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1 Introduction

Let X(1,n,m̃,k), · · · ,X(n,n,m̃,k) be n generalized order statistics (GOS’s)
based on distribution function F with joint density function

f(x1, . . . , xn) = k

⎛⎝n−1∏
j=1

γj

⎞⎠ n−1∏
j=1

(1− F (xj)
mj (1− F (xn))

k−1
n∏

j=1

f(xj),

(1.1)
where n ∈ N, k > 0, m1, · · · ,mn−1 ∈ R, Mr =

∑n−1
j=r mj, 1 ≤ r ≤

n − 1, γr = k + n − r + Mr > 0 for all r ∈ {1, · · · , n − 1}, and let
m̃ = (m1, . . . ,mn−1) if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1) (see Kamps,
1995a,b). It is known that the distribution of GOS’s from F is the same
as that of

(F−1(U(1, n, m̃, k)), F−1(U(2, n, m̃, k)), . . . , F−1(U(n, n, m̃, k))), (1.2)

where (U(1, n, m̃, k), U(2, n, m̃, k), . . . , U(n, n, m̃, k)), is the vector of GOS’s
from a uniform distribution over (0, 1) with density function

h(u1, u2, . . . , un) = k

⎛⎝n−1∏
j=1

γj

⎞⎠ n−1∏
j=1

(1− uj)
mj (1− un)

k−1, u1 ≤ . . . ≤ un.

(1.3)

From Eq. (1.3), upon integrating out appropriate variables, we obtain
the joint density function of (U(1, n, m̃, k), U(2, n, m̃, k), . . . , U(i, n, m̃, k)),
for 1 ≤ i ≤ n, as

h(u1, u2, . . . , ui) = ci−1

⎛⎝i−1∏
j=1

(1 − uj)
mj

⎞⎠ (1− ui)
γi−1, 0 ≤ u1 ≤ . . . ≤ ui < 1.

where the constant ci−1 is defined by ci−1 =
∏i

j=1 γj, i = 1, · · · , n− 1,
c0 = 0, and γn = k.

Using specific set of parameters mi’s and k, various ordered statisti-
cal data like usual order statistics, record values, progressive censoring,
sequential order statistics among others are special cases of GOS’s. For
more details the reader is referred to Kamps (1995a) and Khaledi (2005).

As defined in Xie and Hu (2009), for a given positive integer p ≤ n,
let denote the vector of p-spacings of X(i,n,m̃,k)’s by

DX
(p) = (D

(p)
X,1,n,D

(p)
X,2,n, . . . ,D

(p)
X,n−p,n),
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whereD
(p)
X,r,n = X(r+p,n,m̃,k)−X(r,n,m̃,k), r = 0, 1, · · · , n−p andX(0,n,m̃,k)

= 0.
Stochastic comparisons of GOS’s as well as spacings of GOS’s in one

sample as well as two sample problems were discussed in Belzunce et
al. (2005), Khaledi (2005), Khaledi and Kochar (2005), Hu and Zhuang
(2005), Hu and Zhuang (2006), Fang et al. (2006), Hu et al. (2007),
Zhuang and Hu (2007), Xie and Hu (2009) and Torrado et al. (2012).
Recently, Balakrishnan et al. (2010) established some new stochastic or-
dering results among GOS’s according to univariate as well as multivari-
ate likelihood ratio orders, from which they obtained some interesting
new results about stochastic comparisons of conditional GOS’s which
cover many results for usual order statistics obtained by Khaledi and
Shaked (2007), Li and Zhao (2008), Zhao and Balakrishnan (2009) and
many results for record values obtained by Khaledi and Shojaei (2007)
and Khaledi et al. (2009).

The most of the results obtained about stochastic properties of GOS’s
and their spacings in the above mentioned references are based on the
condition that the parameters mi’s in (1.1) are all equal. In this paper
with less restrictive conditions on themi’s, we prove some new multivari-
ate likelihood ratio ordering results between two sub-vectors of GOS’s as
well as two sub-vectors of p-spacings based on two distribution functions
F and G.

The notion of multivariate likelihood ratio order and univariate like-
lihood ratio order is defined next.

Definition 1.1. Let X and Y be two n-dimensional random vectors
with density functions fX and fY, respectively. We say that X is less
than Y in the multivariate likelihood ratio order, denoted by X ≤lr Y,
if

fX(x1, x2, · · · , xn)fY(y1, y2, · · · , yn)
≤ fX(x1 ∧ y1, x2 ∧ y2, · · · , xn ∧ yn)fY(x1 ∨ y1, x2 ∨ y2, · · · , xn ∨ yn)

for all (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in R
n, where ∧ and ∨ denote

the minimum and maximum operations, respectively.

Given a random vector X with density function fX, we say that X
or fX is MTP2 (multivariate totally positive of order 2) if X ≤lr X. It
is known that the multivariate likelihood ratio order as well as MTP2

property of a random vector is closed under the marginal operator.
In the univariate case, given two random variables X and Y with

density functions f and g, respectively, we say that X is less than Y in
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the likelihood ratio order, denoted by X ≤lr Y , if f(t)g(s) ≤ f(s)g(t)
for all s < t ∈ R. For more details about these orderings the reader is
referred to Shaked and Shanthikumar (2007, chapters 1 and 6).

Balakrishnan et al. (2010) considered the problem of stochastic com-
parisons of GOS’s and proved the following result.

Theorem 1.2. (Balakrishnan et al. (2010)) Let X and Y be two
absolutely continuous random variables with distribution functions F and
G, densities f and g, and hazard rates rF and rG, respectively. Let
X = (X(1,n,m,k), · · · ,X(n,n,m,k)) and Y = (Y(1,n′,m,k), · · · , Y(n′,n′,m,k)) be
random vectors of m-GOS’s based on distributions F and G, respectively.
For r1 ≤ r2 < · · · ≤ ri ≤ n, r′1 ≤ r′2 ≤ · · · ≤ r′i ≤ n′, r′1 − r1 = r′2 − r2 =
· · · = r′i − ri ≥ max{0, n′ − n}, if either
(i) X ≤lr Y and m ≥ 0, or

(ii) X ≤hr Y , rG(x)/rF (x) is increasing in x, and −1 ≤ m < 0,

then

(X(r1,n,m,k),X(r2,n,m,k), . . . ,X(ri,n,m,k)) ≤lr

(Y(r′1,n′,m,k), Y(r′2,n′,m,k), . . . , Y(r′i,n′,m,k)).

Let F denote an absolutely distribution function of a non-negative
random variable X and assume that the vector of parameters mX =
(m1,m2, . . . ,mn−1) in (1.1) for r1 < r2 < · · · < ri, {r1, r2, . . . , ri} ⊂
{1, 2, 3, . . . , n}, satisfy that

m1 = m2 = · · · = mr1−1 = μ1, mr1 = μ(r1),
mr1+1 = mr1+2 = · · · = mr2−1 = μ2 , mr2 = μ(r2),
mr2+1 = mr2+2 = · · · = mr3−1 = μ3 , mr3 = μ(r3), . . . ,
mri−1+1 = mri−1+2, · · · = mri−1 = μi, mri = μ(ri),
and mri+l = μri+l, l = 1, · · · , n− 1− ri. That is

mX = (μ1, . . . , μ1, μ
(r1)
1 , μ2, . . . , μ2, μ

(r2)
2 , . . . , μi, . . . , μi, μ

(ri),

μri+1 , μri+2 , . . . , μn−1). (1.4)

Similarly, we assume that G denote an absolutely distribution function of
a non-negative random variable Y . Let, the vector of parameters mY =
(m1,m2, . . . ,mn−1) in (1.1) for r1 < r2 < · · · < ri, {r1, r2, . . . , ri} ⊂
{1, 2, 3, . . . , n}, satisfy that

m1 = m2 = · · · = mr1−1 = γ1, mr1 = γ(r1),
mr1+1 = mr1+2 = · · · = mr2−1 = γ2 , mr2 = γ(r2),
mr2+1 = mr2+2 = · · · = mr3−1 = γ3 , mr3 = γ(r3),. . . ,
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mri−1+1 = mri−1+2, · · · = mri−1 = γi, mri = γ(ri),
and mri+l = γri+l, l = 1, · · · , n− 1− ri. That is

mY = (γ1, . . . , γ1, γ
(r1)
1 , γ2, . . . , γ2, γ

(r2)
2 , . . . , γi, . . . , γi, γ

(ri),

γri+1 , γri+2 , . . . , γn−1). (1.5)

In Section 2, we generalize Theorem 1.2 to the cases when the set of
parameters of GOS’s based on F is mX and that of GOS’s based on G is
mY (Theorem 2.6). In particular, we applied this result to obtain some
computable bounds on the mean residual of some unobserved progressive
type II censored order statistics.

