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1 Introduction

During the 1960s, real and complex zonal polynomials were studied ex-
haustively by [28, 29], [6] and [31], among many others. Excellent ref-
erence books include those by [37], [41], [19] and [35], which summarise
many of the results published to date.

Hypergeometric functions with a matrix argument were first studied
by [27] and defined in terms of zonal polynomials by [6]. Hypergeo-
metric functions of one or two matrix arguments have been applied in
many areas of science and technology, including multivariate statistical
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analysis ([37] and [35]), random matrix theory ([36] and [20]), wireless
communications ([38, 39], shape theory [21] and [3]).

Later [7], [8], [4] and [5], introduced a class of homogeneous invari-
ant polynomials with two or more matrix arguments, which generalise
the zonal polynomials; many of their basic and integral properties are
studied in real cases.

In the context of multivariate statistics, zonal polynomials were ini-
tially used to express many noncentral matrix variate distributions.
However, there were other distributional problems that could not be
solved using zonal polynomials. In these latter cases, invariant poly-
nomials were used to obtain explicit expressions of doubly noncentral
matrix variate distributions, matrix variate distribution functions and
the joint density of eigenvalues of matrix variate beta type I and II
distributions, etc. see [29] and [8].

During the 1980s and 1990s, zonal polynomials regained prominence
but from a more general point of view, in which it was observed that
zonal polynomial for real and complex cases are particular cases of Jack
polynomials, see [40] and [22], among many others. In terms of Jack
polynomials, it is possible to give a general definition for hypergeomet-
ric functions, see [23], [24], [15], [33] and [2], among many others. The
Jack polynomials and their corresponding hypergeometric functions de-
pend on a parameter α = 2/β that, only for the values β = 1, 2, 4, 8
and hypercomplex cases is interpreted from the matrix space. In this
particular case, the Jack polynomials are termed real (β = 1), complex
(β = 2), quaternion (β = 4), octonion (β = 8) and hypercomplex zonal
(2β) polynomials, zonal spherical functions or spherical functions for
symmetric cones, see [29], [34], [30] and [40], among others. In the rest
of this work we shall adopt the nomenclature zonal spherical functions
to refer to Jack polynomials in the particular cases considered here.

The properties for Jack polynomials and hypergeometric functions
with a matrix argument have been studied by [27], [29], [6], [31] and [37]
in the real case (zonal polynomials); by [29], [41], [19] and [38, 39] in the
complex case (Schur functions); by [34] in the quaternion case and by
[23], [33], [40] and [2] in the general case (real, complex and quaternion
cases), among many others.

A serious obstacle encountered when Jack polynomials, hypergeo-
metric functions and invariant polynomials are to be used is the question
of their calculation. Fortunately, with the excellent algorithm proposed
by [33] and [32], it is now possible to use these techniques in many ap-
plications, see [39] and [3]. Unfortunately, this obstacle remains for the
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general case of invariant polynomials.

The study of the Jack polynomials, hypergeometric functions and
invariant polynomials in the octonion case is at present only of theoret-
ical interest. Furthermore, according to [1], there is still no proof that
octonions are useful for understanding the real world. Still, some other
generalisations in hypercomplex cases are proposed, but as the author
explains, this work only has theoretical interest, for the moment; see
[30].

In this paper, we derive several integral properties of zonal spherical
functions, hypergeometric functions and invariant polynomials for real
normed division algebras, supplementing the work done by [23]. As an
example, some results and their proofs are included. The proofs of the
other results given in this paper are omitted, either because they follow
immediately from the proven results or because these proofs can be de-
rived along the same lines as the ones given for the real or complex cases.
This is done in full awareness that the article might thus appear a mere
compilation of formulae, but our aim is to prevent it from becoming
overly lengthy. Note that we can only conjecture the results for the oc-
tonion case, because many of its related matrix problems are still under
study. However, for example in [20, Section 1.4.5, pp. 22-24] it is proved
that the bi-dimensional density function of the eigenvalue, for a 2 × 2
octonionic matrix with symmetric normal distribution, is obtained from
the general joint density function of the eigenvalues for the symmetric
normal distribution, assuming m = 2 and β = 8. The material in the
present paper is organised as follows: Section 2 provides some notation
and preliminary results about real normed division algebras, Jacobians,
gamma and beta multivariate functions and invariant measures. Several
integral properties of zonal spherical functions are obtained in Section 3.
Many extensions of the integral properties of hypergeometric functions
with one and two arguments are studied in Section 4. For invariant
polynomials with two matrix arguments, in Section 5 we derive diverse
integral properties, such as the inverse Laplace transformation, gamma
and beta integrals, etc. Finally, in Section 6, we show diverse applica-
tions of some results derived previously, such as the distribution function
of a central Wishart distribution for normed division algebras, its joint
eigenvalue density and the distribution function of the largest and small-
est eigenvalues. We emphasise the conditions that must be met by the
parameters that take part in many integral properties in the cases dis-
cussed, because, even in the original references, these conditions were
omitted or established inexactly.
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2 Preliminary

A detailed discussion of real normed division algebras may be found in
[1] and [16]. For convenience, we shall introduce some notation, although
in general we adhere to standard notation forms.

For our purposes: Let F be a field. An algebra F over F is a pair
(F;m), where F is a finite-dimensional vector space over F and multi-
plication m : F × F → A is an F-bilinear map; that is, for all λ ∈ F,
x, y, z ∈ F;

m(x, λy + z) = λm(x; y) +m(x; z)

m(λx+ y; z) = λm(x; z) +m(y; z).

Two algebras (F;m) and (E;n) over F are said to be isomorphic if there
is an invertible map φ : F → E such that for all x, y ∈ F,

φ(m(x, y)) = n(φ(x), φ(y)).

By simplicity, we write m(x; y) = xy for all x, y ∈ F.

Let F be an algebra over F. Then F is said to be

1. alternative if x(xy) = (xx)y and x(yy) = (xy)y for all x, y ∈ F,

2. associative if x(yz) = (xy)z for all x, y, z ∈ F,

3. commutative if xy = yx for all x, y ∈ F, and

4. unital if there is a 1 ∈ F such that x1 = x = 1x for all x ∈ F.

If F is unital, then the identity 1 is uniquely determined.

An algebra F over F is said to be a division algebra if F is nonzero
and xy = 0F ⇒ x = 0F or y = 0F for all x, y ∈ F.

The term “division algebra”, comes from the following proposition,
which shows that, in such an algebra, left and right division can be
unambiguously performed.

Let F be an algebra over F. Then F is a division algebra if, and only
if, F is nonzero and for all a, b ∈ F, with b �= 0F, the equations bx = a
and yb = a have unique solutions x, y ∈ F.

In the sequel we assume F = � and consider classes of division
algebras over � or “real division algebras” for short.

We introduce the algebras of real numbers �, complex numbers C,
quaternions H and octonions O. Then, if F is an alternative real division
algebra, then F is isomorphic to �, C, H or O.
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Let F be a real division algebra with identity 1. Then F is said to be
normed if there is an inner product (·, ·) on F such that

(xy, xy) = (x, x)(y, y) for all x, y ∈ F.

If F is a real normed division algebra, then F is isomorphic to �, C, H or
O.

There are exactly four normed division algebras: real numbers (�),
complex numbers (C), quaternions (H) and octonions (O), see [1]. We
take into account that, �, C, H and O are the only normed division
algebras; furthermore, they are the only alternative division algebras.

Let F be a division algebra over the real numbers. Then F has
dimension either 1, 2, 4 or 8. In other branches of mathematics, the
parameters α = 2/β and t = β/4 are used, see [17] and [30], respectively.

Table 1: Values of β = 2/α and t = β/4 parameters.

β α t Normed divison algebra

1 2 1/4 real (�)
2 1 1/2 complex (C)
4 1/2 1 quaternionic (H)
8 1/4 2 octonion (O)

Finally, observe that
� is a real commutative associative normed division algebras,

C is a commutative associative normed division algebras,
H is an associative normed division algebras,
O is an alternative normed division algebras.

Let Lβ
m,n be the set of all n × m matrices of rank m ≤ n over F

with m distinct positive singular values, where F denotes a real finite-
dimensional normed division algebra. In particular, let GL(m,F) be the
space of all invertible m × m matrices over F. Let Fn×m be the set of
all n×m matrices over F. The dimension of Fn×m over � is βmn.

Let A ∈ Fn×m, then A∗ = A
T

denotes the usual conjugate trans-
pose. The set of matrices H1 ∈ Fn×m such that H∗

1H1 = Im is a man-

ifold denoted Vβ
m,n, termed the Stiefel manifold (H1 are also known as

semi-orthogonal (β = 1), semi-unitary (β = 2), semi-symplectic (β = 4)
and semi-exceptional type (β = 8) matrices, see [13]). The dimension

of Vβ
m,n over � is [βmn −m(m− 1)β/2 −m]. In particular, Vβ

m,m with
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dimension over �, [m(m + 1)β/2 − m], is the maximal compact sub-

group Uβ(m) of Lβ
m,m and consists of all matrices H ∈ Fm×m such

that H∗H = Im. Therefore, Uβ(m) is the real orthogonal group O(m)
(β = 1), the unitary group U(m) (β = 2), the compact symplectic group
Sp(m) (β = 4) or exceptional type matrices Oo(m) (β = 8), for F = �,
C, H or O, respectively. Denote by Sβ

m the real vector space of all
S ∈ Fm×m such that S = S∗. Let Pβ

m be the cone of positive definite
matrices S ∈ Fm×m. Thus, Pβ

m consist of all matrices S = X∗X, with
X ∈ Lβ

m,n; then Pβ
m is an open subset of Sβ

m. Over �, Sβ
m consist of

symmetric matrices; over C, Hermitian matrices; over H, quaternionic
Hermitian matrices (also termed self-dual matrices) and over O, octo-

nionic Hermitian matrices. Generically, the elements of Sβ
m are termed

as Hermitian matrices, irrespective of the nature of F. The dimension
of Sβ

m over � is [m(m− 1)β +2m]/2. Let Dβ
m be the diagonal subgroup

of Lβ
m,m consisting of all D ∈ Fm×m, D = diag(d1, . . . , dm). Let Tβ

L(m)
be the subgroup of all lower triangular matrices T ∈ Fm×m such that
tij = 0 for 1 < i < j ≤ m; and let Tβ

U (m) be the opposed upper trian-

gular subgroup Tβ
U (m) =

(
Tβ
L(m)

)T
. For any matrix X ∈ Fn×m, dX

denotes the matrix of differentials (dxij). Finally, we define the measure

or volume element (dX) when X ∈ Fm×n,Sβ
m, Dβ

m or Vβ
m,n, see [14].

