both parametric and nonparametric problems and extended some
modification for RSS. For example, in parametric inference Ni Chuiv
et al. (1994), Fei et al. (1994), Lam et al. (1994, 1995), Sinha and
Purkayastha (1996) and Bhoj and Ahsanullah (1996) used RSS to esti-
mate the parameters of Cauchy, Weibull, extreme-value, two parameter
exponential, logistic, normal, exponential and generalized geometric dis-
tributions, respectively. In modification of RSS, Samawi et al. (1996),
Muttlak (1997), Li et al. (1999), Hossain and Muttlak (2001) and Rahi-
mov and Muttlak (2003) suggested extreme RSS, median RSS, random
selection in RSS, selected RSS (SRSS) and generalization of random
selection in RSS, respectively. Chen et al. (2004) provides a detailed
discussion of RSS and its variants.

For hypothesis testing of the parameter of some distributions based
on one characteristic, some authors used RSS to obtain the tests, which
were more powerful than the usual Uniformly Most Powerful (UMP)
tests based on SRS. Among them, Abu-Dayyeh and Muttlak (1996),
Muttlak and Abu-Dayyeh (1998), Wang and Tseng (2002), Tseng and
Wu (2007), Hossain and Muttlak (2006) and Hossain and Khan (2006)
used RSS, median RSS and SRSS to test one of the parameters of normal,
exponential, uniform and rectangular distributions.

A few researchers have considered estimating multiple characteris-
tics using RSS. One way of using RSS for this case is ranking the units
by judgment with respect to one chosen characteristic, and all other
characteristics are given the same ranking order as the ranked charac-
teristic. McIntyer (1952), Takahasi (1970), Stokes (1980), Patil et al.
(1994), Zheng and Modarres (2006) and Hui et al. (2009) used this
approach. Stokes (1980) applied mentioned method and showed that
the maximum likelihood estimator of the correlation coefficient ρ of the
Bivariate Normal (BVN) distribution based on RSS is asymptotically
as efficient as the one obtained by SRS. Zheng and Modarres (2006)
used this method to find a robust estimate of ρ of the BVN distribution.
Another way for using RSS in multiple characteristics is to rank the
units based on ordering all characteristics. Al-Saleh and Zheng (2002)
introduced this method for ranking the units based on ordering of two
characteristics and referred to it as Bivariate RSS (BVRSS). Al-Saleh
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and Samawi (2005) used BVRSS to estimate the correlation coefficient
ρ of two characteristics and applied it to estimate ρ of the BVN distri-
bution.

Suppose (X,Y ) is a random vector which has a bivariate distribution
with joint probability density function (p.d.f.) fX,Y (x, y) and ρ is the
correlation coefficient between X and Y . The method of Al-Saleh and
Zheng (2002) for obtaining a BVRSS of size k2 is given by the following
steps:

1. A random sample of size k4 is chosen from the population and is
randomly allocated into k2 pool of size k2, where each pool is a
square matrix with k rows and k columns.

2. In the first pool, minimum value is chosen by judgment with re-
spect to the first characteristic, for each of the rows.

3. For the k minima obtained in step 2, the pair that corresponds
to the minimum value of the second characteristic is selected by
judgment for actual quantification. This pair, which denoted by
the label (1, 1), is the first element of BVRSS.

4. Steps 2 and 3 is repeated for the second pool, but in step 3, the
pair that corresponds to the second minimum value is selected
for actual quantification with respect to the second characteristic.
This pair is denoted by the label (1, 2).

5. The process is continued until the label (k, k) resembles to the k2th
(last) pool.

This process produces a cycle of BVRSS of size k2. If a sample of higher
size is required, then this cycle could be repeated m times until the
required size n = mk2 is achieved.

It must be born in mind that in spite of the fact that k4 units are
identified for the BVRSS sample (for m = 1), only k2 are selected for
actual quantification. All k4 units, however, contribute information to
the k2 quantified units. Al-Saleh and Zheng (2002) pointed out that
when we have concomitant variables which are correlated to the variables
(X,Y ) and could be easily ranked without actual quantification, then we
could use these variables in the ranking procedure instead of variables
of interest.

To the best of our knowledge, the BVRSS for hypothesis testing on
the parameters of bivariate distributions is not used in the literature. In
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the present paper, we construct some new test functions for testing cor-
relation coefficient ρ of a bivariate normal distribution based on BVRSS,
and show that these tests are more powerful than usual UMP Unbiased
(UMPU) tests.

To this end, in Section 2 we consider the hypothesis testing on ρ
based on BVRSS and compare the power function of these tests with
respect to UMPU tests based on SRS. In Section 3 the tests based on
repeated and unrepeated samples are compared. In Section 4, we use
the asymptotic distribution of the sample correlation coefficient based on
BVRSS to find the approximate value of cutoff points of the test statistic.
In Section 5, using bootstrap method, the approximated p-value of the
proposed test is computed based on BVRSS and is compared with p-
value of the test based on BVSRS. A conclusion is given in Section 6.