Hu and Zhuang (2006) considered the problem of stochastic com-
parisons of p-spacings of GOS’s when m1 = m2 = . . . mn−1 = m
and proved that if X ≤lr Y and either X or Y has log-convex den-

sity, then D
(p)
X,r,n ≤lr D

(p)
Y,r,n, r = 0, . . . , n − p. Xie and Hu (2009)

further studied this problem and in one sample problem proved that
if m1 ≥ m2 ≥ . . . ≥ mn−1 ≥ 0 and F has log-convex density, then

D
(p)
X,r,n ≤lr D

p
X,r+1,n and D

(p)
X,r,n+1 ≤lr D

(p)
X,r,n. Fang et al. (2006) ob-

tained a multivariate likelihood ratio order result between two vectors
of 1-spacings of GOS’s in one sample problem. They showed that if F
has log-convex density and mj ≥ 0, j = 1, . . . , n, then

(D
(1)
X,1,n+1,D

(1)
X,2,n+1, . . . ,D

(1)
X,n,n+1) ≤lr (D

(1)
Y,1,n,D

(1)
Y,2,n, . . . ,D

(1)
Y,n,n)

In Section 3, we prove that if X ≤lr Y and either X or Y has log-convex
density, then

(D
(p)
X,r1,n

,D
(p)
X,r2,n

, . . . ,D
(p)
X,rn−p,n) ≤lr (D

(p)
Y,r′1,n

,D
(p)
Y,r′2,n

, . . . ,D
(p)
Y,r′n−p,n),

where D
(p)
X,rj ,n

is the jth p-spacing of GOS’s based on distribution func-

tion F with parameter mX given in (1.4) andD
(p)
Y,r′j ,n

is the jth p-spacing

of GOS’s based on distribution function G with parameter mY given in
(1.5).

2 Multivariate lr Ordering among GOS’s

We shall be using the notion of totally positive of order 2 in this paper.
We say that a function h(x, y) is totally positive of order 2 (TP2) if
h(x, y) ≥ 0 and ∣∣∣∣ h(x1, y1) h(x1, y2)

h(x2, y1) h(x2, y2)

∣∣∣∣ ≥ 0, (2.1)
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whenever x1 < x2 , y1 < y2. We use the following lemma of Karlin (1968
p. 99).

Lemma 2.3. Let A, B and C be subsets of the real line and let
L(x, z) be TP2 in (x, z) and M(x, y, z) be TP2 in each pairs of (z, x),
(z, y) and (x, y) for x ∈ A, z ∈ B and y ∈ C. Then K(x, y) =∫
L(x, z)M(x, y, z) dμ(z) is TP2 in (x, y) for x ∈ A, y ∈ C. Here μ

is a sigma-finite measure.

To prove the main results in this section we also need the following
lemma which is a modified version of Lemma 2.5 in Balakrishnan et al.
(2010).

Lemma 2.4. Given random variables X and Y with distribution
functions F and G, if μ ≥ γ and

(i) X ≤lr Y , γ ≥ 0 or

(ii) X ≤hr Y , rG(x)/rF (x) is increasing in x, −1 ≤ γ < 0,

then

(a) hγ(G(x))/hμ(F (x)) is increasing in x ∈ R, and

(b) for μ ≥ γ, the function

l(x, y) =
hγ(G(y))− hγ(G(x))

hμ(F (y))− hμ(F (x))

is increasing in (x, y) ∈ R, where

hm(x) =

{ 1
m+1 (1− (1− x)m+1), m �= −1

− log(1− x), m = −1.
(2.2)

Proof. Let for μ �= −1, γ �= −1, h∗1(x) and h∗2(x) be derivatives of
hμ(F (x)) and hγ(G(x)) with respect to x, respectively. That is h∗1(x) =
f(x)(F̄ (x))μ, h∗2(x) = g(x)(Ḡ(x))γ .

Let (i) holds, we give the proofs of parts (a) and (b).
(a) For x ≥ 0 and i = 1, 2 denote

ϕi(x) =

∫ ∞

0
h∗i (w).I(0<w≤x)(w)dw.

Since the likelihood ratio order implies the hazard rate order and μ ≥ γ,
it follows that

h∗2(x)
h∗1(x)

=
g(x)

f(x)

[
Ḡ(x)

F̄ (x)

]γ [
1

F̄ (x)

]μ−γ



On Multivariate Likelihood Ratio Ordering among ... 7

is increasing in x ∈ 	+. That is, the function h∗i (w) is TP2 in (i, w) ∈
{1, 2} × 	+. On the other hand, the function I(0<w≤x)(w) is TP2 in
(w, x) ∈ (0, x) × 	+. Combining these observations, it follows from
Lemma 2.3 that ϕi(x) is TP2 in (i, x) ∈ {1, 2}×	+ which is the required
result.

(b) For y ≥ x and i = 1, 2, let

ψi(x, y) =

∫ ∞

0
h∗i (w)I(x<w≤y)(w)dw.

From part (a), the function h∗i (w) is TP2 in (i, w) ∈ {1, 2} × 	+. It
is easy to show that the indicator function I(x<w≤y) is TP2 in (w, x) ∈
	+ × (0, y) for each fixed y ∈ 	+, and is TP2 in (w, y) ∈ 	+ × (x,∞)
for each fixed x ∈ 	+. Therefore, by Lemma 2.3, the function ψi(x, y)
is TP2 in (i, x) ∈ {1, 2} × (0, y) for each fixed y ∈ 	+ and is TP2 in
(i, y) ∈ {1, 2} × (x,∞) for each fixed x ∈ 	+ which are equivalent to
that

l(x, y) =
ψ2(x, y)

ψ1(x, y)

is increasing in (x, y) ∈ 	2
+, y ≥ x.

Now, let (ii) holds. It is seen that
� For −1 < γ < 0,

h∗2(x)
h∗1(x)

=
g(x)

f(x)

[
Ḡ(x)/g(x)

F̄ (x)/f(x)

]γ [
g(x)

f(x)

]γ
=

[
g(x)

f(x)

]γ+1

×
[
rF (x)

rG(x)

]γ
×
[

1

F̄ (x)

]μ−γ

(2.3)

is increasing in x ∈ 	+, since if rG(x)/rF (x) is increasing in x and
X ≤hr Y then X ≤lr Y (cf. Belzunce et al., (2001), Lemma 3.5).
� For γ = −1 and μ = −1, if rG(x)/rF (x) is increasing in x, then

h−1(G(x))

h−1(F (x))
=

− log Ḡ(x)

− log F̄ (x)

=

∫ u
0 rG(u)du∫ x
0 rF (u)du

(2.4)

is increasing in x ∈ 	+.
Now, the required results follows by the same arguments used to prove
the results under the assumptions given in (i).
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� For γ = −1 and μ > −1, define derivative of h−1(G(x)) by h∗3(x) =
g(x)
Ḡ(x)

, and

ςi(x) =

∫ ∞

0
h∗i (w).I(0<w≤x)(w)dw,

where x ≥ 0 and i = 1, 3. Since the hazard rate order satisfies and
μ+ 1 > 0, thus

h∗3(x)
h∗1(x)

=
rG(x)

rF (x)

[
1

F̄ (x)

]μ+1

is increasing in x ∈ 	+. That is, the function h∗i (w) is TP2 in (i, w) ∈
{1, 3} × 	+. On the other hand, the function I(0<w≤x)(w) is TP2 in
(w, x) ∈ (0, x) ×	+. With using these observations and again applying
Lemma 2.3, we conclude that ςi(x) is TP2 in (i, x) ∈ {1, 3} × 	+. This
completes the proof of the Lemma.