If X ∈ Fn×m then (dX) (the Lebesgue measure in Fn×m) denotes
the exterior product of the βmn functionally independent variables

(dX) =

n∧
i=1

m∧
j=1

β∧
k=1

dx
(k)
ij .

Remark 2.1. Note that for xij ∈ F

dxij =

β∧
k=1

dx
(k)
ij .

In particular for F = �, C, H or O we have

• xij ∈ � then

dxij =
1∧

k=1

dx
(k)
ij = dxij .

• xij = x
(1)
ij + ix

(2)
ij ∈ C, then

dxij = dx
(1)
ij ∧ dx

(2)
ij =

2∧
k=1

dx
(k)
ij .
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• xij = x
(1)
ij + ix

(2)
ij + jx

(3)
ij + kx

(4)
ij ∈ H, then

dxij = dx
(1)
ij ∧ dx

(2)
ij ∧ dx

(3)
ij ∧ dx

(4)
ij =

4∧
k=1

dx
(k)
ij .

• xij = x
(1)
ij +e1x

(2)
ij +e2x

(3)
ij +e3x

(4)
ij +e4x

(5)
ij +e5x

(6)
ij +e6x

(7)
ij +e7x

(8)
ij ∈

O, then

dxij = dx
(1)
ij ∧dx(2)ij ∧dx(3)ij ∧dx(4)ij ∧dx(5)ij ∧dx(6)ij ∧dx(7)ij ∧dx(8)ij =

8∧
k=1

dx
(k)
ij .

If S ∈ Sβ
m (or S ∈ Tβ

U (m)) then (dS) (the Lebesgue measure in Sβ
m

or in Tβ
U (m)) denotes the exterior product of the m(m − 1)β/2 + m

functionally independent variables,

(dS) =
m∧
i=1

dsii

m∧
i<j

β∧
k=1

ds
(k)
ij .

Observe, that for the Lebesgue measure (dS) defined thus, it is required

that S ∈ Pβ
m, that is, S must be a non singular Hermitian matrix (Her-

mitian positive definite matrix). In the real case, when S is a positive
semidefinite matrix, its corresponding measure is studied in [43], [11],
[9] and [10] under different coordinate systems.

If Λ ∈ Dβ
m then (dΛ) (the Lebesgue measure in Dβ

m) denotes the
exterior product of the βm functionally independent variables

(dΛ) =

m∧
i=1

β∧
k=1

dλ
(k)
i .

If H1 ∈ Vβ
m,n then

(H∗
1dH1) =

n∧
i=1

m∧
j=i+1

h∗
jdhi.

where H = (H1|H2) = (h1, . . . ,hm|hm+1, . . . ,hn) ∈ Uβ(n). It can be
proved that this differential form does not depend on the choice of the
matrix H2 and that it is invariant under the transformations

H1 → QH1P, Q ∈ Uβ(n) and P ∈ Uβ(m). (2.1)
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When m = 1; Vβ
1,n defines the unit sphere in Fn. This is, of course, an

(n − 1)β- dimensional surface in Fn. When m = n and denoting H1

by H, (H∗dH) is termed the Haar measure on Uβ(m) and defines an
invariant differential form of a unique measure ν on Uβ(m) given by

ν(M) =

∫
M

(H∗dH).

It is unique in the sense that any other invariant measure on Uβ(m) is a
finite multiple of ν and invariant because it is invariant under left and
right translations, that is

ν(QM) = ν(MQ) = ν(M), ∀Q ∈ Uβ(m).

The surface area or volume of the Stiefel manifold Vβ
m,n is

Vol(Vβ
m,n) =

∫
H1∈Vβ

m,n

(H∗
1dH1) =

2mπmnβ/2

Γβ
m[nβ/2]

, (2.2)

and therefore

(dH1) =
1

Vol
(
Vβ
m,n

)(H∗
1dH1) =

Γβ
m[nβ/2]

2mπmnβ/2
(H∗

1dH1).

is the normalised invariant measure on Vβ
m,n and (dH), i.e. with (m =

n), defines the normalised Haar measure on Uβ(m). In (2.2), Γβ
m[a] de-

notes the multivariate Gamma function for the space Sβ
m, and is defined

by

Γβ
m[a] =

∫
A∈Pβ

m

etr{−A}|A|a−(m−1)β/2−1(dA)

= πm(m−1)β/4
m∏
i=1

Γ[a− (i− 1)β/2]

= πm(m−1)β/4
m∏
i=1

Γ[a− (m− i)β/2], (2.3)

where etr{·} = exp{tr(·)}, | · | denotes the determinant and Re(a) >
(m − 1)β/2, see [23]. This can be obtained as a particular case of the

generalised gamma function of weight κ for the space Sβ
m with κ =
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(k1, k2, . . . , km), k1 ≥ k2 ≥ · · · ≥ km ≥ 0, taking κ = (0, 0, . . . , 0) and
which for Re(a) ≥ (m− 1)β/2 − km is defined by, see [23],

Γβ
m[a, κ] =

∫
A∈Pβ

m

etr{−A}|A|a−(m−1)β/2−1qκ(A)(dA)

= πm(m−1)β/4
m∏
i=1

Γ[a+ ki − (i− 1)β/2]

= πm(m−1)β/4
m∏
i=1

Γ[a+ ki − (m− i)β/2]

= [a]βκΓ
β
m[a], (2.4)

where for A ∈ Sβ
m

qκ(A) = |Am|km
m−1∏
i=1

|Ai|ki−ki+1 (2.5)

with Ap = (ars), r, s = 1, 2, . . . , p, p = 1, 2, . . . ,m is termed the highest
weight vector, see [23].

Remark 2.2. Let P(Sβ
m) denote the algebra of all polynomial functions

on Sβ
m, and Pk(S

β
m) the subspace of homogeneous polynomials of degree

k and let Pκ(Sβ
m) be an irreducible subspace of P(Sβ

m) such that

Pk(S
β
m) =

∑
κ

⊕
Pκ(Sβ

m).

Note that qκ is a homogeneous polynomial of degree k, moreover qκ ∈
Pκ(Sβ

m), see [23].

In (2.4), [a]βκ denotes the generalised Pochhammer symbol of weight
κ, defined as

[a]βκ =
m∏
i=1

(a− (i− 1)β/2)ki

=

πm(m−1)β/4
m∏
i=1

Γ[a+ ki − (i− 1)β/2]

Γβ
m[a]

=
Γβ
m[a, κ]

Γβ
m[a]

,
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where Re(a) > (m− 1)β/2 − km and

(a)i = a(a+ 1) · · · (a+ i− 1),

is the standard Pochhammer symbol.
A variant of the generalised gamma function of weight κ is obtained

from [31] and is defined as

Γβ
m[a,−κ] =

∫
A∈Pβ

m

etr{−A}|A|a−(m−1)β/2−1qκ(A
−1)(dA)

= πm(m−1)β/4
m∏
i=1

Γ[a− ki − (m− i)β/2]

= πm(m−1)β/4
m∏
i=1

Γ[a− ki − (i− 1)β/2]

=
(−1)kΓβ

m[a]

[−a+ (m− 1)β/2 + 1]βκ
, (2.6)

where Re(a) > (m− 1)β/2 + k1.

The two expressions of Γβ
m[a, ], Γβ

m[a, κ] and Γβ
m[a,−κ] as the product

of ordinary gamma functions are obtained using the proofs correspond-
ing to A = TT∗ and A = T∗T with the corresponding Jacobian given
in Proposition 2.2. Alternatively, note that for any function g(y)

q∏
i=1

g(x+ i− 1) =

q∏
i=1

g(x+ q − i), (2.7)

and
q∏

i=1

g(x− i+ 1) =

q∏
i=1

g(x− q + i). (2.8)

Similarly, from [27, p. 480] the multivariate beta function for the

space Sβ
m, can be defined as

Bβ
m[b, a] =

∫
0<S<Im

|S|a−(m−1)β/2−1|Im − S|b−(m−1)β/2−1(dS)

=

∫
R∈Pβ

m

|R|a−(m−1)β/2−1|Im +R|−(a+b)(dR)

=
Γβ
m[a]Γβ

m[b]

Γβ
m[a+ b]

, (2.9)

where R = (I−S)−1 − I, Re(a) > (m− 1)β/2 and Re(b) > (m− 1)β/2.
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Some Jacobians in the quaternionic case are obtained in [34]. We
now cite some Jacobians in terms of the parameter β, based on the
works of [30] and [14]. We also include a parameter count (or number
of functionally independent variables, #fiv), that is, if A is factorised as
A = BC, then the parameter count is written as #fiv in A = [#fiv in
B] + [#fiv in C], see [14].

Proposition 2.1. Let X and Y ∈ Sβ
m be matrices of functionally

independent variables, and let Y = AXA∗ +C, where A ∈ Lβ
m,m and

C ∈ Sβ
m are matrices of constants. Then

(dY) = |A∗A|β(m−1)/2+1(dX). (2.10)

Proposition 2.2. (Cholesky’s decomposition) Let S ∈ Pβ
m and

T ∈ Tβ
U (m) with tii > 0, i = 1, 2, . . . ,m. Then

• parameter count: βm(m− 1)/2 +m and

(dS) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2m
m∏
i=1

t
β(m−i)+1
ii (dT) if S = T∗T;

2m
m∏
i=1

t
β(i−1)+1
ii (dT) if S = TT∗.