2 Testing the Correlation Coefficient

In this section, based on a BVRSS of size n = mk2 from a bivariate
normal distribution with correlation coefficient ρ, we would like to test

H0 : ρ = 0 versus H0 : ρ ̸= 0 (1)

Suppose that (X1, Y1), (X2, Y2), · · · , (Xn, Yn) is a Bivariate Simple Ran-
dom Sample (BVSRS) of size n from a population with E(Xi) = µx,
E(Yi) = µy, V (Xi) = σ2

x, V (Yi) = σ2
y and Corr(Xi, Yi) = ρ, i = 1, · · ·n.

Assume that µx, µy, σ
2
x, σ

2
y and ρ are unknown. When the sample are

drowned from BVN distribution N2(µx, µy, σ
2
x, σ

2
y , ρ), it could be shown

that the UMPU size α test for testing (1) is given by (Shao, 1999)

φ(rBVSRS) = φ1(r) =

 1
|r|

√
n− 2√

1− r2
> t1−α

2
(n− 2)

0 o.w
(2)

where

rBVSRS = r =

n∑
i=1

(Xi −X)(Yi − Y )

{(
n∑

i=1

(Xi −X)2

)(
n∑

i=1

(Yi − Y )2

)} 1
2

(3)

is an estimator of ρ and t1−α
2
(n − 2) is the upper

α

2
percentile of the t

distribution with n− 2 degrees of freedom.
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Now, to test the hypothesis (1) based on BVRSS, we first use BVRSS
of size k2 of Al-Saleh and Zheng (2002) which is introduced in Sec-
tion 1. Suppose (X,Y ) is a random vector which has BVN distribution
N2(µx, µy, σ

2
x, σ

2
y , ρ). A random sample of size k4 is chosen from this pop-

ulation and is randomly allocated into k2 square pools each have size
k2. It is assumed that the elements of each pool are randomly divided
into k sets of size k. Denote the values of the two characteristics of the
elements in the kth pool by {(Xh

ij , Y
h
ij ), i = 1, · · · , k, j = 1, · · · , k, h =

1, 2, · · · , k2}, in which Xh
ij is the jth element of the ith row in the hth

pool for the first characteristic and Y h
ij is defined in the same manner

for the second characteristic. Suppose that Xh
i(j) is the jth minimum

of the elements in the ith row in the hth pool, where i = 1, 2, · · · , k,
j = 1, 2, · · · , k and h = (j − 1)k+1, · · · , jk, and Y h

i[j] is the correspond-

ing value of Y . Finally, suppose that Y h
(i)[j] is the ith minimum of the

elements Y h
i[j], i = 1, 2, · · · , k and Xh

[i](j) is the corresponding value of

X. Thus the BVRSS sample consists of k2 pairs (Xh
[i](j), Y

h
(i)[j]) where

i = 1, 2, · · · , k, j = 1, 2, · · · , k and h = (j − 1)k + 1, · · · , jk, which are
independent but not identically distributed. In the present paper, we
assume that the judgment ranking is perfect; therefore, the ith judg-
ment order statistic is the same as the ith order statistic. Note that
the small brackets on subscripts are used to show that the ordering is
perfect while the square brackets are used to indicate that the order-
ing is with respect to the perceived ranks induced by the other variable
(concomitant variable). Obviously, the index h could be dropped.

Suppose that (X[i](j), Y(i)[j]), i = 1, 2, · · · , k, j = 1, 2, · · · , k is a

BVRSS of size k2 from BVN distribution. Similar to (3), Al-Saleh and
Samawi (2005) proposed the following estimator of ρ based on BVRSS

rBVRSS =

k∑
i=1

k∑
j=1

(X[i](j) −XBVRSS)(Y(i)[j] − Y BVRSS)


 k∑

i=1

k∑
j=1

(X[i](j) −XBVRSS)
2

 k∑
i=1

k∑
j=1

(Y(i)[j] − Y BVRSS)
2


1
2

(4)

where

XBVRSS = µ̂xBVRSS =
1

k2

k∑
i=1

k∑
j=1

X[i](j) ,

Y BVRSS = µ̂yBVRSS =
1

k2

k∑
i=1

k∑
j=1

Y(i)[j]
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Remark 2.1. There exist other estimators of ρ in the literature.
Among them Stokes (1980) and Zheng and Modarres (2006) proposed
two estimators of ρ based on RSS. In Appendix we compare these es-
timators with rBVSRS in (3) and rBVRSS in (4) by a simulation study.
The results show that rBVRSS in (4) is more efficient than the mentioned
estimators of ρ. Note that the estimators of ρ introduced by Zheng and
Modarres (2006) and Stokes (1980) are obtained by ranking a chosen
characteristic and the other characteristic has the same ranking order
as the ranked characteristic. These estimators are designed (by ignoring
part of likelihood function) to be more robust than the BVSRS esti-
mator. But the estimator rBVRSS of Al-Saleh and Samawi (2005) is
obtained by ranking the units based on two characteristics, and by a
simulation study, we show that rBVRSS is more efficient than the other
estimators. Therefore, we use rBVRSS for testing the hypothesis (1).