Let X
(i)
mX = (X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k)) be a sub-

vector of GOS’s based on absolutely continuous distribution function F ,
where mX is the same as that in (1.4). To prove the main results we

need to derive an expression for the density function of X
(i)
mX , denoted

by fr1,r2,...,ri , which is of independent interest, includes the m-GOS’s as
an special case, covers the results of Lemma 2.6 in Balakrishnan et al.
(2010) and generalizes the result of Lemma 3.1.7. in Kamps (1995a).

Lemma 2.5. Given a random vector (X(1,n,mX,k), · · · ,X(n,n,mX,k)) of
GOS’s from an absolutely continuous distribution function F and density

function f , the joint density of X
(i)
mX for r1 < r2 < · · · < ri, i ≤ n and

xr1 < xr2 < · · · < xri is given by

f(r1,r2,...,ri)(xr1 , xr2 , . . . , xri)

=
cri−1

(r1 − 1)!
∏i−1

j=1(rj+1 − rj − 1)!
(F (xri))

k+n−ri+Mri
−1f(xri)h

r1−1
μ1

(F (xr1))

×
i−1∏
j=1

(F (xrj ))
μ(rj )

[hμj+1 (F (xrj+1 ))− hμj+1(F (xrj ))]
rj+1−rj−1f(xrj ),(2.5)

where cri−1 =
∏ri

i=1 γi and hm and mX are as given in (2.2) and (1.4),
respectively.

Proof. It follows from (1.2) that the distribution of

(X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k))
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is the same as that of

(F−1(U(r1, n,mX, k)), F
−1(U(r2, n,mX, k)), . . . , F

−1(U(ri, n,mX, k))).
(2.6)

The joint density function of

(U(r1, n,mX, k), U(r2, n,mX, k), . . . , U(ri, n,mX, k))

can be derived as follows:

h(r1,r2,...,ri)(ur1 , ur2 , . . . , uri)

=

∫ ur1

0

∫ ur1

u1

· · ·
∫ ur1

ur1−2

∫ ur2

ur1

∫ ur2

ur1+1
· · ·
∫ ur2

ur2−2
· · ·∫ uri−1

uri−1−2

∫ uri

uri−1

∫ uri

uri−1+1

· · ·
∫ uri

uri−3

∫ uri

uri−2

h(u1, u2 · · · , uri)

duri−1duri−2 · · · duri−1+2duri−1+1duri−1−1 . . .

dur2−1 · · · dur1+2dur1+1dur1−1 · · · du2du1
=

∫ ur1

0

∫ ur1

u1

· · ·
∫ ur1

ur1−2

∫ ur2

ur1

∫ ur2

ur1+1
· · ·∫ ur2

ur2−2
· · ·
∫ uri−1

uri−1−2

∫ uri

uri−1

∫ uri

uri−1+1

· · ·∫ uri

uri−3

∫ uri

uri−2

cri−1(1− uri)
k+n−ri+Mri−1Πr1−1

j=1 h
′
μ1
(uj)(1 − ur1)

mr1

×Πr2−1
j=r1+1h

′
μ2
(uj)(1 − ur2)

mr2Πr3−1
j=r2+1h

′
μ3
(uj) · · ·

×(1− uri−1)
mri−1Πri−1

j=ri−1+1h
′
μi
(uj)

duri−1duri−2 · · · duri−1+2duri−1+1duri−1−1 . . . dur2−1 · · ·
dur1+2dur1+1dur1−1 · · · du2du1

= cri−1(1− uri)
k+n−ri+Mri−1

×
∫ ur1

0

∫ ur1

u1

· · ·
∫ ur1

ur1−2

Πr1−1
j=1 h

′
μ1
(uj)(1− ur1)

mr1∫ ur2

ur1

∫ ur2

ur1+1
· · ·
∫ ur2

ur2−2

Πr2−1
j=r1+1h

′
μ2
(uj)(1− ur2)

mr2 · · ·∫ uri−1

uri−1−2

∫ uri

uri−1

∫ uri

uri−1+1

· · ·∫ uri

uri−3

∫ uri

uri−2

Πri−1
j=ri−1+1h

′
μi
(uj)(1− uri−1)

mri−1
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duri−1duri−2 · · · duri−1+2duri−1+1duri−1−1 . . . dur2−1 · · ·
dur1+2dur1+1dur1−1 · · · du2du1

=
cri−1

(ri − ri−1 − 1)!(ri−1 − ri−2 − 1)! . . . (r2 − r1 − 1)!(r1 − 1)!

×(1− uri)
k+n−ri+Mri−1(1− uri−1)

mri−1 . . . (1− ur1)
mr1

×[hμi(uri)− hμi(uri−1)]
ri−ri−1−1

×[hμi−1(uri−1)− hμi−1(uri−2)]
ri−1−ri−2−1 · · ·

×[hμ2(ur2)− hμ2(ur1)]
r2−r1−1hr1−1

μ1
(ur1)

=
cri−1

(r1 − 1)!
∏i−1

j=1(rj+1 − rj − 1)!
(1− uri)

k+n−ri+Mri−1hr1−1
μ1

(ur1)

×
i−1∏
j=1

(1− urj)
mrj [hμrj+1

(urj+1)− hμj+1(urj )]
rj+1−rj−1. (2.7)

The result in (2.5) follows by using (2.6) in (2.7).

It is well known that for specific sets of parameters, n, k and mi,
i = 1, . . . , n−1, the GOS’s are reduced to the well known ordered random
variables. Below we discuss the ordinary order statistics, k record values
and Pfeifer’s record values.

(A) Order Statistics corresponding to a random sample from an abso-
lutely continuous distribution function F denoted by X1:n ≤ . . . ≤
Xn:n are special cases of GOS’s with m1 = . . . = mn−1 = 0, k = 1.
In this case γr = n−r+1, r = 1, . . . , n−1. With these settings the
joint density function given in (2.5) is reduced to the joint density
function of Xr1:n, . . . ,Xri:n and it is given by

fXr1:n,...,Xri:n
(xr1 , . . . , xri)

=
n(n− 1) . . . (n− ri + 1)

(r1 − 1)!
∏i−1

j=1(rj+1 − rj − 1)!
f(xr1)F (x)

r1−1

×
i−1∏
j=1

(F (xrj+1)− F (xrj ))
rj+1−rj−1

×f(xrj)f(xri)F n−ri(xri). (2.8)

It was used in Yao et al. (2008) to investigate dependence proper-
ties of generalized spacings of ordinary order statistics.

(B) k-Records. Let {Xi, i ≥ 1} be a sequence of i.i.d random variables
from an absolutely continuous distribution F and let k be a posi-
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tive integer. The random variables L(k)(n) given by L(k)(1) = 1,

L(k)(n+1) = min{j ∈ N ;Xj:j+k−1 > XL(k)(n):L(k)((n)+k−1)}, n ≥ 1,

are called the nth k-th record times and the quantities
XL(k)(n):L(k)((n)+k−1) which we denote by Rk

n are termed the nth
k-records (cf. Kamps, 1995a, p.34).

In the case m1 = . . . = mn−1 = −1 and k ∈ N , the first n GOS’s
based on the distribution F are reduced to the first n k-records
corresponding to a sequence of independent random variables from
F . In this case γr = k, r = 1, . . . , n − 1. With these settings the
joint density function given in (2.5) is reduced to the joint density
function of Rk

r1 , . . . , R
k
ri and is given by

fRk
r1

,...,Rk
ri
(xr1 , . . . , xri)

=
kri

(r1 − 1)!
∏i−1

j=1(rj+1 − rj − 1)!