(2.11)

Proposition 2.3. (Spectral decomposition) Let S ∈ Pβ
m. Then,

the spectral decomposition can be written as S = WΛW∗, where W ∈
Uβ(m) and Λ = diag(λ1, . . . , λm) ∈ D1

m, with λ1 > · · · > λm > 0. Then

• parameter count: βm(m− 1)/2 +m = [βm(m+ 1)/2 −m− (β −
1)m] + [m] and

(dS) = 2−mπ�
m∏
i<j

(λi − λj)
β(dΛ)(W∗dW), (2.12)

where

	 =

⎧⎪⎪⎨
⎪⎪⎩

0, β = 1;
−m, β = 2;

−2m, β = 4;
−4m, β = 8.
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3 Integral Properties of Zonal Spherical

Functions

In this section we review and derive several integral properties of zonal
spherical functions for normed division algebras. However, let us first
consider the following remarks and definitions in terms of Jack polyno-
mials.

Remark 3.1. Note that Jack polynomials and hypergeometric func-
tions with one or two matrix arguments are valid for β > 0 ([33]), but
in our case β denotes the real dimension of F. Also, we use the pa-
rameter β indeed of α in the definition of the Jack polynomials and
hypergeometric functions, with the equivalence shown in Table 1.

Then:
Let us characterise the Jack symmetric function J

(β)
κ (λ1, . . . , λm) of

parameter β, see [40]. A decreasing sequence of nonnegative integers
κ = (k1, k2, . . .) with only finitely many nonzero terms is said to be a
partition of k =

∑
ki. Let κ and τ = (t1, t2, . . .) be two partitions of

k. We write τ ≤ κ if
∑t

i=1 ti ≤
∑t

i=1 ki for each t. The conjugate of
κ is κ′ = (k′1, k′2, . . .) where k′i = card{j : kj ≥ i}. The length of κ
is l(k) = max{i : ki �= 0} = k′1. If l(κ) ≤ m, it is often written that
κ = (k1, k2, . . . , km).

The monomial symmetric function Mκ(·) indexed by a partition κ
can be regarded as a function of an arbitrary number of variables such
that all but a finite number are equal to 0: if λi = 0 for i > m ≥
l(κ) then Mκ(λ1, . . . , λm) =

∑
λδ1
1 · · · λδm

m , where the sum is over all
distinct permutations {δ1, . . . , δm} of {k1, . . . , km}, and if l(κ) > m then
Mκ(λ1, . . . , λm) = 0. A symmetric function f is a linear combination
of monomial symmetric functions. If f is a symmetric function then
f(λ1, . . . , λm, 0) = f(λ1, . . . , λm). For each m ≥ 1, f(λ1, . . . , λm) is a
symmetric polynomial in m variables.

Then the Jack symmetric function J
(β)
κ (λ1, . . . , λm) with a parame-

ter β, satisfies the following conditions:

J (β)
κ (λ1, . . . , λm) =

∑
τ≤κ

νκ,τ (β)Mτ (λ1, . . . , λm), (3.1)

J (β)
κ (1, . . . , 1) =

(
2

β

)k m∏
i=1

((m− i+ 1)β/2)ki , (3.2)

Dβ
2J

(β)
κ (λ1, . . . , λm) =

m∑
i=1

ki(ki − 1 + β(m− i))J (β)
κ (λ1, . . . , λm) .(3.3)
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where

Dβ
2 =

m∑
i=1

λ2
i

∂2

∂λ2
i

+ β

m∑
i=1

λ2
i

∑
j �=i

1

λi − λj

∂

∂λi
.

Here, the constants νκ,τ (β) do not dependent on λ′
is but on κ and τ .

Note that if m < l(κ) then J
(β)
κ (λ1, . . . , λm) = 0. The conditions include

the case β = 0 and then J
(0)
κ (λ1, . . . , λm) = eκ′

∏m
i=1(m− i+1)ki , where

eκ(λ1, . . . , λm) =
∏l(κ)

i=1 eki(λ1, . . . , λm) are the elementary symmetric
functions indexed by partitions κ, if m ≥ l(κ) then er(λ1, . . . , λm) =∑

i1<i2<···<ir
λi1 · · ·λir , and if m < l(κ) then er(λ1, . . . , λm) = 0, see

[40].
Now, from [33], the Jack functions

J (β)
κ (X) = J (β)

κ (λ1, . . . , λm),

where λ1, . . . , λm are the eigenvalues of the matrix X ∈ Sβ
m, can be

normalised in such a way that∑
κ

Cβ
κ (X) = (tr(X))k, (3.4)

or equivalently, such that

∞∑
k=1

∑
κ

Cβ
κ (X)

k!
= etr{X}, (3.5)

where Cβ
κ (X) denotes the Jack polynomials (for simplicity, we have re-

placed (β) by β as the superindex for the Jack polynomials). These are
related to the Jack functions by

Cβ
κ (X) =

2kk!

βkνκ
J (β)
κ (X), (3.6)

where
νκ =

∏
(i,j)∈κ

hκ∗(i, j)h
∗
κ(i, j),

and hκ∗ (i, j) = kj−i+2(ki−j+1)/β and h∗κ(i, j) = kj−i+1+2(ki−j)/β
are the upper and lower hook lengths at (i, j) ∈ κ, respectively.

From this point we return to the particular case of zonal spherical
functions. Then, observe that for X = S∗S and Y = W∗W we have

Cβ
κ (WXW∗) = Cβ

κ (SYS∗). (3.7)
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In particular for A1/2 such that
(
A1/2

)2
= A

Cβ
κ (Y

1/2XY1/2) = Cβ
κ (X

1/2YX1/2). (3.8)

Therefore, given thatXY, YX, Y1/2XY1/2 andX1/2YX1/2 all have the
same eigenvalues, for convenience of notation rather than strict adher-
ence to rigor, we write Cβ

κ (XY) or Cβ
κ (YX) rather than Cβ

κ (Y1/2XY1/2),

even though XY or YX need not lie in Sβ
m. Note that

Cβ
κ (Z

1/2XZ1/2Y) = Cβ
κ (XZ1/2YZ1/2), (3.9)

for all X,Y ∈ Sβ
m and Z ∈ Pβ

m. From [23, Equation 4.8(2) and Defini-
tion 5.3] we have

Cβ
κ (X) = Cβ

κ (I)

∫
H∈Uβ(m)

qκ(H
∗XH)(dH) (3.10)

for all X ∈ Sβ
m; where (dH) is the normalised Haar measure on Uβ(m).

Finally, for c constant we have that Cβ
κ (cX) = ckCβ

κ (X).
Some basic integral properties are cited below. For this purpose, we

utilise the complexification Sβ,C
m = Sβ

m + iSβ
m of Sβ

m. That is, Sβ,C
m

consist of all matrices Z ∈ (FC)m×m of the form Z = X + iY, with

X,Y ∈ Sβ
m. We refer to X = Re(Z) and Y = Im(Z) as the real

and imaginary parts of Z, respectively. The generalised right half-plane
Φ = Pβ

m + iSβ
m in Sβ,C

m consists of all Z ∈ Sβ,C
m such that Re(Z) ∈ Pβ

m,
see [23, p. 801].

For any X,Y ∈ Sβ
m,∫

H∈Uβ(m)
Cβ
κ (XH∗YH)(dH) =

Cβ
κ (X)Cβ

κ (Y)

Cβ
κ (I)

. (3.11)

For all R ∈ Sβ
m, Z ∈ Φ and Re(a) > (m− 1)β/2 − km,∫

X∈Pβ
m

etr{−XZ}|X|a−(m−1)β/2−1Cβ
κ (XR)(dX)

= Γβ
m[a, κ]|Z|−aCβ

κ (RZ−1)

= [a]βκΓ
β
m[a]|Z|−aCβ

κ (RZ−1). (3.12)

Remark 3.2. In general, the result (3.12) has been established under
the condition, Re(a) > (m − 1)β/2, see [6], [37], [39] and [34], but
in reality the correct condition is Re(a) > (m − 1)β/2 − km. This

fact is immediate, observing that [a]βκΓ
β
m[a] = Γβ

m[a, κ] and the different

expressions for Γβ
m[a, κ] in (2.4).
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Let Re(a) > (m− 1)β/2 − km and Re(b) > (m− 1)β/2. Then∫
0<X<I

|X|a−(m−1)β/2−1 |I−X|b−(m−1)β/2−1Cβ
κ (XR)(dX)

=
Γβ
m[a, κ]Γβ

m[b]

Γβ
m[a+ b, κ]

Cβ
κ (R)

=
[a]βκBβ

m[a, b]

[a+ b]βm
Cβ
κ (R), (3.13)

for all R ∈ Sβ,C
m ; see [23, Theorems 5.5 and 5.9 and Corollary 5.10] for

real, complex and quaternion cases.

Remark 3.3. Observe that result (3.13) was established under the
conditions Re(a) > (m−1)β/2 and Re(b) > (m−1)β/2, see [6], [37], [39]
and [34], but the correct conditions are in fact Re(a) > (m − 1)β/2 −
km and Re(b) > (m − 1)β/2. This fact is verified by observing that

[a]βκΓ
β
m[a] = Γβ

m[a, κ] and the different expressions for Γβ
m[a, κ] in (2.4).

We now extend several integral properties of zonal polynomials in
the real and complex cases to normed division algebras. Our first result
is a generalisation of one studied by [42] for real case, see also [3]. From
this result, we can obtain diverse particular integral properties of zonal
spherical functions.

Theorem 3.1. Let Z ∈ Φ and U ∈ Sβ
m. Assume

γ =

∫
z∈Pβ

1

f(z)zam−k−1dz < ∞.