Remark 2.2. As noted in Section 1, the estimator (4) is obtained
from one cycle (m = 1) of BVRSS. If we repeat this cycle m times, we
will achieve a BVRSS of size n = mk2. We use the term ”unrepeated”
and ”repeated” sampling for the cases m = 1 and m > 1, respectively.
In the case of repeated BVRSS, the estimator (4) changes to

rBVRSS,m =

m∑
s=1

k∑
i=1

k∑
j=1

(X[i](j)s −XBVRSS,m)(Y(i)[j]s − Y BVRSS,m)

{[
m∑

s=1

k∑
i=1

k∑
j=1

(X[i](j)s −XBVRSS,m)2
][

m∑
s=1

k∑
i=1

k∑
j=1

(Y(i)[j]s − Y BVRSS,m)2
]} 1

2

(5)

where (X[i](j)s, Y(i)[j]s), i = 1, 2, · · · , k, j = 1, 2, · · · , k is a BVRSS of
size k2 in the sth cycle, s = 1, 2, · · · ,m, and

XBVRSS,m =
1

mk2

m∑
s=1

k∑
i=1

k∑
j=1

X[i](j)s ,

Y BVRSS,m =
1

mk2

m∑
s=1

k∑
i=1

k∑
j=1

Y(i)[j]s .

For testing (1) based on BVRSS, we propose the following test function

φ2(rBVRSS,m) =


1

|rBVRSS,m|
√
n− 2√

1− r2BVRSS,m

> l1(n− α)

0 o.w

, (6)



Test of the Correlation Coefficient in Bivariate Normal Populations 7

where n = mk2 and l1(n, α) is determined by solving the equation
Eρ=0[φ2(rBVRSS,m)] = α. The power function of φ2(rBVRSS,m) is given
by

Eρ[φ2(rBVRSS,m)] = P

 |rBVRSS,m|
√
n− 2√

1− r2BVRSS,m

> l1(n− α)

 .

It could be observed from Figure 1 that this function is a decreasing (an
increasing) function of ρ for ρ ∈ [−1, 0] (ρ ∈ [0, 1]).

Since the value of l1(n, α) could not be determined analytically, we
compute the values of l1(n, α) for n = 4, 8, 9, 12, 16, 18, 20, 24, 25, 28, 32
and α = 0.01, 0.05, 0.1 by a simulation study. For each n, we draw a
BVRSS of size n from N2(−1, 1, 1, 1, ρ = 0), N2(−1, 1, 2, 4, ρ = 0) and

N2(1, 2, 1, 1, ρ = 0) distributions and compute tBVRSS =
|rBVRSS,m|

√
n− 2√

1− r2BVRSS,m

.

Then we repeat the sampling procedure 5000 times to determine l1(n, α)
from the 1 − α percentile of the tBVRSS values. The process is then re-
peated 2500 times and the average of those l1(n, α)’s is the desired values
of l1(n, α).

The simulated values of l1(n, α) in test function (6) are computed
for the mentioned BVN distributions with ρ = 0, and are denoted by
l1i(n, α), i = 1, 2, 3, respectively. These values are given in Table 1. The
computation (and other computations in preceding sections) is done
using R 2.15.3 software. Also, the values of t1−α

2
(n − 2) are given in

Table 1. Note that, for choosing a BVRSS of size n = 8, 12, 18, 20, 28, 32
we use repeated BVRSS method explained in Remark 2.2. For instance,
when n = 32, we choose a sample of size k2 = 22 and repeat the sampling
m = 8 cycles, i.e., n = mk2 = 8(22) = 32.
From Table 1, we observe that the values of l1i(n, α), i = 1, 2, 3 are close
to each other.

In order to compare the power of the test function (6) with power of
(2) with n = mk2, the simulation study is carried out based on the
sample from BVN distribution. Let β∗

1(ρ) and β∗
2(ρ) be the power

functions of φ1(rBVSRS) and φ2(rBVRSS,m), respectively. We compute
β∗
1(ρ) and β∗

2(ρ) for ρ = −1 to ρ = 1 at an increment 0.05 by a sim-
ulation study. For each n and ρ, we draw a BVRSS of size n from
N2(−1, 1, 1, 1, ρ) and compute tBVRSS. Then we repeat the sampling
procedure 5000 times and determine the value of power function by the
percent of tBVRSS’s those that are greater than l1(n, α). The process
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Table 1: Critical values of the size-α BVSRS and BVRSS-based tests

for a correlation coefficient of bivariate normal N2(−1, 1, 1, 1, ρ = 0),

N2(−1, 1, 2, 4, ρ = 0) and N2(1, 2, 1, 1, ρ = 0)

α = 0.01

m k n t1−α
2
(n− 2) l11(n, α) l12(n, α) l13(n, α)

1 2 4 9.9248 7.6444 8.1152 8.4171
2 2 8 3.7074 3.0395 3.3464 3.5088
1 3 9 3.4995 2.7004 3.0598 3.1433
3 2 12 3.1693 2.6895 3.0382 3.0251
4 2 16 2.9768 2.0073 2.3974 2.4280
2 3 18 2.9208 2.3270 2.5001 2.5874
5 2 20 2.8784 2.5420 2.6702 2.7662
6 2 24 2.8188 2.4558 2.6749 2.6430
1 5 25 2.8073 1.7735 1.9997 2.1086
7 2 28 2.7787 2.4604 2.5321 2.5974
8 2 32 2.7500 2.4920 2.5488 2.5905