×(F (xri)
k−1f(xri))(− log(F (xr1)))

r1−1

×
⎛⎝i−1∏

j=1

((− log(F (xrj+1))
) − (− log(F (xrj )))

) f(xrj)
F (xrj )

⎞⎠ .(2.9)

According to the best of our knowledge the above result is only
available in the literature for the case when i = 2 (cf. Kampsa,
1995, p. 68).

(C) Pfeifer Model For k = 1 the k-records model reduces to the
well know classic record model and for this model it is known that
successive record values follows the conditional distribution given
by

P (Rn > x|Rn−1 = x) =
1− F (y)

1− F (x)
, for y > x. (2.10)

Pfeifer (1982a) generalized the above model and consider a model
in which the successive (upper) records values constitute a Markov
chain with nonstationary transition distribution given by

P (R∗
r > x|R∗

r−1 = x) =
1− Fr(y)

1− Fr(x)
, for y > x.

Such a dependence structure for the record value sequence can
be produced as follows. Suppose we have a double array of in-
dependent random variables {Xl,j ; l, j ≥ 1} such that Xl,j dis-
tribution function Fl, l ≥ 1. Now take R∗

1 = X1,1 and define
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δl+1 = min{j : Xl+1,j > R∗
l } and R∗

l = Xl,δl for l ≥ 1, such that
δ1 = 1. This setting is called Pfeifer record model (cf. Arnold, Bal-
akrishnan and Nagaraja, 1998, p.198 and Kampsa, 1995, p. 36).
Pfeifer (1982b) showed that the sequence of jump-time generated
by a pure birth process is identically distributed with records from
Pfeifer models. Therefore the new results obtained here can be
applied to this kind of Process.

For given positive real numbers β1, . . . βn, the model of GOS’s
based on distribution F with parameters mi = βi − βi+1 − 1,
i = 1, . . . , n − 1, k = βn and therefore γi = βi, i = 1, . . . , n− 1, is
reduced to the Pfeifer’s record model based on distribution

Fr(t) = 1− (1 − F (t))βr , (2.11)

where Fr is the underlying distribution function until the rth
record occurs.

Now, let for r1 < r2 < r3 < n, β1 = . . . = βr1 , βr1+1 = . . . = βr2 ,
βr2+1 = . . . = βr3 and βl > 0, l = r3 + 1, . . . , n. That is mX in
(1.4) is

(−1, . . . ,−1, βr1 − βr1+1 − 1,−1, . . . ,−1, βr2 − βr2+1 − 1, (2.12)

−1, . . . ,−1, βr3 − βr3+1 − 1, βl − βl+1 − 1, l = r3 + 1, . . . n− 1).

Therefore, μ1 = μ2 = μ3 = −1, μ
(r1)
1 = βr1 − βr1+1 − 1, μ

(r2)
2 =

βr2−βr2+1−1 and μ
(r3)
3 = βr3−βr3+1−1. Using these observations,

then the joint density function of R∗
r1 , R

∗
r2 and R∗

r3 is

fR∗
r1

,R∗
r2

,R∗
r3
(xr1 , xr2 , xr3)

=
βr1
r β

r2−r1
r+1 βr3−r2

r3

(r1 − 1)!(r2 − r1 − 1)!(r3 − r2 − 1)!
(2.13)

× (F (xr3)
βn−1f(xr3))(− log(F (xr1)))

r1−1

× F (xr1)
βr1−βr1+1−1

(− log(F (xr2 ))− (− log(F (xr1)))
)r2−r1−1

f(xr1)

× F (xr2)
βr2−βr2+1−1

(− log(F (xr3 ))− (− log(F (xr2)))
)r3−r2−1

f(xr2).

In this section we use this new expression to compare the above
vector of Pfeifer records with that of classic records values accord-
ing to the multivariate likelihood ratio ordering.

As discussed in Kamps (1995a,b), there are many other models like
sequential order statistics, order statistics with non-integral sample size
etc which can also be expressed as special cases of GOS’s.
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Next result generalizes the results of Theorem 3.19 in Balakrishnan
et al. (2010).

Theorem 2.6. Let X and Y be two absolutely continuous random
variables with distribution F and G, densities f and g, and hazard
rates rF and rg, respectively. Let (X(1,n,mX,k), · · · ,X(n,n,mX,k)) and
(Y(1,n,mY,k′), · · · , Y(n,n,mY,k′)) be random vectors of GOS’s based on dis-

tributions F and G, respectively, where mX and mY are as given in (1.4)
and (1.5). Let also r1 ≤ r2 < · · · ≤ ri ≤ n, r′1 ≤ r′2 < · · · ≤ r′i ≤ n′ and
r′1 − r1 = r′2 − r2 = · · · = r′i − ri ≥ max{0, n′ − n}. For j = 1, . . . , i,

γj ≤ μj , γ
(r′j) ≤ μ(rj), k ≥ k

′
and (n− n′) + (r′i − ri) + (Mri −Mr′i) ≥ 0

if

(i) X ≤lr Y and γj ≥ 0,γ(r
′
j ) ≥ 0 or

(ii) X ≤hr Y , rG(x)/rF (x) is increasing in x, and −1 ≤ γj ≤ 0,
−1 ≤ γ(rj) ≤ 0,

then

(X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k))

≤lr (Y(r′1,n′,mY,k′), Y(r′2,n′,mY,k′), . . . , Y(r′i,n′,mY,k′)). (2.14)

Proof. (i). It is known that the vector of GOS’s is MTP2 (cf. Belzunce
et al. (2005)). It is also known that any sub-vector of a MTP2 vec-
tor is MTP2. That is MTP2 property is preserved under marginal-
ization. Combining these observations, it follows that both vectors
(X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k)) and
(Y(r′1,n′,mY,k

′
), Y(r′2,n′,mY,k

′
), . . . , Y(r′i,n′,mY,k

′
)) are MTP2. Using this ob-

servation, to prove the required result, we only need to show that

gr′1,r′2,··· ,r′i(x1, x2, . . . , xi)
fr1,r2,··· ,ri(x1, x2, . . . , xi)

is increasing in (x1 < x2 < . . . < xi) ∈ R
i,

(2.15)
where fr1,r2,··· ,ri and gr′1,r′2,··· ,r′i denote the joint densities of (X(r1,n,mX,k),
X(r2,n,mX,k), . . . ,X(ri,n,mX,k)) and
(Y(r′1,n′,mY,k

′
), Y(r′2,n′,mY,k

′
), . . . , Y(r′i,n′,mY,k

′
)), respectively (cf. Hu,

Khaledi and Shaked (2003), Remark 3.1).

Let δ1 = μ(rj)−γ(r′j) and δ2 = (k−k′
)+(n−n′)+(r′i−ri)+(Mri−Mr′i).
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Now, using (2.5), for x1 < x2 < . . . < xi,

gr′1,r′2,··· ,r′i(x1, x2, . . . , xi)
fr1,r2,··· ,ri(x1, x2, . . . , xi)

∝ g(xi)

f(xi)

(
G(xi)

F (xi)

)k
′
+n′−r′i+Mr′

i

×
(

1

F (xi)

)δ2 i−1∏
j=1

(
G(xj)

F (xj)

)γ
(r′j) (

1

F (xj)

)δ1 g(xj)

f(xj)

×
(
(hγ1(G(x1)))

r′1−1

(hμ1(F (x1)))
r1−1

)
i−1∏
j=1

(
(hγj+1(G(xj+1))− hγj+1(G(xj)))

r′j+1−r′j−1

(hμj+1 (F (xj+1))− hμj+1(F (xj)))
rj+1−rj−1

)
.

