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Abstract. A resource-efficient approach to making inferences about the
distributional properties of the failure times in a competing risks setting
is presented. Efficiency is gained by observing recurrences of the compet-
ing risks over a random monitoring period. The resulting model is called
the recurrent competing risks model (RCRM) and is coupled with two
repair strategies whenever the system fails. Maximum likelihood estima-
tors of the parameters of the marginal distribution functions associated
with each of the competing risks and also of the system lifetime dis-
tribution function are presented. Estimators are derived under perfect
and partial repair strategies. Consistency and asymptotic properties of
the estimators are obtained. The estimation methods are applied to a
data set of failures for cars under warranty. Simulation studies are used
to ascertain the small sample properties and the efficiency gains of the
resulting estimators.
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1 Introduction

Consider a series or a competing risks system with Q components. De-
note by T1, T2, . . . , TQ the (possibly latent) times-to-failure of the Q
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components. To avoid identifiability issues (cf., Tsiatis [17] and Heck-
man and Honoré [7]), these variables are assumed to be independent.
Additionally, let Fq(·) be the distribution of Tq, which in this paper will
be assumed continuous. The system life is denoted by S, the minimum
of the Tq’s. In terms of F1, F2, . . . , FQ, the system life distribution, FS ,
is given by

FS(s) = P (S ≤ s) = 1−
Q∏

q=1

[1− Fq(s)] . (1)

Let Λq be the cumulative hazard function associated with Fq so that

Λq(t) = − log(1− Fq(t)), q = 1, 2, . . . , Q,

and let λq be its associated hazard rate function where λq = fq/(1−Fq)
with fq the density function of Fq. These functions are related to the
qth cumulative incidence function or sub-distribution function (cf., [10]),
defined via F̆q(t) = P{S ≤ t, S = Tq}, according to the relationship

F̆q(t) =

∫ t

0
F̄S(w)Λq(dw).

In the competing risks literature, there is also the notion of a cause-
specific hazard rate function associated with the qth risk defined via

λ̆q(t) = lim
∆t↓0

1

∆t
P {S ∈ [t, t+ dt), S = Tq|S ≥ t} , q = 1, 2, . . . , Q.

By virtue of the assumed independence of the Tq’s, note that we have the

identities λq(·) = λ̆q(·) for q = 1, 2, . . . , Q. Since the qth cause-specific

cumulative hazard function is defined via Λ̆q(t) =
∫ t
0 λ̆q(w)dw, then this

equals Λq(t) under the independence assumption among the Tq’s. Note,
however, that it is not the case that Λ̆q = − log(1− F̆q) when Q > 1.

For purposes of making inference about FS , and of the Fq’s or the
F̆q’s, n independent systems or units will be monitored. The ith sys-
tem will be under observation during the random period [0, τi]. The
monitoring times, τ1, τ2, . . . , τn, are assumed to be independent with
common distribution function G, which is non-informative about the
Fq’s. The τi’s are also assumed to be independent of the inter-failure
times. In the usual competing risks model, the ith system is monitored
either until its system failure Si or until τi. It is assumed that when
the system fails, the component that caused the failure could be deter-
mined. In this basic competing risks model, the random observables
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are {(Zi, δi), i = 1, 2, . . . , n}, where Zi = min(Si, τi); δi = 0 whenever
Zi = τi, so the system life Si is right-censored by τi; and δi = q whenever
Zi = Tiq with Tiq the latent time-to-failure due to cause q, so the ith sys-
tem failed due to the failure of component q which happened before τi.
The δi’s are the indicator variables of the component that caused system
failure. Given these random observables, inference about the individual
Fq’s are made which may lead to a better inference about the system life,
FS , by exploiting equation (1). If interest is on the cause-specific sub-
distribution functions F̆q’s, then estimators of these functions could be
obtained from the estimators of F̄S and the Λq’s. This basic model is the
so-called single-event competing risks model, which has been considered
in Crowder [5] and will be hereon abbreviated SCRM.