α = 0.05

m k n t1−α
2
(n− 2) l11(n, α) l12(n, α) l13(n, α)

1 2 4 4.3026 3.8588 3.9160 3.9879
2 2 8 2.4469 2.1920 2.2074 2.2930
1 3 9 2.3646 1.8712 1.9746 2.1760
3 2 12 2.2281 2.0469 2.0894 2.1483
4 2 16 2.1448 1.6327 1.7933 1.8675
2 3 18 2.1199 1.7800 1.8001 1.9930
5 2 20 2.1009 1.9406 1.9611 1.9877
6 2 24 2.0739 1.8955 1.9259 1.9580
1 5 25 2.0687 1.4459 1.6745 1.8944
7 2 28 2.0555 1.8499 1.8992 1.9659
8 2 32 2.0423 1.8456 1.8916 1.9157

α = 0.1

m k n t1−α
2
(n− 2) l11(n, α) l12(n, α) l13(n, α)

1 2 4 2.9200 2.5418 2.6327 2.7463
2 2 8 1.9432 1.7673 1.7764 1.8516
1 3 9 1.8946 1.6044 1.6407 1.7010
3 2 12 1.8125 1.6072 1.6719 1.7494
4 2 16 1.7613 1.5035 1.6139 1.6697
2 3 18 1.7459 1.4759 1.5064 1.6109
5 2 20 1.7341 1.5648 1.6034 1.6612
6 2 24 1.7171 1.5581 1.5874 1.6107
1 5 25 1.7139 1.3163 1.3940 1.5077
7 2 28 1.7056 1.5485 1.5844 1.6348
8 2 32 1.6973 1.5466 1.5559 1.5903
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FIGURE 1. Plots of β∗
1(ρ) and β∗

2(ρ) for α = 0.1 and n = 9, 20, 32

is then repeated 2500 times and the average of these percents is the
desired value of the power function. The simulation is carried out for
n = 4, 8, 9, 12, 16, 18, 20, 24, 25, 28, 32 and α = 0.01, 0.05, 0.1. In Figure
1, the plot of simulated β∗

1(ρ) and β∗
2(ρ) are given for n = 9, 20, 32 and

α = 0.1. All other cases have similar figures and hence are omitted.
From these plots we observe that φ2(rBVRSS,m) is more powerful than
the usual UMPU test φ1(rBVSRS).

In order to have a more quantitative comparison, we use the Max-
imum Rate of Improvement (MRI) criterion. For doing this let for a
given n, ρ∗1 = ρ∗(n) be any value that maximize β∗

2(ρ) − β∗
1(ρ) with

respect to ρ. Then the MRI is defined by

MRI =
β∗
2(ρ

∗
1)− β∗

1(ρ
∗
1)

β∗
1(ρ

∗
1)

× 100.

The comparison between φ2(rBVRSS,m) and φ1(rBVSRS) in terms of MRI,
for n = 4, 8, 9, 12, 16, 18, 20, 24, 25, 28, 32 is presented in Table 2. Note
that all values of MRI are above 7.63%, which indicate that the im-
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provement of φ2(rBVRSS,m) over φ1(rBVSRS) could be substantial, hence
practically significant.

Table 2: The comparison between β∗
1(ρ

∗
1) and β∗

2(ρ
∗
1) and the maximum

rate of improvement (α = 0.1)

m k n ρ∗1 β∗
2(ρ

∗
1) β∗

1(ρ
∗
1) MRI

1 2 4 0.80 0.5148 0.3747 37.28
2 2 8 -0.35 0.2921 0.2714 7.63
3 2 12 0.60 0.7110 0.6218 14.35
4 2 16 0.65 0.7383 0.6819 8.27
5 2 20 -0.40 0.5460 0.4438 23.03
6 2 24 0.30 0.6009 0.5276 13.89
7 2 28 0.45 0.8551 0.7811 9.47
8 2 32 0.25 0.6840 0.5946 15.04

For the one sided test H0 : ρ ≤ 0 versus H0 : ρ > 0, we use the test

statistic
|rBVRSS,m|

√
n− 2√

1− r2BVRSS,m

and derive the similar results. The details

are omitted. For a special case, see Section 3 below.

3 Comparing the Tests Based on Repeated and
Unrepeated Samples

The success of BVRSS procedure depends on the ability of ranking the
k units correctly. Therefore, the size k in most practical applications is
selected no larger than five or six. As noted in Section 1, in order to
increase effective sample sizes, we choose BVRSS of size k2 with small
value of k, and then repeat samplingm cycles to achieve n = mk2 sample
(see Remark 2.2). Now if we construct the tests based on repeated and
unrepeated BVRSS, which of them are more powerful? To answer this
question, let the sample size be n = 16. Then we could choose the
sample in the following ways:

(I) Choose BVRSS of size k2 = 22 and repeat it m = 4 cycles, i.e.,
n = mk2 = 4(22) = 16. (repeated BVRSS)
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(II) Choose BVRSS of size n = k2 = 42 = 16. (unrepeated BVRSS,
m = 1).