Under the assumptions given in (i),

g(xi)

f(xi)
,
g(xj)

f(xj)
,
G(xi)

F (xi)

k
′
+n′−r′i+Mr′

i

,

(
1

F (xi)

)δ2

,

(
1

F (xj)

)δ1

and

(
G(xj)

F (xj)

)γ
(r′j)

(2.16)

are increasing in xi ∈ R. On the other hand, for γ1 ≤ μ1, it follows

from Lemma 2.4 (a) that
(hγ1 (G(x1)))

r′1−1

(hμ1 (F (x1))
r1−1 is increasing in x1 ∈ R and for

γj ≤ μj , it follows from Lemma 2.4 (b) that(
hγj+1(G(xj+1))− hγj+1(G(xj))

)r′j+1−r′j−1(
hμj+1(F (xj+1))− hμj+1(F (xj))

)rj+1−rj−1

is increasing function in xj as well as xj+1.

Combining these observations, (2.15) is proved.

The proof of part (ii) is similar to that of part (i) and is omitted.

Example 2.7. Let {Rk
n, n ≥ 1} be the sequence of k record val-

ues introduced in (B) based on an absolutely continuous distribution
function G and {R∗

n, n ≥ 1} be the sequence of Pfeifer’s record values
introduced in (C). If βi ≥ βi+1, i = 1, . . . , n − 1, k ≥ βn. That is
mX and mY in the statement of Theorem 2.6 are respectively given
by (2.12) and (−1,−1, . . . ,−1, k). With these setting if F ≤hr G and
rG(x)/rF (x) is increasing in x, then it follows from Theorem 2.6 (ii) that
for r1 < r2 < r3,

(R∗
r1 , R

∗
r2 , R

∗
r3) ≤lr (R

k
r1 , R

k
r2 , R

k
r3)
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Theorem 2.8. Under the assumptions of Theorem 2.6

[X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k)|
X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k) ∈ L] ≤lr

[Y(r′1,n′,mY,k′), Y(r′2,n′,mY,k′), . . . , Y(r′i,n′,mY,k′)|
Y(r′1,n′,mY,k′), Y(r′2,n′,mY,k′), . . . , Y(r′i,n′,mY,k′) ∈ L]

for all sublattices L ⊆ R
n.

Proof. Using (2.14), the required result follows from Theorem 6.E.2 of
Shaked and Shanthikumar (2007).

The reader is referred to Balakrishnan et al. (2010) for various exam-
ples of this result, given the different interesting sublattices. An example
is given next.

Example 2.9. Let (X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k)) and
(Y(r′1,n′,mY,k), Y(r′2,n′,mY,k), . . . , Y(r′i,n′,mY,k)) be two sub-vectors of GOS’s
defined under the setup of Theorem 2.6. Let also that (x(1) ≤ · · · ≤
x(n)) denote a non-decreasing arrangement of the components of a vector
(x1, · · · , xn) ∈ R

n. Now, consider the sublattice L1 = [(x(1), · · · , x(n)) ∈
R
n|x(1) > t1, x(3) < t2]. Then, from Theorem 2.8 for t1, t2 ∈ R and

t1 ≤ t2, we have that

[X(r2,n,mX,k) − t1|X(r1,n,mX,k) > t1,X(r3,n,mX,k) < t2]

≤lr [Y(r′2,n′,mY,k) − t1|Y(r′1,n′,mY,k) > t1, Y(r′3,n′,mY,k) < t2].

In particular, let r′1 = 4, r′2 = 6, r′3 = 8, r1 = 2, r2 = 4, r3 = 6 then

[X(4,n,mX,k) − t1|X(2,n,mX,k) > t1,X(6,n,mX,k) < t2]

≤lr [Y(6,n′,mY,k) − t1|Y(4,n′,mY,k) > t1, Y(8,n′,mY,k) < t2].

Note that this comparison does not follow from the results obtained
in Balakrishnan et al. (2010).

3 Multivariate lr Ordering among Spacings of

GOS’s

A random variable X with density function f is decreasing likelihood
ratio (DLR) if f is log-convex and is increasing likelihood ratio (ILR) if
f is log-concave. It is known that if f is DLR, then F is log-convex and

f(x+ δ)

f(x)
is increasing in x ≥ 0;
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and if f is ILR, then F is log-concave and

f(x+ δ)

f(x)
is decreasing in x ≥ 0.

For more details of DLR and ILR, the reader is referred to Barlow
and Proschan(1981), Shaked and Shanthikumar (1987) and Righter and
Shanthikumar (1992).
We need the following lemma to prove the main result in this section.

Lemma 3.10. Let X be a DLR (ILR) nonnegative random variable
with distribution function F and λ ≥ 1. Then,

(a) for, x > 0 and u2 > u1 > 0,

φ(x, u) =
F̄ λ(x+ u2)− F̄ λ(u2)

F̄ λ(x+ u1)− F̄ λ(u1)
(3.1)

is increasing [decreasing] in x.

(b) The function

ψδ(x, u) =
F̄ λ(x+ u+ δ) − F̄ λ(u+ δ)

F̄ λ(x+ u)− F̄ λ(u)
(3.2)

is increasing [decreasing] in (x, u) ∈ R
2
+ for each δ > 0.

(c) For u > 0 and x2 > x1 > 0, the function

ψδ(x, u) =
F̄ λ(x2 + u+ δ)− F̄ λ(u+ δ)

F̄ λ(x1 + u)− F̄ λ(u)
(3.3)

is increasing [decreasing] in u.

Proof. Let Y be a random variable with survival function Ḡ(x) = [F̄ (x)]λ

(λ ≥ 1) and density function g(x) = (λ)f(x)F̄ λ−1(x). Now, for any
δ > 0,

g(x+ δ)

g(x)
= λ

f(x+ δ)

f(x)

(
F̄ (x+ δ)

F̄ (x)

)λ−1

is increasing in x. That is the random variable Y is DLR. Now, part
(a) follows from Lemma 2.2 in Xu and Li (2006) and parts (b) and (c)
follow from Lemma 2.3 in Yao et al. (2008).

Let (X(r1,n,mX,k),X(r2,n,mX,k), . . . ,X(ri,n,mX,k)) be an i-dimensional
sub-vectors of GOS’s as given in Lemma 2.5. With rj − rj−1 = p,
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j = 2, . . . , i and p ≥ 1, the multivariate density function of the vector of
p-spacings

D
(p)
X = (D

(p)
X,r1,n

,D
(p)
X,r2,n

, . . . ,D
(p)
X,ri−p,n) (3.4)

is given by

f
D

(p)
X

(y1, y2, · · · , yi)

= Cr

[
F̄

(
i∑

l=1

yl

)]k+n−ri+Mri−1 i−1∏
j=1

[
F̄

(
j∑

l=1

yl

)]μ(rj )

(3.5)

i∏
j=1

[
hμj

(
F

(
j∑

l=1

yl

))
− hμj

(
F

(
j−1∑
l=1

yl

))]p−1

f

(
j∑

l=1

yl

)
,(3.6)

where Cr =
cri−1

(r1−1)!(p−1)i−1 , D
(p)
X,rj ,n

= X(rj+p,n,mX,k) −X(rj ,n,mX,k), j =

1, · · · , i− 1, X(0,n,mX,k) = 0 and hμj (F̄ (
∑0

l=1 yl)) = 0.

Next we prove the MTP2 property of D
(p)
X given in (3.4).

Theorem 3.11. Let (X(1,n,mX,k), · · · ,X(n,n,mX,k)) be random vector
of GOS’s based on distribution F with mX given in (1.4) for which

μj ≥ 0 and μ(rj) ≥ 0, j = 1, · · · , i. If F is DLR, then D
(p)
X is MTP2.

Proof. The assumption that f is log-convex implies that F is log-convex
which in turn is equivalent to that F (u + v)) is TP2 in u and v. Us-

ing this observation, the function
[
F̄
(∑i

l=1 yl

)]k+n−ri+Mri−1
is TP2 in

every pair of variables when the remaining variables are held fixed. On
the other hand, the support of the spacings is lattice. Now, it follows

from Karlin and Rinott (1980, p.469) that
[
F̄
(∑i

l=1 yl

)]k+n−ri+Mri−1

is MTP2. Using the same kind of arguments, we find that the functions∏i−1
j=1

[
F̄
(∑j

l=1 yl

)]μ(rj )

in (3.5) and f
(∑j

l=1 yl

)
in (3.6) are MTP2.