Then ∫
X∈Pβ

m

f(trXZ)|X|a−(m−1)β/2−1Cβ
κ

(
X−1U

)
(dX)

=
Γβ
m[a,−κ]

Γ[am− k]
|Z|−aCβ

κ (UZ) · γ, (3.14)

for Re(a) > (m− 1)β/2 + k1, and∫
X∈Pβ

m

f(trXZ)|X|a−(m−1)β/2−1Cβ
κ (XU) (dX)

=
Γβ
m[a, κ]

Γ[am+ k]
|Z|−aCβ

κ (UZ−1) · ϑ, (3.15)

where ϑ =
∫
z∈Pβ

1
f(z)zam+k−1dz < ∞, Re(a) > (m − 1)β/2 − km and

κ = (k1, . . . , km) and k = k1 + · · ·+ km.
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Proof. Denote the left side of (3.14) by I(U,Z). By (3.10) and inter-
change of order on integration

I(I, I) =

∫
X∈Pβ

m

f(trX)|X|a−(m−1)β/2−1Cβ
κ

(
X−1

)
(dX)

= Cβ
κ (I)

∫
X∈Pβ

m

f(trX)|X|a−(m−1)β/2−1

×
(∫

H∈Uβ(m)
qκ
(
H∗X−1H

)
(dH)

)
(dX)

= Cβ
κ (I)

∫
X∈Pβ

m

f(trX)|X|a−(m−1)β/2−1qκ
(
X−1

)
(dX).

Let X = TT∗, from Proposition 2.2

(dX) = 2m
m∏
i=1

t
β(i−1)+1
ii (dT).

Then

I(I, I) = 2mCβ
κ (I)

∫
· · ·
∫

0<tii<∞
−∞<tij<∞

f

⎛
⎝ m∑

i≤j

t2ij

⎞
⎠ m∏

i=1

(tii)
2(a−ki−(m−i)β/2)−1(dT).

Applying [18, Lemma 2.4.3, p. 51] we obtain

I(I, I) = Cβ
κ (I)

πm(m−1)β/4
m∏
i=1

Γ[a− ki − (m− i)β/2]

Γ[am− k]
· γ

= Cβ
κ (I)

Γβ
m[a,−κ]

Γ[am− k]
· γ,

with γ =
∫
z∈Pβ

1
f(z)zam−k−1dz < ∞.

Next, since the function I(U, I) is invariant under Uβ(m) and in

Pκ(Sβ
m), there exists a constant d such that I(U, I) = dCβ

κ (U), U ∈
Sβ

m. It is obvious that d = I(I, I)/Cβ
κ (I), then

I(U, I) =
Γβ
m[a,−κ]

Γ[am− k]
Cβ
κ (U) · γ.

Now, let Z ∈ Pβ
m and make the change of variable X → Z−1/2XZ−1/2

in the integral defining I(U,Z). Then by (3.9)

I(U,Z) = |Z|−aI(Z1/2UZ1/2, I),
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and hence

I(U,Z) =
Γβ
m[a,−κ]

Γ[am− k]
|Z|−aCβ

κ (Z
1/2UZ1/2) · γ.

Therefore, for Z ∈ Pβ
m and U ∈ Sβ

m

I(U,Z) =
Γβ
m[a,−κ]

Γ[am− k]
|Z|−aCβ

κ (UZ) · γ.

The result in (3.14) now follows by analytic continuation in Z from Pβ
m

to Φ = Pβ
m+iSβ

m. The result in (3.15) is obtained in a similar way. �

Now, by definition if κ = 0 then [a]βκ = 1 and Cβ
κ (X) = 1 from where:

Corollary 3.1. Let Z ∈ Φ ∈ Sβ
m. Assume γ =

∫
z∈Pβ

1
f(z)zam−1dz <

∞. Then

∫
X∈Pβ

m

f(trXZ)|X|a−(m−1)β/2−1(dX) =
Γβ
m[a]

Γ[am]
|Z|−a · γ, (3.16)

for Re(a) > (m− 1)β/2.

If we take f(y) = exp{−y} in Corollary 3.1 we obtain∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1(dX) = Γβ
m[a]|Z|−a, (3.17)

and if Z = I we obtain the multivariate gamma function for the space
Sβ

m.

Other particular results of Theorem 3.1 are summarised below:

Defining f(trXZ) = etr{−XZ}(trXZ)j , or equivalently f(y) =
exp{−y}yj , j ∈ �, it is obtained:

Corollary 3.2. Let Z ∈ Φ and U ∈ Sβ
m and j ∈ �, such that

Re(ma+ j − k) > 0, then∫
X∈Pβ

m

etr{−XZ}(trXZ)j |X|a−(m−1)β/2−1Cβ
κ

(
X−1U

)
(dX)

=
Γβ
m[a,−κ]Γ[ma+ j − k]

Γ[ma− k]
|Z|−aCβ

κ (UZ), (3.18)
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for Re(a) > (m− 1)β/2 + k1. And if j is such that Re(ma+ j + k) > 0,
then ∫

X∈Pβ
m

etr{−XZ}(trXZ)j|X|a−(m−1)β/2−1Cβ
κ (XU) (dX)

=
Γβ
m[a, κ]Γ[ma + j + k]

Γ[ma+ k]
|Z|−aCβ

κ

(
UZ−1

)
, (3.19)

for Re(a) > (m− 1)β/2 − km.

Now if j = 0 is defined in Corollary 3.3 we have:

Corollary 3.3. Let Z ∈ Φ and U ∈ Sβ
m.∫

X∈Pβ
m

etr{−XZ}|X|a−(m−1)β/2−1Cβ
κ

(
X−1U

)
(dX)

= Γβ
m[a,−κ]|Z|−aCβ

κ (UZ), (3.20)

for Re(a) > (m− 1)β/2 + k1. And

∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1Cβ
κ (XU) (dX)

= Γβ
m[a, κ]|Z|−aCβ

κ

(
UZ−1

)
, (3.21)

for Re(a) > (m− 1)β/2 − km.

Corollary 3.4. Let Z ∈ Φ and U ∈ Sβ
m and η > 0 then∫

X∈Pβ
m

(1 + 2η−1 trXZ)−β(am+η)|X|a−(m−1)β/2−1Cβ
κ

(
X−1U

)
(dX)

=
Γβ
m[a,−κ]Γ[(β − 1)am+ βη + k]

(2η−1)am−kΓ[β(ma+ η)]
|Z|−aCβ

κ (UZ), (3.22)

for Re(a) > (m− 1)β/2 + k1. And

∫
X∈Pβ

m

(1 + 2η−1 trXZ)−β(am+η)|X|a−(m−1)β/2−1Cβ
κ (XU) (dX)

=
Γβ
m[a, κ]Γ[(β − 1)am+ βη − k]

(2η−1)am+kΓ[β(ma+ η)]
|Z|−aCβ

κ (UZ−1),(3.23)

for Re(a) > (m− 1)β/2 − km.
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Proof. The desired result is obtained by taking f(y) = (1+2η−1y)−β(am+η)

in Theorem 3.1. �

Many other interesting particular cases of Theorem 3.1 can be found,
for example by defining f(trXZ) as the kernel of matrix variate gener-
alised Wishart distributions, see [18] and [26].

Important analogues of the beta function integral are given in the
following theorems. Theorem 3.2 is discussed by [31] in the real case.

Theorem 3.2. If R ∈ Sβ,C
m , then∫

X∈Pβ
m

|X|a−(m−1)β/2−1|I +X|−(a+b)Cβ
κ (RX−1)(dX)

=
Γβ
m[a,−κ]Γβ

m[b, κ]

Γβ
m[a+ b]

Cβ
κ (R), (3.24)

for Re(a) > (m− 1)β/2 + k1 and Re(b) > (m− 1)β/2 − km. And∫
X∈Pβ

m

|X|a−(m−1)β/2−1|I +X|−(a+b)Cβ
κ (RX)(dX)

=
Γβ
m[a, κ]Γβ

m[b,−κ]

Γβ
m[a+ b]

Cβ
κ (R), (3.25)

for Re(a) > (m− 1)β/2 − km and Re(b) > (m− 1)β/2 + k1.

Proof. By Corollary 3.3, we have for any Z ∈ Φ∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1Cβ
κ

(
X−1R

) |Z|a(dX)

= Γβ
m[a,−κ]Cβ

κ (RZ). (3.26)

Multiplying both sides of (3.26) by etr{−Z}|Z|b−(m−1)β/2−1 and inte-
grating with respect to Z we have∫

X∈Pβ
m

(∫
Z∈Pβ

m

etr{−(I+X)Z}|Z|a+b−(m−1)β/2−1(dZ)

)

×|X|a−(m−1)β/2−1Cβ
κ

(
X−1R

)
(dX)

= Γβ
m[a,−κ]

∫
Z∈Pβ

m

etr{−Z}|Z|b−(m−1)β/2−1Cβ
κ (RZ)(dZ). (3.27)

The desired result in (3.24) is obtained by using (3.17) and (3.21) in
the left and right sides of (3.27), respectively. The result in (3.25) is
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obtained similarly. �

Corollary 3.5. If R ∈ Sβ,C
m , then∫

0<X<I
|X|a−(m−1)β/2−1|I−X|b−(m−1)β/2−1Cβ

κ (RX−1)(dX)

=
Γβ
m[a,−κ]Γβ

m[b]

Γβ
m[a+ b,−κ]

Cβ
κ (R), (3.28)

for Re(a) > (m− 1)β/2 + k1 and Re(b) > (m− 1)β/2.

Proof. It is obtained in a similar way to that given for (3.13), see [23].
�

Now, taking b = (m − 1)β/2 + 1 > (m − 1)β/2, from (3.13) and
Corollary 3.5 we have the following result.

Corollary 3.6. If R ∈ Sβ,C
m , then∫

0<X<I
|X|a−(m−1)β/2−1Cβ

κ (RX−1)(dX)

=
Γβ
m[a,−κ]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1,−κ]

Cβ
κ (R), (3.29)

for Re(a) > (m− 1)β/2 + k1. And∫
0<X<I

|X|a−(m−1)β/2−1Cβ
κ (XR)(dX)

=
Γβ
m[a, κ]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1, κ]

Cβ
κ (R), (3.30)

for Re(a) > (m− 1)β/2 − km.