For comparing these two cases, we consider the following hypothesis
testing

H0 : ρ ≤ 0 versus H1 : ρ > 0. (7)

Based on BVSRS (X1, Y1), (X2, Y2), · · · , (Xn, Yn) from N2(µx, µy, σ
2
x, σ

2
y ,

ρ), a UMPU size α-test for testing (7) is given by (Shao, 1999)

φ3(rBVSRS,m) = φ3(r) =

 1
r
√
n− 2√
1− r

> t1−α(n− 2)

0 o.w
, (8)

where r is given in (3) with n = mk2. Similar to the previous section,
we propose the following test based on BVRSS from a BVN distribution
for testing (7),

φ4(rBVRSS,m) =


1

rBVRSS,m

√
n− 2√

1− r2BVRSS,m

> d1(n− α)

0 o.w

, (9)

where rBVRSS,m is given in (5) and d1(n, α) is determined by solving the
equation

Eρ=0[φ4(rBVRSS,m)] = α.

We construct a simulation study by choosing BVRSS in the above two
cases and compute d1(n, α) in (9) for each cases. Table 3 shows the
values of d1(n, α) for the cases I and II.

Table 3: Critical values of the size-α repeated and unrepeated BVRSS-
based test for a correlation coefficient of bivariate normal distribution

α = 0.01 α = 0.05 α = 0.1
n repeated unrepeated repeated unrepeated repeated unrepeated
16 1.8817 1.4936 1.5035 1.1875 1.1914 1.0051

Moreover, we plot the power functions of BVRSS tests, i.e., β∗
4(ρ) =

Pρ

rBVRSS,m

√
n− 2√

1− r2BVRSS,m

> d1(n, α)

 in the cases I and II and the UMPU
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FIGURE 2. Plots of β∗
3(ρ), β

∗
4(ρ) for repeated and unrepeated sampling

with α = 0.05 and n = 16.

test φ3(rBVSRS) in Figure 2. The plots ”bvrss-rep”, ”bvrss-unrep” and
”bvsrs” show the plot of power functions of φ4(rBVRSS,m) in the cases
I and II and φ3(rBVSRS), respectively. From Figure 2 we observe that
the power function of φ4(rBVRSS,m) in case II is higher than the power
function of φ4(rBVRSS,m) in case I, and both of them are higher than
the power function of φ3(rBVSRS).

Although in the case of unrepeated sample, the test is more powerful,
but with regard to error in ranking for large sample size, it is recom-
mended to use the test with repeated sampling for large sample size. In
this case the test is more powerful than UMPU test and only caused a
reduction of power with respect to unrepeated sampling.

4 Simulation-Free Formula for Cutoff Points

In Sections 3 and 4, the values of the cutoff points of the proposed
tests for testing correlation coefficient are evaluated using a simulation
method for n = 4, 8, 9, 12, 16, 18, 20, 24, 25, 28, 32. When the sample size
gets larger (for example, n = 20, 24, 25, 28, 32, · · · ), using simulation
method for obtaining one value of the cutoff point needs a considerable
amount of time. Regarding this difficulty, we use the asymptotic distri-
bution of rBVRSS to find a formula for computing the cutoff points for
our proposed BVRSS-based tests. We do this for repeated BVRSS-based
tests.
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Suppose that (Xijs, Yijs), i = 1, 2, · · · , k, j = 1, 2, · · · , k, s = 1, 2, · · · ,
m is a BVSRS of size n = mk2 from the joint probability density func-
tion (p.d.f.) fX,Y (x, y). Let µx, µy, σ

2
x, σ

2
y and ρ be the means and

variances of X and Y , and the correlation coefficient between X and
Y . We assume that µx, µy, σ

2
x, and σ2

y are known and ρ is unknown
and we attempt to test the hypothesis (1). Without loss of generality
we assume that µx = µy = 0 and σx = σy = 1. This implies that
ρ = cov(X,Y ) = E(XY ). An unbiased estimator of ρ based on this
sample is

ρ̂BVSRS,m =

m∑
s=1

k∑
i=1

k∑
j=1

(XijsYijs)

mk2
. (10)

Now suppose that (X[i](j)s, Y(i)[j]s), i = 1, 2, · · · , k, j = 1, 2, · · · , k, s =
1, 2, · · · ,m is a repeated BVRSS of size n = mk2 from the joint p.d.f.
fX,Y (x, y) with µx = µy = 0 and σx = σy = 1. Similar to (10), Al-Saleh
and Samawi (2005) proposed the following unbiased estimator of ρ based
on BVRSS

ρ̂BVRSS,m =

m∑
s=1

k∑
i=1

k∑
j=1

(X[i](j)sY(i)[j]s)

mk2
=

1

m

m∑
s=1

ρ̂BVRSS,s (11)

where ρ̂BVRSS,s =

k∑
i=1

k∑
j=1

(X[i](j)sY(i)[j]s)

k2
, s = 1, · · · ,m. Note that

ρ̂BVRSS,1, ρ̂BVRSS,2, · · · , ρ̂BVRSS,m are independent and identically dis-
tributed, with common mean ρ and variance var(ρ̂BVRSS) which is given
by formula (10) of Al-Saleh and Samawi (2005). Also Al-Saleh and
Samawi (2005) demonstrated that for a fixed set size k,

√
m(ρ̂BVRSS,m − ρ)

in dist−→ N(0, var(ρ̂BVRSS)).