To prove the required result we show that[
hμj (F (

∑j
l=1(xl ∨ yl))− hμj (F (

∑j−1
l=1 xl ∨ yl))

]
[
hμj (F (

∑j
l=1 xl))− hμj (F (

∑j−1
l=1 xl))

]
≥

[
hμj (F (

∑j
l=1 yl))− hμj (F (

∑j−1
l=1 yl))

]
[
hμj (F (

∑j
l=1(xl ∧ yl))− hμj (F (

∑j−1
l=1 xl ∧ yl))

] .
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Now, for (x1, . . . , xj) and (y1, . . . , yj), let δ =
∑j−1

l=1 (xl ∨ yl)−
∑j−1

l=1 xl.
Since

j−1∑
l=1

(xl ∨ yl) +
j−1∑
l=1

(xl ∧ yl) =
j−1∑
l=1

xl +

j−1∑
l=1

yl,

then

δ =

j−1∑
l=1

yl −
j−1∑
l=1

(xl ∧ yl). (3.7)

First, assume that xj ≥ yj, then

[
hμj (F (

∑j
l=1(xl ∨ yl))− hμj (F (

∑j−1
l=1 xl ∨ yl))

]
[
hμj (F (

∑j
l=1 xl))− hμj (F (

∑j−1
l=1 xl))

]
=

[
hμj (F (xj +

∑j−1
l=1 xl + δ)) − hμj (F (

∑j−1
l=1 xl + δ))

]
[
hμj (F (xj +

∑j−1
l=1 xl))− hμj (F (

∑j−1
l=1 xl))

]
=
F̄μj+1(xj +

∑j−1
l=1 xl + δ) − F̄μj+1(

∑j−1
l=1 xl + δ))

F̄μj+1(xj +
∑j−1

l=1 xl))− F̄μj+1(
∑j−1

l=1 xl))

≥ F̄μj+1(xj +
∑j−1

l=1 xl ∧ yl + δ)− F̄μj+1(
∑j−1

l=1 xl ∧ yl + δ)

F̄μj+1(xj +
∑j−1

l=1 xl ∧ yl)− F̄μj+1(
∑j−1

l=1 xl ∧ yl)

=
F̄μj+1(xj +

∑j−1
l=1 yl)− F̄μj+1(

∑j−1
l=1 yl)

F̄μj+1(xj +
∑j−1

l=1 xl ∧ yl)− F̄μj+1(
∑j−1

l=1 xl ∧ yl)
(3.8)

≥ F̄μj+1(
∑j

l=1 yl)− F̄μj+1(
∑j−1

l=1 yl)

F̄μj+1(
∑j

l=1 xl ∧ yl)− F̄μj+1(
∑j−1

l=1 xl ∧ yl)

=

[
hμj (F (

∑j
l=1 yl))− hμj (F (

∑j−1
l=1 yl))

]
[
hμj (F (

∑j
l=1(xl ∧ yl))− hμj (F (

∑j−1
l=1 xl ∧ yl))

] (3.9)

The first inequality follows from Lemma 3.10 (b), since
∑j−1

l=1 xl ≥∑j−1
l=1 xl ∧ yl. The equality in (3.8) follows from (3.7). The second

inequality follows from Lemma 3.10 (a), since xj ≥ yj.
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Now, let xj ≤ yj,[
hμj (F (

∑j
l=1(xl ∨ yl))− hμj (F (

∑j−1
l=1 xl ∨ yl))

]
[
hμj (F (

∑j
l=1 xl))− hμj (F (

∑j−1
l=1 xl))

]
=

[
hμj (F (yj +

∑j−1
l=1 xl + δ)) − hμj (F (

∑j−1
l=1 xl + δ))

]
[
hμj (F (xj +

∑j−1
l=1 xl))− hμj (F (

∑j−1
l=1 xl))

]
=
F̄μj+1(yj +

∑j−1
l=1 xl + δ)− F̄μj+1(

∑j−1
l=1 xl + δ))

F̄μj+1(xj +
∑j−1

l=1 xl))− F̄μj+1(
∑j−1

l=1 xl))

≥ F̄μj+1(yj +
∑j−1

l=1 xl ∧ yl + δ) − F̄μj+1(
∑j−1

l=1 xl ∧ yl + δ)

F̄μj+1(xj +
∑j−1

l=1 xl ∧ yl)− F̄μj+1(
∑j−1

l=1 xl ∧ yl)
(3.10)

=
F̄μj+1(yj +

∑j−1
l=1 yl)− F̄μj+1(

∑j−1
l=1 yl)

F̄μj+1(xj +
∑j−1

l=1 xl ∧ yl)− F̄μj+1(
∑j−1

l=1 xl ∧ yl)
(3.11)

=
F̄μj+1(

∑j
l=1 yl)− F̄μj+1(

∑j−1
l=1 yl)

F̄μj+1(
∑j

l=1 xl ∧ yl)− F̄μj+1(
∑j−1

l=1 xl ∧ yl)

=

[
hμj (F (

∑j
l=1 yl))− hμj (F (

∑j−1
l=1 yl))

]
[
hμj (F (

∑j
l=1(xl ∧ yl))− hμj (F (

∑j−1
l=1 xl ∧ yl))

] (3.12)

The inequality (3.10) follows from part (c) of Lemma 3.10, since xj < yj
and

∑j−1
l=1 xl ≥

∑j−1
l=1 (xl ∧ yl). The equality (3.11) follows from (3.7).

Therefore, the density function of D
(p)
X given in (3.4) is a product

of four non-negative MTP2 functions which in turn is MTP2. This
completes the proof of the required result.

Remark 3.12. Theorem 3.11 generalized the result of Theorem 3.1
in Yao et al. (2008) from the particular case of usual order statistics to
GOS’s.

Let (Y(r′1,n′,mY,k), Y(r′2,n′,mY,k), . . . , Y(r′i,n′,mY,k)) be another i-dimensional
vector of GOS’s based on distribution G as given in the statement of
Theorem 2.6. With r′j − r′j−1 = p, j = 2, . . . , i, p ≥ 1, the corresponding
vector of p-spacings is denoted by

D
(p)
Y = (D

(p)
Y,r′1,n

,D
(p)
Y,r′2,n

, . . . ,D
(p)
Y,r′i−p,n

), (3.13)

where D
(p)
Y,r′j ,n

= Y(r′j+p,n,mY,k) − Y(r′j ,n,mY,k), j = 1, · · · , i− 1 and

Y(0,n,mY,k) = 0.
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Theorem 3.13. Let D
(p)
X and D

(p)
Y be as defined by (3.4) and (3.13).