Similarly, taking a = (m − 1)β/2 + 1 > (m − 1)β/2 − km in (3.13),
we have the following result.

Corollary 3.7. If R ∈ Sβ,C
m , then∫

0<X<I
|I−X|b−(m−1)β/2−1Cβ

κ (XR)(dX)

=
Γβ
m[(m− 1)β/2 + 1, κ]Γβ

m[b]

Γβ
m[(m− 1)β/2 + 1 + b, κ]

Cβ
κ (R), (3.31)

for Re(b) > (m− 1)β/2.
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4 Hypergeometric Functions

In this section, we study diverse integral properties of hypergeometric
functions for normed division algebras. First, let us consider the follow-
ing definition.

Fix complex numbers a1, . . . , ap and b1, . . . , bq, and for all 1 ≤ i ≤ q
and 1 ≤ j ≤ m do not allow −bi + (j − 1)β/2 to be a nonnegative
integer. Then the hypergeometric function with one matrix argument

pF
β
q is defined to be the real-analytic function on Sβ

m given by the series

pF
β
q (a1, . . . , ap; b1, . . . , bq;X) =

∞∑
k=0

∑
κ

[a1]
β
κ · · · [ap]βκ

[b1]
β
κ · · · [bq]βκ

Cβ
κ (X)

k!
. (4.1)

Some known properties are, see [23, Section 6, pp. 803-810]:
Convergence hypergeometric functions.

1. If p ≤ q then the hypergeometric series (4.1) converges absolutely

for all X ∈ Sβ
m.

2. If p = q + 1 then the series (4.1) converges absolutely for ||X|| =
max{|λi| : i = 1, . . . ,m} < 1, and diverges for ||X|| > 1, where

λ1, . . . λm are the i-th eigenvalues of X ∈ Sβ
m.

3. If p > q then the series (4.1) diverges unless it terminates.

For all X ∈ Sβ
m; indeed, for all X ∈ Sβ,C

m . This is characteristic of the
general situation when p ≤ q.

0F
β
0 (X) =

∞∑
k=0

∑
κ

Cβ
κ (X)

k!
=

∞∑
k=0

(trX)k

k!
= etr{X}, (4.2)

If Re(a) > (m− 1)β/2, and ||X|| < 1,

1F
β
0 (a;X) =

1

Γβ
m[a]

∫
Y∈Pβ

m

etr{−(I −X)Y}|Y|a−(m−1)β/2−1(dY)(4.3)

= |I−X|−a

gives the full analytic continuation of 1F
β
0 (a; ·) to any simply-connected

domain in Sβ,C
m . The right side is determined by the principal branch of

the argument. The fact that the hypergeometric series 1F
β
0 has {X ∈

Sβ
m : ||X|| < 1} as its domain of convergence is characteristic of p+1F

β
p

for all p ≥ 0.
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Let Re(c) > Re(a) + (m− 1)β/2 > (m− 1)β and ||X|| < 1. Then

p+1F
β
q+1(a1, . . . , ap, a; b1, . . . , bq, c;X)

=
1

Bβ
m[a, c− a]

∫
0<Y<Im

pF
β
q (a1 · · · ap; b1 · · · bq;XY)

× |Y|a−(m−1)β/2−1|I−Y|c−a−(m−1)β/2−1(dY), (4.4)

for p = q + 1. In particular, for p = 1, we have the Euler formula

2F
β
1 (a1, a; c;X) =

1

Bβ
m[a, c − a]

×
∫
0<Y<Im

1F
β
0 (a1;XY)|Y|a−(m−1)β/2−1

×|I−Y|c−a−(m−1)β/2−1(dY). (4.5)

for arbitrary a1, Re(c) > Re(a) + (m− 1)β/2 > (m− 1)β and ||X|| < 1.

Remark 4.1. Observe that, by expanding in (4.4) the hypergeometric
function in terms of Jack polynomials, it can be expressed as

p+1F
β
q+1(a1, . . . , ap, a; b1, . . . , bq, c;X)

=
1

Bβ
m[a, c− a]

∞∑
k=0

∑
κ

[a1]
β
κ · · · [ap]βκ

[b1]
β
κ · · · [bq]βκ

∫
0<Y<Im

Cβ
κ (XY)

×|Y|a−(m−1)β/2−1|I−Y|c−a−(m−1)β/2−1(dY), (4.6)

which is a consequence of (3.13). And then, for all ordered partition
κ = (k1, . . . , km), k1 ≥ · · · ≥ km ≥ 0 of k =

∑m
i=1 ki, k = 0, 1, . . . , the

condition over a and c must be Re(c) > Re(a)+(m−1)β/2 > (m−1)β−
km. However observe that, in particular, if Re(a) > (m − 1)β/2 − km
then Re(a) > (m − 1)β/2 because km = 0, 1, ... Therefore although
some of the integral in (4.4) are valid for other values of a, specifically
for Re(a) > (m − 1)β/2 − km, all exist if Re(a) > (m − 1)β/2. Hence
the condition over a and c which guarantee the existence of (4.4) is
Re(c) > Re(a) + (m − 1)β/2 > (m − 1)β. Similar reflection applies to
(4.5).

Laplace transform of hypergeometric functions. Assume p ≤ q, Re(a) >
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(m− 1)β/2 and U ∈ Sβ
m. Then∫

X∈Pβ
m

etr{−XZ}pF β
q (a1 · · · ap; b1 · · · bq;XU)|X|a−(m−1)β/2−1(dX)

= |Z|−aΓβ
m[a] p+1F

β
q (a1 · · · ap, a; b1 · · · bq;UZ−1). (4.7)

When p < q, the integral in (4.7) converges absolutely for all Z ∈ Φ.

When p = q, the integral converges absolutely for all Z ∈ Sβ,C
m , such

that ||(Re(Z))−1|| < 1.

Similarly, the hypergeometric function of two matrix arguments pF
(m),β
q

is defined to be the real-analytic function on Sβ
m given by the series

pF
(m),β
q (a1, . . . , ap; b1, . . . , bq;X,Y) =

∞∑
k=0

∑
κ

[a1]
β
κ · · · [ap]βκ

[b1]
β
κ · · · [bq]βκ

Cβ
κ (X)Cβ

κ (Y)

k! Cβ
κ (I)

.

(4.8)

Some basic properties of (4.8) are shown below, see [24].
Convergence hypergeometric functions with two matrix arguments.

1. If p ≤ q then the hypergeometric series (4.8) converges absolutely

for all X and Y ∈ Sβ
m.

2. If p = q + 1 then the series (4.8) converges absolutely for ||X|| ·
||Y|| < 1, and diverges for ||X|| · ||Y|| > 1.

Also∫
H∈Uβ(m)

pF
β
q (a1, . . . , ap; b1, . . . , bq;XHYH∗)(dH) (4.9)

= pF
(m),β
q (a1, . . . , ap; b1, . . . , bq;X,Y).(4.10)

In particular∫
H∈Uβ(m)

0F
β
0 (XHYH∗)(dH) =

∫
H∈Uβ(m)

etr{XHYH∗}(dH)(4.11)

= 0F
(m),β
0 (X,Y). (4.12)

Laplace transform of hypergeometric functions with two matrix ar-
guments.

Assume p ≤ q, Re(a) > (m− 1)β/2 and U ∈ Sβ
m. Then∫

X∈Pβ
m

etr{−XZ}pF (m),β
q (a1 · · · ap; b1 · · · bq;XU,Y)|X|a−(m−1)β/2−1(dX)

= |Z|−aΓβ
m[a] p+1F

(m),β
q (a1 · · · ap, a; b1 · · · bq;UZ−1,Y). (4.13)
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When p < q, the integral in (4.13) converges absolutely for all Z ∈ Φ

and Y ∈ Sβ
m. When p = q, the integral converges absolutely for all Z

and Y ∈ Sβ,C
m , such that ||(Re(Z))−1|| · ||Y|| < 1.

We now propose further integral properties of hypergeometric func-
tions for normed division algebras. The first result is the inverse Laplace
transformation. In the real case, this result was obtained by [27], [6],
[29] and [37, p. 261], and in the complex case by [35, p. 370]. Let us
first consider the following extension of similar results discussed in [6],
see also [37, p. 253].

Proposition 4.1. Assume that Z = Z0 + iY and X ∈ Sβ,C
m , Y and

U ∈ Sβ
m and Re(a) > a0. Then

2m(m−1)β/2

(2πi)m(m−1)β/2+m

∫
Re(Z)=Z0∈Pβ

m

etr{XZ}|Z|−aCβ
κ (UZ−1)(dZ)

=
1

Γβ
m[a, κ]

|X|a−(m−1)β/2−1Cβ
κ (XU). (4.14)

Theorem 4.1. Assume that Z = Z0 + iV and X ∈ Sβ,C
m , V and

U ∈ Sβ
m and Re(b) > b0. Then

Γβ
m[b]2m(m−1)β/2

(2πi)m(m−1)β/2+m

∫
Re(Z)=Z0∈Pβ

m

etr{XZ}|Z|−b

×pF
β
q (a1, . . . , ap; b1, . . . , bq;UZ−1)(dZ)

= |X|b−(m−1)β/2−1
pF

β
q+1(a1, . . . , ap; b1, . . . , bq, b;XU), (4.15)

and if Y ∈ Sβ
m

Γβ
m[b]2m(m−1)β/2

(2πi)m(m−1)β/2+m

∫
Re(Z)=Z0∈Pβ

m

etr{XZ}|Z|−b

× pF
(m),β
q (a1, . . . , ap; b1, . . . , bq;UZ−1,Y)(dZ)

= |X|b−(m−1)β/2−1
pF

(m),β
q+1 (a1, . . . , ap; b1, . . . , bq, b;XU,Y), (4.16)

where Z0 ∈ Pβ
m.