Therefore,

√
m(ρ̂BVRSS,m − ρ)√

var(ρ̂BVRSS)

in dist−→ N(0, 1). (12)

For testing (1) based on repeated BVRSS, we propose the following test
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function

φ5(ρ̂BVRSS,m) =


1

|ρ̂BVRSS,m|
√
mk2 − 2√

1− ρ̂2BVRSS,m

> c(n− α)

0 o.w

, (13)

where c(n, α) is determined by solving the equation Eρ=0[φ5(ρ̂BVRSS,m)] =
α. Since the value of c(n, α) cannot be determined analytically, we
compute the values of c(n, α) for n = 8, 9, 12, 16, 18, 20, 24, 28, 32 and
α = 0.01, 0.05, 0.1 by a simulation study for N2(0, 0, 1, 1, ρ = 0), similar
to Section 3. These values are given in Table 4.

Let RV (mk2) denote the ratio of the variance of ρ̂BVSRS,m and the
variance of ρ̂BVRSS,m. Similar to the formula (13) of Al-Saleh and
Samawi (2005), for ρ = 0 we have

RV (mk2) =
var(ρ̂BVSRS,m)

var(ρ̂BVRSS,m)

=
1

1− 1

m

m∑
s=1

(1

k

k∑
i=1

µ2
(i)s

)1

k

k∑
j=1

µ2
(j)s


where µ(i)s is the mean of ith order statistic of a sample of size k from a
standard normal population in the sth repetition. By (12), we have the
following approximation

α ≈ Pρ=0

( √
m|ρ̂BVRSS,m|√
var(ρ̂BVRSS,m)

> zα
2

)

= Pρ=0

(
|ρ̂BVRSS,m| > zα

2

√
var(ρ̂BVSRS,m)

mRV (mk2)

)
,

where zα/2 is the upper α/2 percentile of the standard normal distribu-

tion. If we use the approximation var(ρ̂BVSRS,m) = 1
mk2

, then

α ≈ Pρ=0

(
|ρ̂BVRSS,m| > zα

2

√
1

m2k2RV (mk2)

)
. (14)

Note that c(n, α) of the test function φ5(ρ̂BVRSS,m) for testing (1) is
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defined by

α = Pρ=0

 |ρ̂BVRSS,m|
√
mk2 − 2√

1− ρ̂2BVRSS,m

> c(n, α)



= Pρ=0

|ρ̂BVRSS,m| >
√√√√√ 1

mk2 − 2

c2(n, α)
+ 1

 . (15)

Equating (14) and (15), we note that c(n, α) equals approximately to
c̃(n, α), where

c̃(n, α) =

√√√√√√ mk2 − 2

m2k2RV (mk2)

z2α
2

− 1

. (16)

Note that using table of the relevant µ(i) (provided in, for example,
Harter, 1961), we could calculate the quantities

1

m

m∑
s=1

(1

k

k∑
i=1

µ2
(i)s

)1

k

k∑
j=1

µ2
(j)s

 .

Hence c̃(n, α) could be computed for each n. Thus, for a large-sample
size a repeated BVRSS-based test is given by

φ6(ρ̂BVRSS,m) =


1

ρ̂BVRSS,m

√
mk2 − 2√

1− ρ̂2BVRSS,m

> c̃(n, α)

0 o.w

. (17)

In Table 4, the values of c̃(n, α) and c(n, α) for n = 8, 9, 12, 16, 18, 20, 24,
28, 32 and α = 0.01, 0.05, 0.1 is provided, respectively. From this table
we observe that the values of c̃(n, α) and c(n, α) for n ≥ 20 are markedly
close to each other.

5 Approximation of p-value by Bootstrap Method

In this section, we approximate the p-value of the test (7) using the
bootstrap method that proposed by Modarres et al. (2006) based on
a BVRSS and BVSRS of size n = k2 from a BVN distribution with
correlation coefficient ρ. The procedure is as follows.
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Table 4: The values of c̃(n, α) and c(n, α) for n = 8, 9, 12, 16, 18, 20,

24, 28, 32 and α = 0.01, 0.05, 0.1

α = 0.01 α = 0.05 α = 0.1

n m k c(n, α) c̃(n, α) c(n, α) c̃(n, α) c(n, α) c̃(n, α)