If either X or Y is DLR then under the assumptions of Theorem 2.6,

D
(p)
X ≤lr D

(p)
Y . (3.14)

Proof. If we show that the ratio

f
D

(p)
Y

(y1, y2, · · · , yi)
f
D

(p)
X

(y1, y2, · · · , yi) (3.15)

is increasing in yj, j = 1, · · · , i, then the required result follows from

Remark 3.1 in Hu et al. (2003), since by Theorem 3.11 the vector D
(p)
X

is MTP2. That is we have to show that the ratio

f
D

(p)
Y

(y1, y2, · · · , yi)
f
D

(p)
X

(y1, y2, · · · , yi)

∝
[
Ḡ(
∑i

l=1 yl)

F̄ (
∑i

l=1 yl)

]n′−r′i+Mr′
i

(
1

F̄ (
∑i

l=1 yl)

)δ2 i−1∏
j=1

(
Ḡ(
∑j

l=1 yl)

F̄ (
∑j

l=1 yl)

)γ
(r′j )

(3.16)

×
(

1

F̄ (
∑j

l=1 yl)

)δ1
g(
∑j

l=1 yl)

f(
∑j

l=1 yl)
(3.17)

×
i∏

j=1

⎡⎣
[
hμj

(
G
(∑j

l=1 yl

))
− hμj

(
G
(∑j−1

l=1 yl

))]
[
hγj

(
F
(∑j

l=1 yl

))
− hγj

(
F
(∑j−1

l=1 yl

))]
⎤⎦p−1

(3.18)

is increasing yj, j = 1, . . . , i. Using the assumption that X ≤lr Y

and X ≤hr Y , we get that the functions
g(
∑j

l=1 yl)

f(
∑j

l=1 yl)
and

Ḡ(
∑j

l=1 yl)

F̄ (
∑j

l=1 yl)
are

increasing in yj, j = 1, . . . , i. On the other hand, using the facts that the
function I(x+yk,x+yk+yj)(w) is TP2 in x and w, X ≤lr Y and the similar
arguments used to prove Lemma 2.4, we observe that for j = 1, . . . , i
and x =

∑j−1
l �=k yl, the function[
hγj

(
G
(∑j

l=1 yl

))
− hγj

(
G
(∑j−1

l=1 yl

))]
[
hμj

(
F
(∑j

l=1 yl

))
− hμj

(
F
(∑j−1

l=1 yl

))]
=
hγj (G(x+ yk + yj))− hγj (G(x+ yk))

hμj (F (x+ yk + yj))− hμj (F (x+ yk))
,

is increasing in yk, k = 1, . . . , j−1 and yj. Combining these observations,
it follows that the ratio given in (3.15) is increasing in each yk, k =
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1, . . . , i, when the remaining arguments are held fixed. This complete
the proof of the required result.

4 An Application

In this section we introduce an important particular case of GOS’s called
progressive type II censored order statistics and applied some of the new
results to obtain some computable bounds on the mean residual life of
unobserved progressive type II censored order statistics.

Let X1, . . . ,XN be independent lifetimes of N identical units, with
Xi having absolutely continuous distribution function F . These units
are placed on test at time t = 0. At the time of the ith failure, Ri,
1 ≤ i ≤ n, number of surviving units are randomly withdrawn from the
experiment . Thus, if n failures are observed then R1+ . . .+Rn number
of units are progressively censored; hence N = n +R1 + . . . +Rn. The

censoring scheme is denoted by the vector R̃ = (R1, . . . , Rn) and X
R̃
i:n:N ,

i = 1, . . . , n, the ith failure time, is called the ith progressive type II
censored order statistic. The progressive type II censored order statistic
are special cases of GOS’s withmi = Ri, i = 1, . . . , n−1 and k = Rn+1.
For a detailed description of other special cases the readers is referred
to Kamps (1995a, b), Balakrishnan and Aggarwala (2000), Belzunce et
al. (2005), Balakrishnan (2007) and Balakrishnan et al. (2010).

Let n ≥ 2 (and hence N ≥ 2 ),

cri−1,n =

ri∏
j=1

γj,n, 1 ≤ ri ≤ n and

al,ri,n =

ri∏
j=1,j �=l

1

γj,n − γl,n
, 1 ≤ l ≤ ri ≤ n, (4.1)

where γj,n = n−j+1+
∑n

k=j Rk, for j = 1, . . . , n and the empty product∏
∅ is defined to be 1. From the definition of the γ’s it can be easily

derived that N = γ1,n > . . . > γn,n ≥ 1 such that γj,n �= γl,n for l �= j.

The marginal survival function of XR̃
ri:n:N

based on F is given by

F R̃
Xri:n:N

(x) = cri−1,n

ri∑
l=1

al,ri,n
γl,n

[
F̄ (x)

]γl,n , ri = 1, . . . , n (4.2)

(cf. Kamps and Cramer, 2001, Lemma 1). If F is absolutely continuous
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with density function f , then we obtain density function of XR̃
ri:n:N

as

f R̃Xri:n:N
(x) = cri−1,n

ri∑
l=1

al,ri,n
[
F̄ (x)

]γl,n−1
f(x), ri = 1, . . . , n. (4.3)

Under some restrictions on the hazard rate function rF (x) we obtain
some computable bounds on the expected conditional residual life of the
unobserved censored order statistics.

First, we state a proposition that is used later in this section.

Proposition 4.14. Let Eλ,R̃ = (Eλ,R̃
1:n:N , . . . , E

λ,R̃
n:n:N) be n progres-

sively Type II censored order statistics corresponding to an exponential
distribution with hazard rate λ. Then, for 1 ≤ r1 < r2 < r3 ≤ n, we
have

E
[
Eλ,R̃

r3:n:N
− t2|Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
=

r3−r2∑
k=1

1

λγk,n−r2

+

[
r2−r1∑
k=1

1

λγk,n−r1

+ t1 +

∑r1
i=1 ai,r1,nγ

−2
i,nλ

−1e−λγi,nt1∑r1
i=1 ai,r1,nγ

−1
i,ne

−λγi,nt1

]

×
eλt2

∑r1
i=1

ai,r1,n
γi,n e−(λγi,n)t1

cr2−r1,n−r1

∑r1
i=1

∑r2−r1
j=1 ai,r1,naj,r2−r1,n−r1

e−λ(γi,n−γj,n−r1)t1

γj,n−r1 (γi,n − γj,n−r1)

.

(4.4)

Proof. The left hand side of (4.4), after some manipulations, can be
simplified as

E
[
Eλ,R̃

r3:n:N
− t2|Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
=

∫ ∞

0
P

[
Eλ,R̃

r3:n:N
− t2 > x|Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
dx

=

∫ ∞

0

P

[
Eλ,R̃

r3:n:N
− t2 > x,Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

] dx

=

∫ ∞

0

∫ ∞

t1

∫ ∞

t2

P

[
Eλ,R̃

r3:n:N
− t2 > x|Eλ,R̃

r1:n:N
= u,Eλ,R̃

r2:n:N
= v

]
× f

Eλ, ˜R
r1:n:N ,Eλ, ˜R

r2:n:N

(u, v)dvdudx
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=

∫ ∞

0

∫ ∞

t1

∫ ∞

t2

P

[
Eλ,R̃

r3:n:N
− t2 > x|Eλ,R̃

r2:n:N
= v

]
P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
× f

Eλ, ˜R
r1:n:N ,Eλ, ˜R

r2:n:N

(u, v)dvdudx

=

∫ ∞

0

∫ ∞

t1

∫ ∞

t2

P

[
Eλ,R̃

r3:n:N
− v + v − t2 > x|Eλ,R̃

r2:n:N
= v

]
P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
× f

Eλ, ˜R
r1:n:N ,Eλ, ˜R

r2:n:N

(u, v)dvdudx

=

∫ ∞

0

∫ ∞

t1

∫ ∞

t2

P

[
Eλ,R̃

r3−r2:n−r2:N−∑r2
l=1 Rl−r2

+ v − t2 > x
]

P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
× f

Eλ, ˜R
r1:n:N ,Eλ, ˜R

r2:n:N

(u, v)dvdudx (4.5)

=

∫ ∞

t1

∫ ∞

t2

{E
[
Eλ,R̃

r3−r2:n−r2:N−∑r2
l=1 Rl−r2

]
+ v − t2}

P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
× f

Eλ, ˜R
r1:n:N ,Eλ, ˜R

r2:n:N

(u, v)dvdu

= E
[
Eλ,R̃

r3−r2:n−r2:N−∑r2
l=1 Rl−r2

]
+ E

[
Eλ,R̃

r2:n:N
− t2|Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
(4.6)

The second expression of the bracket in (4.6) can be simplified as follows:

=
P

[
Eλ,R̃

r1:n:N
> t1

]
P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
×
∫ ∞

0

∫ ∞

t1

P

[
Eλ,Q̃

r2:n:N
> t2 + x|Eλ,R̃

r1:n:N
= u

] fEλ, ˜R
r1:n:N

(u)

F̄
Eλ, ˜R

r1:n:N

(t1)
dudx

=
P

[
Eλ,R̃

r1:n:N
> t1

]
P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
×
∫ ∞

0

∫ ∞

t1

P

[
Eλ,R̃

r2−r1:n−r1:N−∑r1
l=1 Rl−r1

+ u− t2 > x
] fEλ, ˜R

r1:n:N

(u)

F̄
Eλ, ˜R

r1:n:N

(t1)
dudx
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=
P

[
Eλ,R̃

r1:n:N
> t1

]
P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
×
⎡⎣E [Eλ

r2−r1:n−r1:N−∑r1
l=1 Rl−r1

− t2

]
+

∫ ∞

t1

uf
Eλ, ˜R

r1:n:N

(u)

F̄
Eλ, ˜R

r1:n:N

(t1)
du

⎤⎦ . (4.7)

Eλ,R̃

j−i:n−i:N−∑i
l=1 Rl−i

st
=
∑j−i

k=1 Z
′
k, where Z

′
ks are the corresponding nor-

malized spacings Z ′
1 = NEλ,R̃

1:n:N and Z ′
k = (n − k + 1 − R1 − . . . −

Rk−1)(E
λ,R̃
k:n:N − Eλ,R̃

k−1:n:N), for k = 2, . . . , n.