Proof. Proof of both (4.15) and (4.16) follows by expanding the pF
β
q

and pF
(m),β
q functions in the integrands and integrating term by term

using (4.14). �
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Theorem 4.2. The 1F
β
1 function has the integral representation

1F
β
1 (a;c;X) =

1

Bβ
m[a, c− a]

∫
0<Y<I

etr{XY}|Y|a−(m−1)β/2−1

× |I−Y|c−a−(m−1)β/2−1(dY), (4.17)

valid for Re(c) > Re(a) + (m− 1)β/2 > (m− 1)β and all X ∈ Sβ,C
m .

Proof. The desired result is obtained by expanding etr{XY} using
(3.5) and integrating term by term using (3.13). �

The generalised Kummer and Euler relations are given in the follow-
ing result.

Theorem 4.3.

1F
β
1 (a;c;X) = etr{X}1F β

1 (c− a, c;−X), (4.18)

for X ∈ Sβ,C
m . And

2F
β
1 (a, b; c;X) = |I−X|b2F β

1 (c− a, b; c;−X(I −X)−1) (4.19)

= |I−X|c−a−b
2F

β
1 (c− a, c− b; c;X) (4.20)

for ||X|| < 1.

Remark 4.2. Observe that, for 1F
β
0 (a;X) the condition Re(a) > (m−

1)β/2 over a is determined by its integral representation (4.3). However

1F
β
0 (a;X) is easily seen to be analytic for all a and ||X|| < 1, see [27, p.

486]. Similarly, the conditions Re(c) > Re(a) + (m− 1)β/2 > (m− 1)β
over a and c given in Theorem 4.2, valid for Theorem 4.3 (4.18) too,
are determined by the existence of the integral (4.17) and Remark 4.1.
However, these conditions can be extended to other possible values if
we use the inverse Laplace transformation to define 1F

β
1 (a, c;X). In this

case 1F
β
1 (a, c;X) is valid for the arbitrary complex a, Re(c) > (m−1)β/2

and X ∈ Sβ,C
m , see [27, p. 487]. Also, the conditions Re(c) > Re(a) +

(m−1)β/2 > (m−1)β over a and c for (4.5) and Theorem 4.3(4.19) and
(4.20) are determined by the absolutely convergence of the integral (4.5)
and Remark 4.1. Again, these conditions about a and c can be extended
to other possible values using the inverse Laplace transformation and the
results for 1F

β
1 (a, c;X) obtained as described before, see [27, p. 489].

Finally, let us take into account that, for any analysis if the integral
representation of 1F

β
1 (a, c;X) or 2F

β
1 (a, b; c;X) is not used explicitly,

then the extended conditions for a and c could be considered.
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Theorem 4.4. Let X ∈ Lβ
m,n and H = (H1|H2) ∈ Uβ(n), H1 ∈ Vβ

m,n.
Then

0F
β
1 (βn/2;β

2XX∗/4) =

∫
H∈Uβ(n)

etr(βX∗H1)(dH) (4.21)

=

∫
H1∈Vβ

m,n

etr(βX∗H1)(dH1) (4.22)

Proof. The proof is analogous to that given in the real case for [37,
Theorem 7.4.1] and in the quaternion case by [34]. Alternative proofs
can be established in an analogous form to those given by [28] and [27,
p. 494-495]. For (4.22) it might be necessary to consider Lemma 9.5.3,
p. 397 in [37]. �

On the basis of Theorem 3.1, we now discuss diverse integral proper-
ties of generalised hypergeometric functions, which contain as particular
cases many of the results established above.

Theorem 4.5. Assume p ≤ q and Re(a) > (m− 1)β/2 and U ∈ Sβ
m.

Then for ϑ =
∫
z∈Pβ

1
f(z)zam+k−1dz < ∞,

∫
X∈Pβ

m

f(trXZ)pF
β
q (a1 · · · ap; b1 · · · bq;XU)|X|a−(m−1)β/2−1(dX)

= |Z|−aΓβ
m[a]

∞∑
k=0

∑
κ

[a1]
β
κ · · · [ap]βκ[a]βκ

[b1]
β
κ · · · [bq]βκ

Cβ
κ (UZ−1)

Γ[am+ k]k!
· ϑ. (4.23)

When p < q, the integral in (4.23) converges absolutely for all Z ∈ Φ.

When p = q, the integral converges absolutely for all Z ∈ Sβ,C
m , such that

||(Re(Z))−1|| < 1.

Similarly, let p ≤ q, Re(a) > (m− 1)β/2 and U ∈ Sβ
m. Then

∫
X∈Pβ

m

f(trXZ)pF
(m),β
q (a1 · · · ap; b1 · · · bq;XU,Y)|X|a−(m−1)β/2−1(dX)

= |Z|−aΓβ
m[a]

∞∑
k=0

∑
κ

[a1]
β
κ · · · [ap]βκ[a]βκ

[b1]
β
κ · · · [bq]βκ

Cβ
κ (UZ−1)Cβ

κ (Y)

Γ[am+ k]k! Cβ
κ (I)

· ϑ. (4.24)

When p < q, the integral in (4.24) converges absolutely for all Z ∈ Φ

and Y ∈ Sβ
m. When p = q, the integral converges absolutely for all Z

and Y ∈ Sβ,C
m , such that ||(Re(Z))−1|| · ||Y|| < 1.
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Observe that if f(trXZ) = etr{−XZ} in Theorem 4.5 then we obtain
(4.7) and (4.13).

Now, we propose the incomplete gamma and beta functions for
normed division algebras.

Theorem 4.6. Let Λ ∈ Sβ,C
m and Ω ∈ Φ. Then∫

0<X<Ω
etr{−ΛX}|X|a−(m−1)β/2−1(dX)

= Bβ
m[a, (m− 1)β/2 + 1]|Ω|a1F β

1 (a; a+ (m− 1)β/2 + 1;−ΩΛ), (4.25)

for Re(a) > (m− 1)β/2. And, let 0 < Ξ < I, then∫
0<Y<Ξ

|Y|a−(m−1)β/2−1|I−Y|b−(m−1)β/2−1(dY) = Bβ
m[a, (m−1)β/2+1]

× |Ξ|a2F β
1 (a,−b+ (m− 1)β/2 + 1; a+ (m− 1)β/2 + 1;Ξ), (4.26)

for Re(a) > (m− 1)β/2 and Re(b) > (m− 1)β/2.

Proof. For (4.25), let us make the transformation X = Ω1/2RΩ1/2 and
by applying Proposition 2.1 we have, (dX) = |Ω|(m−1)β/2+1(dR), with
0 < R < I. Then, expanding etr{−ΛX} as a series of zonal spherical
functions and integrating term by term using Corollary 3.6, the desired
result is obtained. Similarly, (4.26) is proved by making the transfor-
mation Y = Ξ1/2RΞ1/2 from where, applying the Proposition 2.1 we
obtain that (dX) = |Ξ|(m−1)β/2+1(dR), with 0 < R < I, expanding

|I−XΞ|b−(m−1)β/2−1 = 1F
β
0 (−b+ (m− 1)β/2 + 1;XΞ) and integrating

term by term using Corollary 3.6. �

Theorem 4.7. Let Λ ∈ Sβ,C
m and Ω ∈ Φ. If r = a− (m− 1)β/2− 1

is a positive integer, then∫
X>Ω

etr{−ΛX}|X|a−(m−1)β/2−1(dX)

= Γβ
m[a]|Λ|−a etr{−ΛΩ}

mr∑
k=0

∑
κ

∗C
β
κ (ΩΛ)

k!
, (4.27)

where
∑∗

κ denotes summation over those partitions κ = (k1, . . . , km) of
k with k1 ≤ r.
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Proof. Consider the transformation X = Ω1/2(I+R)Ω1/2 and applying
Proposition 2.1 we have, (dX) = |Ω|(m−1)β/2+1(dR), with R > 0. Not-
ing that |I+R| = |R||I+R−1| and expanding |I+R−1|a−(m−1)β/2−1 in
terms of zonal spherical functions, assuming that r = a− (m−1)β/2−1
is a positive integer we obtain

|I+R−1|a−(m−1)β/2−1

= 1F
β
0 (−a+ (m− 1)β/2 + 1;−R−1)

=

mr∑
k=0

∑
κ

∗ [−a+ (m− 1)β/2 + 1]βκ(−1)kCβ
κ (R−1)

k!

because [−a+(m− 1)β/2+1]βκ ≡ 0 is any part of κ that is greater than
r. The desired result is obtained by integrating term by term using
Corollary 3.3. �

We end this section with some general results, which are useful in a
variety of situations, which enable us to transform the density function
of a matrix X ∈ Pβ

m to the density function of its eigenvalues.

Theorem 4.8. Let X ∈ Pβ
m be a random matrix with density function

f(X). Then the joint density function of the eigenvalues λ1, . . . , λm of
X is

πm2β/2+�

Γβ
m[mβ/2]

m∏
i<j

(λi − λj)
β

∫
H∈Uβ(m)

f(HLH∗)(dH) (4.28)

where L = diag(λ1, . . . , λm), λ1 > · · · > λm > 0, 	 is defined in Propo-
sition 2.3 and (dH) is the normalised Haar measure.

Proof. The proof follows immediately from Proposition 2.3. �

5 Invariant Polynomials

In this section, we extend many of the properties of a class of homoge-
neous polynomials for normed division algebras of degrees k and t in the
elements of matrices X and Y ∈ Sβ

m, respectively, see [7], [8], [4] and

[5]; these are denoted as C
[β]κ,τ
φ (X,Y). These homogeneous polynomials

are invariant under the simultaneous transformations

X → H∗XH, Y → H∗YH, H ∈ Uβ(m).
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The most important relationship of these polynomials is∫
H∈Uβ(m)

Cβ
κ (AH∗XH)Cβ

τ (BH∗YH)(dH)

=
∑
φ∈κ.τ

C
[β]κ,τ
φ (A,B)C

[β]κ,τ
φ (X,Y)

Cβ
φ (I)

, (5.1)

where (dH) is the normalised Haar measure and Cβ
κ , C

β
τ and Cβ

φ are
zonal spherical functions indexed by ordered partitions κ, τ and φ of
nonnegative integers k, t and f = k+ t, respectively, into not more than
m parts. φ ∈ κ.τ denotes the irreducible representation of GL(m,F)
indexed by 2φ that occurs in the decomposition of the Kronecker product
2κ⊗ 2τ of the irreducible representations indexed by 2κ and 2τ , see [7]
and [8].