8 2 2 2.5432 1.8879 1.5139 1.2849 1.1250 1.0370
9 1 3 4.9170 3.0407 2.4901 1.8548 2.0074 1.4546
12 3 2 1.6142 1.4089 1.1845 1.0299 0.8921 0.8512
16 4 2 1.2133 1.1993 0.9211 0.8935 0.7702 0.7436
18 2 3 1.6402 1.6291 1.1758 1.1985 1.0391 0.9928
20 5 2 1.0943 1.0683 0.8139 0.8023 0.6840 0.6699
24 6 2 0.9811 0.9748 0.7410 0.7552 0.6394 0.6148
28 7 2 0.8917 0.9032 0.6945 0.6828 0.5823 0.5716
32 8 2 0.8198 0.8458 0.6514 0.6404 0.5239 0.5364
36 4 3 1.1201 1.1198 0.8399 0.8456 0.7188 0.7074
48 3 4 1.2174 1.2111 0.9167 0.9154 0.7624 0.7661
75 3 5 1.1433 1.1386 0.8613 0.8631 0.7208 0.7133
100 4 5 0.9851 0.9856 0.7450 0.7484 0.6249 0.6275

5.1 Approximation of p-value Based on BVSRS

Suppose that (X,Y ) denote a population with distribution function
FX,Y , E(X) = µx, E(Y ) = µy, V (X) = σ2

x, V (Y ) = σ2
y and Corr(X,Y )

= ρ. Assume that µx, µy, σ
2
x, σ

2
y and ρ are unknown. For testing (7)

based on bootstrap method, do the following steps:

1. Randomly draw k2 elements (Xij , Yij) ∼ FX,Y and assign to each

element a probability of
1

k2
.

2. Select a sample of size n = k2 from sample of step 1 based on
BVSRS method.

3. Compute tBVSRS =
rBVSRS

√
n− 2√

1− r2BVSRS

and call it t∗BVSRS

4. Repeat step 2, N times and compute tBVSRS for each repetition.
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5. Compute bootstrap p-value by the following formula

bootstrap p− value = P (t > t∗)

=
number of samples which satisfy t > t∗

N

6. Repeat the above steps B = 2500 times and approximate the p-
values by the mean of the bootstrap p-values.

5.2 Approximation of p-value Based on BVRSS

Suppose that (X,Y ) denote a population with distribution function
FX,Y , E(X) = µx, E(Y ) = µy, V (X) = σ2

x, V (Y ) = σ2
y and Corr(X,Y )

= ρ. Assume that µx, µy, σ
2
x, σ

2
y and ρ are unknown. In order to test

(7) based on bootstrap method, do the following steps:

1. Randomly draw k4 elements (Xij , Yij) ∼ FX,Y and assign to each

element a probability of
1

k4
.

2. Select a sample of size n = k4 with replacement from sample of
step 1, and perform a BVRSS of size k2 from this sample.

3. Compute tBVRSS =
rBVRSS

√
n− 2√

1− r2BVRSS

and call it t∗BVRSS

4. Repeat step 2, N times and compute tBVRSS for each repetition.

5. Compute bootstrap p-value by the following formula

bootstrap p− value = P (t > t∗)

=
number of samples which satisfy t > t∗

N

6. Repeat the above steps B = 2500 times and approximate the p-
values by the mean of the bootstrap p-values.

For computing the approximated p-value, we generate a sample from
N2(0, 1, 1.5, 4, ρ = 0). In Table 5, values of approximate p-value have
been computed according to the above procedures for n = 4, 8, 9, 12, 16,
18, 20, 24, 25, 28, 32. Considering this table we could observe that for all
n, p-value of BVRSS method is less than p-value of BVSRS method.
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Table 5: p-values of the BVSRS and BVRSS-based tests for a correlation

coefficient of bivariate normal distribution with bootstrap method

n m k BVRSS BVSRS

1 2 4 0.1591 0.3013
2 2 8 0.2015 0.3698
1 3 9 0.2025 0.3253
3 2 12 0.1511 0.2674
4 2 16 0.1380 0.3137
2 3 18 0.1727 0.3106
5 2 20 0.1923 0.3141
6 2 24 0.1799 0.2467
1 5 25 0.1819 0.2834
7 2 28 0.1484 0.2736
8 2 32 0.1614 0.2960

6 Conclusion

The use of BVRSS is limited to situations, in which ranking of a small
number of units by judgment could be carried out using negligible rank-
ing errors. When the BVRSS is applicable, then the proposed tests
based on BVRSS to test correlation coefficient of BVN distribution, is
more powerful than UMPU test. In addition, if the ranking of samples is
carried out exactly, then the BVRSS tests based on unrepeated samples
would be more powerful than BVRSS tests based on repeated samples
for the BVN distribution. However, since in practice, the error in rank-
ing of samples could occur, it is recommended to use BVRSS tests-based
on repeated samples which are more powerful than usual UMPU tests
based on BVSRS.