Such studies may not, however, be resource-efficient. It is possi-
ble that a system will fail early during the monitoring period [0, τi]
and, in the above scheme, this system will not anymore be monitored.
The unfailed components in this system are in essence wasted. A more
resource-efficient scheme may potentially be achieved by instituting a
repair strategy after each system failure, similar in spirit to the idea of
testing “with replacement” in [11]. Instead of discarding the system, a
repair can be performed that may require either the entire system be
replaced or the failed component that caused system failure be replaced
by a new component. These types of repairs are, respectively, referred
to as perfect repairs and partial repairs (cf., Bedford and Lindqvist [2]).
Whichever repair strategy is adopted for the ith system is then con-
tinuously implemented for this system during the random monitoring
period [0, τi]. It will be assumed for simplicity, but clearly unrealisti-
cally, that the repair process of the system or the failed component can
be performed instantaneously. The time of the jth failure for the ith
system will be denoted by Sij , while the associated event indicator will
be denoted by δij . For the ith system, the random number of system
failures over [0, τi] caused by the qth risk or component will be denoted
by Kiq. Observe that in this recurrent competing risks framework, in
contrast to the basic competing risks model, the period [Si1, τi] will still
be utilized to continue the monitoring of system i, which may provide
more information leading to improved inferences regarding the Fq’s and
consequently the system life distribution FS .

We shall refer to this model as the recurrent competing risks model
(RCRM). Note that a recurrent competing risks model has been men-
tioned in [4] in the context of analyzing data pertaining to recurrent
failures of internal shunts described in [12, 18]. This RCRM offers a
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more efficient use of the monitoring period to maximize the informa-
tion obtained about the system life and the latent failure times. The
primary goal of this paper is to obtain estimators of the marginal dis-
tribution functions of each of the competing risks failure times and of
the system life distribution under a perfect repair RCRM and a par-
tial repair RCRM. We restrict the coverage of this paper to parametric
models without covariates and defer the development of nonparametric
methods and models with covariates for future work.

The context of application of the methods presented in this paper
are expected to be useful in reliability and engineering settings where
a parametric assumption may be appropriate. However, further exten-
sions of the model should be made for many realistic applications to
biomedical data that incorporate dependencies across risks. In partic-
ular, a relaxation of the independence assumption of the Tq’s may be
needed to account for the deterioration of a system resulting from com-
bined effects of other risks. Heckman and Honoré [7] present conditions
and models that induce identifiability. Their results were extended re-
cently by Abbring and van den Berg [1]. Other avenues for modeling
competing risks have incorporated copulas. These methods have been
explored by Zheng and Klein [19] and subsequently by Lo and Wilke
[13].

We outline the contents of this paper. Section 2 presents a math-
ematical framework for the RCRM. Section 3 provides the maximum
likelihood estimators of the model parameters. Gains in efficiency of the
estimation procedure based on the RCRM relative to the non-recurrent
SCRM are presented in Section 4. In Section 5, the estimation procedure
is applied to a data set on failures of cars under warranty. To get an
immediate idea of the type of data of interest, see Figure 5 on page 172,
which is a graphical depiction of the car warranty data analyzed in Sec-
tion 5. Small sample properties of the estimators are obtained through
a simulation study in Section 6. Concluding remarks are provided in
Section 7.

2 Recurrent Competing Risks Model

As mentioned in the preceding section, we will consider the situation
where n systems or units are under consideration. For the ith system,
the observable random vector will be