In a similar way to the case of zonal spherical functions, letA = A∗A
and B = B∗B. For convenience of notation rather than strict adherence
to rigor, we write C

[β],κ,τ
κ (XA,YB) or C

[β],κ,τ
κ (AX,BY) rather than

C
[β],κ,τ
κ (AXA∗,BYB∗), even though XA, YB, AX, or BY need not

lie in Sβ
m.

Some of the elementary properties and results on invariant polyno-
mials are extended below:

Elementary properties of C
[β]κ,τ
φ .

Let X and Y ∈ Sβ
m, then

C
[β]κ,τ
φ (X,X) = θ

[β]κ,τ
φ Cβ

φ (X), where θ
[β]κ,τ
φ =

C
[β]κ,τ
φ (I, I)

Cβ
φ (I)

. (5.2)

C
[β]κ,τ
φ (X,Y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ
[β]κ,τ
φ Cβ

φ (I)

Cβ
κ (I)

Cβ
κ (X), for Y = I;

θ
[β]κ,τ
φ Cβ

φ (I)

Cβ
τ (I)

Cβ
τ (Y), for X = I.

(5.3)

C
[β]κ,0
φ (X,Y) = Cβ

κ (X), and C
[β]0,τ
φ (X,Y) = Cβ

τ (Y). (5.4)

Cβ
κ (X)Cβ

τ (Y) =
∑
φ∈κ.τ

θ
[β]κ,τ
φ C

[β]κ,τ
φ (X,Y), (5.5)
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therefore,

(trX)k(trY)t =
∑

κ,τ ;φ∈κ.τ
θ
[β]κ,τ
φ C

[β]κ,τ
φ (X,Y). (5.6)

From (5.2) and (5.5)

Cβ
κ (X)Cβ

τ (X) =
∑
φ∈κ.τ

(
θ
[β]κ,τ
φ

)2
Cβ
φ (X). (5.7)

For constant a and b

C
[β]κ,τ
φ (aX, bX) = akbt C

[β]κ,τ
φ (X,Y). (5.8)

The next expansion can be used to derive several useful results of in-
variant polynomials. From (5.1), (5.5) and (4.2) we obtain∫

H∈Uβ(m)
etr{AH∗XH+BH∗YH}(dH)

=

∞∑
κ,τ ;φ

C
[β]κ,τ
φ (A,B)C

[β]κ,τ
φ (X,Y)

k!t!Cβ
φ (I)

, (5.9)

where ∞∑
κ,τ ;φ

=

∞∑
k=0

∞∑
t=0

∑
κ

∑
τ

∑
φ∈κ.τ

.

From (5.9) we obtain,

∫
H∈Uβ(m)

C
[β]κ,τ
φ (A∗H∗XHA,B)(dH) =

C
[β]κ,τ
φ (A∗A,B)Cβ

κ (X)

Cβ
κ (I)

,

(5.10)
analogously

∫
H∈Uβ(m)

C
[β]κ,τ
φ (A,B∗H∗YHB)(dH) =

C
[β]κ,τ
φ (A,B∗B)Cβ

τ (Y)

Cβ
τ (I)

,

(5.11)

Laplace transform.

For all A and B ∈ Sβ
m, Z ∈ Φ∫

X∈Pβ
m

etr{−XZ}|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AX,BX)(dX)

= Γβ
m[a, φ]|Z|−aC

[β]κ,τ
φ (AZ−1,BZ−1). (5.12)
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valid for Re(a) > (m− 1)β/2 − (k + t)m. In particular∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AXA∗,B)(dX)

= Γβ
m[a, κ]|Z|−aC

[β]κ,τ
φ (AZ−1A∗,B), (5.13)

where Re(a) > (m− 1)β/2 − km. And∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1C
[β]κ,τ
φ (A,BXB∗)(dX)

= Γβ
m[a, τ ]|Z|−aC

[β]κ,τ
φ (A,BZ−1B∗), (5.14)

with Re(a) > (m− 1)β/2 − tm.

Similarly, for all A and B ∈ Sβ
m, Z ∈ Φ,∫

X∈Pβ
m

etr{−XZ}|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AX−1,BX−1)(dX)

= Γβ
m[a,−φ]|Z|−aC

[β]κ,τ
φ (AZ,BZ), (5.15)

where Re(a) > (m− 1)β/2 + (k + t)1. In particular∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AX−1A∗,B)(dX)

= Γβ
m[a,−κ]|Z|−aC

[β]κ,τ
φ (AZA∗,B), (5.16)

with Re(a) > (m− 1)β/2 + k1. And∫
X∈Pβ

m

etr{−XZ}|X|a−(m−1)β/2−1C
[β]κ,τ
φ (A,BX−1B∗)(dX)

= Γβ
m[a,−τ ]|Z|−aC

[β]κ,τ
φ (A,BZB∗), (5.17)

valid for Re(a) > (m− 1)β/2 + t1.

Inverse Laplace transform.

Assume that Z and X ∈ Sβ,C
m , A and B ∈ Sβ

m and Re(b) > b0. Then

Γβ
m[b, φ]2m(m−1)β/2

(2πi)m(m−1)β/2+m

∫
Z−Z0∈Φ

etr{XZ}|Z|−bC
[β]κ,τ
φ (AZ−1,BZ−1)(dZ)

= |X|b−(m−1)β/2−1C
[β]κ,τ
φ (AX,BX), (5.18)
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and

Γβ
m[b,−φ]2m(m−1)β/2

(2πi)m(m−1)β/2+m

∫
Z−Z0∈Φ

etr{XZ}|Z|−bC
[β]κ,τ
φ (AZ,BZ)(dZ)

= |X|b−(m−1)β/2−1C
[β]κ,τ
φ (AX−1,BX−1). (5.19)

Similar expressions are obtained for C
[β]κ,τ
φ (AZ−1,B) and C

[β]κ,τ
φ (A,

BZ−1) from (5.18); and for C
[β]κ,τ
φ (AZ,B) and C

[β]κ,τ
φ (A,BZ) from

(5.19).

Beta type I integrals.

For all A and B ∈ Sβ,C
m and Re(b) > (m− 1)β/2,∫

0<X<I
|X|a−(m−1)β/2−1 |I−X|b−(m−1)β/2−1C

[β]κ,τ
φ (AX,BX)(dX)

=
Γβ
m[a, φ]Γβ

m[b]

Γβ
m[a+ b, φ]

C
[β]κ,τ
φ (A,B), (5.20)

valid for Re(a) > (m− 1)β/2 − (k + t)m. In particular∫
0<X<I

|X|a−(m−1)β/2−1|I−X|b−(m−1)β/2−1C
[β]κ,τ
φ (AXA∗,B)(dX)

=
Γβ
m[a, κ]Γβ

m[b]

Γβ
m[a+ b, κ]

C
[β]κ,τ
φ (AA∗,B), (5.21)

with Re(a) > (m− 1)β/2 − km. And∫
0<X<I

|X|a−(m−1)β/2−1|I−X|b−(m−1)β/2−1C
[β]κ,τ
φ (A,BXB∗)(dX)

=
Γβ
m[a, τ ]Γβ

m[b]

Γβ
m[a+ b, τ ]

C
[β]κ,τ
φ (A,BB∗). (5.22)

where Re(a) > (m − 1)β/2 − tm. Another particular integral given in
the real case by [7] is∫

0<X<I
|X|a−(m−1)β/2−1|I−X|b−(m−1)β/2−1C

[β]κ,τ
φ (X, I −X)(dX)

=
Γβ
m[a, κ]Γβ

m[b, τ ]

Γβ
m[a+ b, φ]

θ
[β]κ,τ
φ Cβ

φ (I), (5.23)
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valid for Re(a) > (m− 1)β/2 − km and Re(b) > (m− 1)β/2 − tm.

Analogously, for all A and B ∈ Sβ,C
m and Re(b) > (m− 1)β/2,∫

0<X<I
|X|a−(m−1)β/2−1 |I−X|b−(m−1)β/2−1C

[β]κ,τ
φ (AX−1,BX−1)(dX)

=
Γβ
m[a,−φ]Γβ

m[b]

Γβ
m[a+ b,−φ]

C
[β]κ,τ
φ (A,B),(5.24)

where Re(a) > (m− 1)β/2 + (k + t)1. In particular∫
0<X<I

|X|a−(m−1)β/2−1|I−X|b−(m−1)β/2−1C
[β]κ,τ
φ (AX−1A∗,B)(dX)

=
Γβ
m[a,−κ]Γβ

m[b]

Γβ
m[a+ b,−κ]

C
[β]κ,τ
φ (AA∗,B), (5.25)

valid for Re(a) > (m− 1)β/2 + k1. And∫
0<X<I

|X|a−(m−1)β/2−1 |I−X|b−(m−1)β/2−1C
[β]κ,τ
φ (A,BX−1B∗)(dX)

=
Γβ
m[a,−τ ]Γβ

m[b]

Γβ
m[a+ b,−τ ]

C
[β]κ,τ
φ (A,BB∗), (5.26)

with Re(a) > (m− 1)β/2 + t1.
Now, taking b = (m − 1)β/2 + 1 > (m − 1)β/2 in (5.20) and (5.24)

we have the following results.
For all A and B ∈ Sβ,C

m ,∫
0<X<I

|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AX,BX)(dX)

=
Γβ
m[a, φ]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1, φ]

C
[β]κ,τ
φ (A,B), (5.27)

valid for Re(a) > (m− 1)β/2 − (k + t)m. And,∫
0<X<I

|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AX−1,BX−1)(dX)

=
Γβ
m[a,−φ]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1,−φ]

C
[β]κ,τ
φ (A,B), (5.28)

where Re(a) > (m− 1)β/2 + (k + t)1.