It is known that Z ′
k are independent exponential random variables

with hazard rate λγk,n−i (cf. Cramer and Kamps, 2003, Theorem 3.1;
Hu and Zhuang, 2005a, Lemma 2.1). Using these observations, the first
and the second terms in (4.5) and (4.7), respectively, can be written as

E

[
Eλ,R̃

(r3−r2:n−r2:N−∑r2
l=1 Rl−r2)

]
=

r3−r2∑
k=1

1

λγk,n−r2

, (4.8)

and

E

[
Eλ,R̃

(r2−r1:n−r1:N−∑r1
l=1 Rl−r1)

]
=

r2−r1∑
k=1

1

λγk,n−r1

. (4.9)

On the other hand,

∫ ∞

t1

uf
Eλ, ˜R

r1:n:N

(u)

F̄
Eλ, ˜R

r1:n:N (t1)

du = E
[
Eλ,R̃

r1:n:N
|Eλ,R̃

r1:n:N
> t1

]
= t1 + E

[
Eλ,R̃

r1:n:N
− t1|Eλ,R̃

r1:n:N
> t1

]
= t1 +

∫ ∞

0

P

[
Eλ,R̃

(r1:n:N) > x+ t1

]
P

[
Eλ,R̃

r1:n:N
> t1

] dx

= t1 +

∫ ∞

0

∑r
i=1 ai,r1,nγ

−1
i,ne

−λγi,n(x+t1)∑r1
i=1 ai,r1,nγ

−1
i,n e

−λγi,nt1
dx

= t1 +

∑r1
i=1 ai,r1,nγ

−2
i,nλ

−1e−λγi,nt1∑r1
i=1 ai,r1,nγ

−1
i,n e

−λγi,nt1
, (4.10)
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P

[
Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
=

∫ ∞

t1

∫ ∞

t2

f
Eλ, ˜R

r1:n:N ,Eλ, ˜R
r2:n:N

(u, v)dvdu

=

∫ ∞

t1

∫ ∞

t2

f
Eλ, ˜R

r2:n:N |Eλ, ˜R
r1:n:N

(v|u)f
Eλ, ˜R

r1:n:N

(u)dvdu

=

∫ ∞

t1

∫ ∞

t2

cr2−r1−1,n−r1

r2−r1∑
j=1

aj,r2−r1,n−r1

×
[
F̄ (v)

F̄ (u)

]γj,n−r1
−1

f(v)

F̄ (u)
cr1−1,n

r1∑
i=1

ai,r1,n
[
F̄ (u)

]γi,n−1
f(u)dvdu

= cr2−r1−1,ncr1−1,n

r1∑
i=1

r2−r1∑
j=1

ai,r1aj,r2−r1

×
∫ ∞

t1

∫ ∞

t2

e−λ(v−u)(γj,n−r1
−1)λeλ(v−u)e−λu(γi,n−1)λe−λudvdu

= cr2−r1−1,n−r1cr1−1,n

r1∑
i=1

r2−r1∑
j=1

ai,r1,naj,r2−r1,n−r1

×
∫ ∞

t1

∫ ∞

t2

λ2e−λγjveλ(γi,n−γj,n−r1
)udvdu

= cr2−r1−1,n−r1cr1−1,ne
−λt2

r1∑
i=1

r2−r1∑
j=1

ai,r1,naj,r2−r1,n−r1

× e−λ(γi,n−γj,n−r1)t1

γj,n−r1 (γi,n − γj,n−r1)
(4.11)

and

P

[
Eλ,R̃

r1:n:N : > t1

]
= cr1−1,n

r1∑
i=1

ai,r1,n
γi,n

e−(λγi,n)t1 . (4.12)

Now, substituting(4.8), (4.9), (4.10), (4.11) into (4.5), the required result
follows.

Theorem 4.15. Let {XR̃
i:n:N , i = 1, . . . , n} be n progressively type

II censored order statistics based on distribution function F with non-
increasing hazard rate function rF such that for a positive constant λ
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and each x > 0, rF (x) ≥ λ. Let also

R̃ = (

r1−1︷ ︸︸ ︷
R1, R1, · · · , R1, R

(r1),

r2−r1−1︷ ︸︸ ︷
R2, R2, · · · , R2, R

(r2), · · · ,
r1−ri−1−1︷ ︸︸ ︷

Ri−1, Ri−1, · · · , Ri−1, R
(ri),

n−ri−1︷ ︸︸ ︷
Ri+1, · · · , Rn).

Then, for t1 ≤ t2,

E
[
XR̃

r3:n:N − t2|XR̃
r1:n:N > t1,X

R̃
r2:n:N > t2

]
≤

r3−r2∑
k=1

1

λγk,n−r2

+

[
r2−r1∑
k=1

1

λγk,n−r1

+ t1 +

∑r1
i=1 ai,r1,nγ

−2
i,nλ

−1e−λγi,nt1∑r1
i=1 ai,r1,nγ

−1
i,ne

−λγi,nt1

]

× {
eλt2

∑r1
i=1

ai,r1,n
γi,n

e−(λγi,n)t1

cr2−r1,n−r1

∑r1
i=1

∑r2−r1
j=1 ai,r1,naj,r2−r1,n−r1

e−λ(γi,n−γj,n−r1)t1

γj,n−r1 (γi,n − γj,n−r1)

}

(4.13)

Proof. Let {Eλ,R̃
i:n:N} be n progressive type II censored order statistics

based on an exponential distribution with the hazard rate λ. The as-
sumptions that rF (x) is non-increasing in x and rF (x) ≥ λ implies that
X ≤lr E

λ (cf. Lemma 3.5 in Belzunce et al., (2001)). Using this and
the sublattice L = [(x(1), . . . , x(n)) ∈ R

n|x(i) > t1, x(j) > t2] in Theorem
2.8, where x(1) ≤ . . . ≤ x(n), t1, t2 ∈ R and t1 ≤ t2, we obtain that

E
[
XR̃

r3:n:N − t2|XR̃
r1:n:N > t1,X

R̃
r2:n:N > t2

]
≤

E
[
Eλ,R̃

r3:n:N
− t2|Eλ,R̃

r1:n:N
> t1, E

λ,R̃
r2:n:N

> t2

]
.

Now the required results follows from Proposition 4.14.

Moreover, the joint density function of every subset from XR̃
i:n:N ’s

can be derived from Lemma (2.5).

Remark 4.16. In particular, the result of Theorem 4.15 can also be
applied to the case when

R̃ = (

r1︷ ︸︸ ︷
R1, R1, · · · , R1,

r2−r1︷ ︸︸ ︷
R2, R2, · · · , R2, · · · ,

r1−ri−1︷ ︸︸ ︷
Ri−1, Ri−1, · · · , Ri−1,

n−ri︷ ︸︸ ︷
Ri+1, · · · , Rn),

which is of practical importance.
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