Although we use BVN distribution to compare the power of the
proposed test functions to the corresponding UMPU tests, a similar test
functions could be constructed based on UMPU tests and BVRSS for
any bivariate distributions.
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Appendix

In this appendix we compare the performance of the RSS estimator of ρ
given by Al-Saleh and Samawi (2005) to three other estimators of ρ. For
the sake of simplicity, we consider the case of known means and variances
and let µx = µy = 0 and σx = σy = 1. So, we compare the performance
of the ρ̂BVRSS given by (11) to the following three estimators of ρ. The
first estimator of ρ is ρ̂SRS = rBVSRS given in (10) with n = mk2. The
second estimator of ρ is the MLE based on RSS given by Stokes (1980).
If X(i)j is the ith smallest unit in the ith group (i = 1, 2, · · · , k2) of
simple random samples, and in the jth cycle (j = 1, 2, · · · ,m); and Y[i]j
is the value of Y ’s concomitant to X(i)j , then the ρ̂MLE can be found by
solving the cubic equation

h(ρ) = mnρ(1−ρ2)+(1+ρ2)
m∑
j=1

k2∑
i=1

X(i)jY[i]j−ρ

 m∑
j=1

k2∑
i=1

X2
(i)j

m∑
j=1

k2∑
i=1

Y 2
[i]j

 = 0

The third estimator was proposed by Zheng and Modarres (2006) and
defined by

ρ̂RSS =
1

mk2

m∑
j=1

k2∑
i=1

X(i)jY[i]j .

We generate BVRSS and BVSRS from N2(0, 0, 1, 1, ρ) with ρ = 0.0, 0.1,
0.2, 0.3, 0.5, 0.7 and j = 1, 2, · · · , 8, m = 1, 2, and repeat the procedure
1000 times. In our simulation, all rankings are assumed to be perfect.
The simulation results are reported in Table 6. In this table, the values
E1, E2 and E3 are relative efficiencies (RE) of ρ̂BVRSS with respect
to ρ̂RSS, ρ̂MLE and rBVSRS, respectively. The RE is the ratio of the
respective MSE’s. RE > 1 indicates that the ρ̂BVRSS is more efficient
than the alternative estimators. From Table 6, we see that ρ̂BVRSS is
more efficient than ρ̂MLE and rBVSRS for all ρ and more efficient than
ρ̂RSS for almost all ρ.
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Table 6: Relative efficiency of ρ̂BVRSS w.r.t ρ̂RSS(E1), ρ̂MLE(E2) and

rBVSRS(E3)

N(0, 0, 1, 1, 0) N(0, 0, 1, 1, 0.1)

m k n E1 E2 E3 E1 E2 E3

1 2 4 1.0697 1.0992 1.3571 1.1357 1.1257 1.4579
2 2 8 1.1454 1.1230 1.4930 1.0775 1.1143 1.4002
1 3 9 1.2559 1.1008 1.7451 1.2139 1.1243 1.7591
3 2 12 1.0041 1.0976 1.3557 1.2024 1.1084 1.3947
4 2 16 1.0014 1.1049 1.1695 1.1097 1.1095 1.3710
2 3 18 1.0010 1.1135 1.0285 1.0944 1.1017 1.3659
5 2 20 1.0711 1.1066 1.2209 1.0749 1.0976 1.3622
6 2 24 1.2167 1.0999 1.5496 1.0389 1.0762 1.2508
7 2 28 1.0325 1.0798 1.1609 1.1185 1.0537 1.2137
8 2 32 1.0491 1.0732 1.2032 1.0954 1.0071 1.4088

N(0, 0, 1, 1, 0.2) N(0, 0, 1, 1, 0.3)

m k n E1 E2 E3 E1 E2 E3

1 2 4 1.1176 1.1185 1.4837 1.1279 1.1344 1.5231
2 2 8 1.0284 1.1253 1.4826 1.1341 1.1296 1.4259
1 3 9 1.3428 1.1139 1.7303 1.1432 1.1188 1.6872
3 2 12 1.0764 1.1008 1.4987 1.2014 1.1150 1.3186
4 2 16 1.0081 1.1010 1.4138 1.1007 1.1165 1.2905
2 3 18 1.0037 1.0894 1.0682 1.0576 1.1024 1.3334
5 2 20 1.0179 1.0953 1.4554 1.0457 1.1074 1.3962
6 2 24 1.0773 1.0986 1.2666 1.1290 1.1160 1.2822
7 2 28 1.0777 1.0840 1.2687 1.1448 1.0965 1.2129
8 2 32 1.1334 1.0770 1.2174 1.0447 1.0873 1.3436

N(0, 0, 1, 1, 0.5) N(0, 0, 1, 1, 0.7)

m k n E1 E2 E3 E1 E2 E3

1 2 4 1.0808 1.1223 1.6642 1.1266 1.1104 1.9143
2 2 8 0.9333 1.1375 1.3527 0.9574 1.0934 1.3870
1 3 9 1.2811 1.1146 1.8897 1.0049 1.0962 1.2462
3 2 12 0.9858 1.1080 1.3432 1.0003 1.0705 1.0934
4 2 16 0.9989 1.1152 1.2906 0.9875 1.0846 1.1108
2 3 18 0.9718 1.1001 1.1407 0.9703 1.0612 1.1046
5 2 20 1.0413 1.0948 1.2443 0.9822 1.0518 1.1374
6 2 24 0.9903 1.0856 1.1565 0.9809 1.0594 1.0738
7 2 28 0.9674 1.0679 1.2050 0.9653 1.0636 1.0465
8 2 32 0.9936 1.0700 1.1863 0.9641 1.0580 1.0158