Beta type II integrals.
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For all A and B ∈ Sβ,C
m ,∫

X∈Pβ
m

|X|a−(m−1)β/2−1|I +X|−(a+b)C
[β]κ,τ
φ (AX,BX)(dX)

=
Γβ
m[a, φ]Γβ

m[b,−φ]

Γβ
m[a+ b]

C
[β]κ,τ
φ (A,B), (5.29)

with Re(a) > (m− 1)β/2− (k+ t)m and Re(b) > (m− 1)β/2 + (k+ t)1.
In particular∫

X∈Pβ
m

|X|a−(m−1)β/2−1|I+X|−(a+b)C
[β]κ,τ
φ (AXA∗,B)(dX)

=
Γβ
m[a, κ]Γβ

m[b,−κ]

Γβ
m[a+ b]

C
[β]κ,τ
φ (AA∗,B), (5.30)

such that Re(a) > (m− 1)β/2− km and Re(b) > (m− 1)β/2 + k1. And∫
X∈Pβ

m

|X|a−(m−1)β/2−1 |I+X|−(a+b)C
[β]κ,τ
φ (A,BXB∗)(dX)

=
Γβ
m[a, τ ]Γβ

m[b,−τ ]

Γβ
m[a+ b]

C
[β]κ,τ
φ (A,BB∗), (5.31)

valid for Re(a) > (m− 1)β/2 − tm and Re(b) > (m− 1)β/2 + t1.

In a similar way, for all A and B ∈ Sβ,C
m ,∫

X∈Pβ
m

|X|a−(m−1)β/2−1 |I+X|−(a+b)C
[β]κ,τ
φ (AX−1,BX−1)(dX)

=
Γβ
m[a,−φ]Γβ

m[b, φ]

Γβ
m[a+ b]

C
[β]κ,τ
φ (A,B) (5.32)

where Re(a) > (m−1)β/2+(k+ t)1 and Re(b) > (m−1)β/2− (k+ t)m.
In particular∫

X∈Pβ
m

|X|a−(m−1)β/2−1|I+X|−(a+b)C
[β]κ,τ
φ (AX−1A∗,B)(dX)

=
Γβ
m[a,−κ]Γβ

m[b, κ]

Γβ
m[a+ b]

C
[β]κ,τ
φ (AA∗,B), (5.33)

with Re(a) > (m− 1)β/2 + k1 and Re(b) > (m− 1)β/2 − km. And∫
X∈Pβ

m

|X|a−(m−1)β/2−1 |I+X|−(a+b)C
[β]κ,τ
φ (A,BX−1B∗)(dX)

=
Γβ
m[a,−τ ]Γβ

m[b, τ ]

Γβ
m[a+ b]

C
[β]κ,τ
φ (A,BB∗), (5.34)
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such that Re(a) > (m− 1)β/2 + t1 and Re(b) > (m− 1)β/2 − tm.

Incomplete gamma and beta functions.

First consider the following results

For all A and B ∈ Sβ
m and 0 < Ξ < I,

∫
0<X<Ξ

|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AX,BX)(dX)

=
Γβ
m[a, φ]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1, φ]

|Ω|aC [β]κ,τ
φ (AΞ,BΞ). (5.35)

valid for Re(a) > (m− 1)β/2 − (k + t)m. And

∫
0<X<Ξ

|X|a−(m−1)β/2−1C
[β]κ,τ
φ (AXA∗,B)(dX)

=
Γβ
m[a, κ]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1, κ]

|Ω|aC [β]κ,τ
φ (AΞA∗,B). (5.36)

valid for Re(a) > (m− 1)β/2 − km.

The next result is obtained immediately, expanding etr{−XA} in
terms of zonal spherical functions, making use of the property (5.5) and

integrating term by term using (5.35). Thus, for all A and B ∈ Sβ
m and

Ω ∈ Φ,

∫
0<X<Ω

etr{−XA}|X|a−(m−1)β/2−1Cβ
τ (BX)(dX)

=
Γβ
m[a]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1]

|Ω|a

×
∞∑
k=0

∑
κ;φ∈κ.τ

[a]βφθ
[β]κ,τ
φ C

[β]κ,τ
φ (−AΩ,BΩ)

k![a+ (m− 1)β/2 + 1]βφ
. (5.37)

valid for Re(a) > (m− 1)β/2.

Similarly, we expand |I − X|b−(m−1)β/2−1 in terms of Jack polyno-
mials, make use of the property (5.5) and integrate term by term using
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(5.35). For all A ∈ Sβ,C
m and 0 < Ξ < I,∫

0<X<Ξ

|X|a−(m−1)β/2−1|I−X|b−(m−1)β/2−1Cβ
τ (AX)(dX)

=
Γβ
m[a]Γβ

m[(m− 1)β/2 + 1]

Γβ
m[a+ (m− 1)β/2 + 1]

× |Ξ|a
∞∑
k=0

∑
κ;φ∈κ.τ

[−b+ (m− 1)β/2 + 1]βκ[a]
β
φθ

[β]κ,τ
φ C

[β]κ,τ
φ (Ξ,AΞ)

k![a+ (m− 1)β/2 + 1]βφ
. (5.38)

valid for Re(a) > (m− 1)β/2.

6 Application

As an application, in this section we found the joint density eigenvalue of the
central Wishart distribution for normed division algebras, and also derived the
largest and smallest eigenvalue distributions. First, from [12] let us consider
the following definitions.

Definition 6.1. Let X ∈ Lβ
m,n be a random matrix. Then X is said to

have a matrix variate normal distribution X ∼ N β
n×m(µ,Σ,Θ), of mean µ and

Cov(vecXT ) = Θ⊗Σ, if its density function is given by

1

(2πβ−1)
βmn/2 |Σ|βn/2|Θ|βm/2

etr

{
−β

2
Σ−1(X− µ)∗Θ−1(X− µ)

}
.

Also

Definition 6.2. Let X ∈ Lβ
m,n with distribution X ∼ N β

n×m(0,Σ, In)
and define S = X∗X, then S is said to have a central Wishart distribution
S ∼ Wβ

m(n,Σ) with n degrees of freedom and parameter Σ. Moreover, its
density function is given by

1

(2β−1)
βmn/2

Γβ
m[βn/2]|Σ|βn/2

|S|β(n−m+1)/2−1 etr{−βΣ−1S/2}

with n ≥ (m− 1)β.

Therefore, from (4.28) and (4.12) the joint density of the eigenvalues, λ1 >
· · · > λm > 0, of S is

πm2β/2+�

(2β−1)
βmn/2

Γβ
m[βn/2]Γβ

m[βm/2]|Σ|βn/2

×
m∏
i=1

λ
β(n−m+1)/2−1
i ×

m∏
i<j

(λi − λj)
β
0F

β
0 (−βΣ−1/2,L)
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where L = diag(λ1, . . . , λm).
In addition, as an immediate consequence of Theorems 4.6 and 4.7 we

obtain the following result.

Theorem 6.1. Let S ∼ Wβ
m(n,Σ) and Ω ∈ Φ, then

P (S < Ω) =
Γβ
m[(m− 1)β/2 + 1]

(2β−1)
βmn/2

Γβ
m[(n+m− 1)β/2 + 1]

|Ω|βn/2
|Σ|βn/2

× 1F
β
1 (βn/2; (n+m− 1)β/2 + 1;−βΩΣ−1/2), (6.1)

valid for Re(n) > (m−1)β. And if r = (n−m+1)β/2−1 is a positive integer,
then

P (S < Ω) = etr{−βΩΣ−1/2}
mr∑
k=0

∑
κ

∗C
β
κ (βΩΣ−1/2)

k!
, (6.2)

where
∑∗

κ denotes summation over those partitions κ = (k1, . . . , km) of k with
k1 ≤ r.

Observing that if λmax and λmin are the largest and smallest eigenvalues of
S, respectively, then the inequalities λmax < x and λmin > y are equivalent to
S < xI and S > yI, respectively and the following result is obtained.

Corollary 6.1. Assume that S ∼ Wβ
m(n,Σ) and x > 0. Then

P (λmax < x) =
Γβ
m[(m− 1)β/2 + 1]

(2β−1)βmn/2 Γβ
m[(n+m− 1)β/2 + 1]

xβmn/2

|Σ|βn/2

× 1F
β
1 (βn/2; (n+m− 1)β/2 + 1;−βxΣ−1/2), (6.3)

valid for Re(n) > (m− 1)β. And if r = (n−m+1)β/2− 1 is a positive integer
and y > 0, then

P (λmin < y) = 1− etr{−βyΣ−1/2}
mr∑
k=0

∑
κ

∗C
β
κ (βyΣ

−1/2)

k!
, (6.4)

where
∑∗

κ denotes summation over those partitions κ = (k1, . . . , km) of k with
k1 ≤ r.

As a numerical example we plot the distribution function of λmax on Figure
1 and the distribution function of λmin on Figure 2. First note that applying
the generalised Kummer relation (4.18) in (6.3) we obtain

P (λmax < x) =
Γβ
m[(m− 1)β/2 + 1] etr{−βxΣ−1/2}

(2β−1)βmn/2 Γβ
m[(n+m− 1)β/2 + 1]

xβmn/2

|Σ|βn/2

× 1F
β
1 ((m− 1)β/2 + 1; (n+m− 1)β/2 + 1;βxΣ−1/2).

Currently, many other applications of the results in this work are being
studied in the context of shape theory, random matrices and multivariate sta-
tistical analysis, both by the present authors and by others.
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Figure 1: Distribution functions of λmax of Wβ
2 (4,diag(1, 2)), β = 1, 2, 4

and 8.
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