Di ≡ (Ki, τi, Si1, Si2, . . . , Si,Ki , τi − Si,Ki , δi1, δi2, . . . , δi,Ki),
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where Ki = max{k : Sik ≤ τi} is the total number of events (failures)
over [0, τi]. Observe that Ki is random and will be informative about
the Fq’s and FS . The random number of failures attributed to risk

q is Kiq =
∑Ki

j=1 I{δij = q}. From Di, the inter-event times can be
recovered via Tij = Sij − Si,j−1 with Si0 ≡ 0. For the partial repair
model, successive calendar times are additionally denoted for risk q by
Sijq, j = 1, 2, . . . ,Kiq, and the inter-event times for risk q are given by
Tijq = Sijq − Si,j−1,q, j = 1, 2, . . . ,Kiq, with Si0q ≡ 0. [For our notation,
we shall on occasion write Ti,j,q for Tijq and Si,j,q for Sijq for clarity.]
Under the perfect repair model, the jth inter-event time associated with
risk q, denoted by Tijq, will only be observed if the jth system failure
is due to risk q. In such a case, the inter-event times Tijv, v ̸= q, will
all be right-censored by Tijq. In addition, for the perfect repair model,
the inter-event times Ti,Ki+1,q, q = 1, 2, . . . , Q, will all be right-censored
by τi − Si,Ki ; while for the partial repair model τi − Si,Kiq ,q will be the
right-censoring variable for Ti,Kiq+1,q for each q.

Assume the Tijq’s are independent, and for a fixed q, are iid from an
unknown marginal distribution function Fq which belongs to a paramet-
ric family of distributions Cq = {Fq(·;θq) : θq ∈ Θq} whereΘq is an open
subset of ℜpq where Pq denotes the number of parameters associate with
Fq. The marginal hazard rate function is denoted by λq(·;θq), where θq

is a vector of distinct parameters associated with λq. As noted earlier,
by virtue of the independence of the latent variables, this marginal haz-
ard rate function is also the cause-specific hazard rate function. The
parameter vector of interest is the p• × 1 vector θ = (θT1,θ

T
2, . . . ,θ

T
Q)

T,

where p• =
∑Q

q=1 pq. Observe that

λq(t;θq) =
fq(t;θq)

Sq(t;θq)
, q = 1, 2, . . . , Q,

where fq(t;θq) is the marginal density associated with the marginal dis-
tribution function, Fq(t;θq) = P (Tijq ≤ t) and Sq(t;θq) = 1− Fq(t;θq).
Therefore, it will suffice to estimate the parameters associated with the
marginal hazard function in order to estimate the marginal distribu-
tion function. Figure 1 illustrates the observed data for two recurrent
competing risks under a partial repair model. The calendar times of fail-
ures for the two competing causes are denoted by blue stars and green
diamonds with the censoring time denoted by a red X. The observed
system calendar times (Sij) and system inter-event times (Tij) are shown
in black. The observed calendar times (Sijq) and inter-event times (Tijq)
for each of the two causes are depicted in their associated colors as well.
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Figure 1: Observable quantities for data generated from two recurrent
competing risks under a partial repair strategy for one system.

3 Maximum Likelihood Estimation

3.1 Likelihood and Estimators

The main focus of this paper is the estimation of the parameter vector
θ associated with the Q marginal distribution functions. To achieve
more generality, we employ counting processes and martingales in the
following. We shall define a generic counting process N †

iq = {N †
iq(s) :

s ≥ 0}, which counts the number of failures due to cause q for system i
during calendar time period [0, s], which will vary depending on whether
we have perfect or partial repair. For the perfect repair model (E) and for
the partial repair model (A) this counting process becomes, respectively,

NE
iq (s) =

Ki∑
j=1

I{Sij ≤ s∧τi, δij = q} and NA
iq (s) =

Kiq∑
j=1

I{Sijq ≤ s∧τi},

for i = 1, 2, . . . , n and q = 1, 2, . . . , Q. The at-risk process, Y †
i (s) =

I{τi ≥ s}, indicates whether unit i is still under observation at time

s. Additionally, define a generic backward recurrence process E†
iq =

{E†
iq(s) : s ≥ 0}, which for the perfect repair model (E) and the partial

repair model (A) becomes, respectively,

EE
iq(s) = s− Si,NE

i (s−) and EA
iq(s) = s− Si,NA

iq(s−),q,
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where NE
i (s) =

∑Q
q=1N

E
iq (s). Under the perfect repair model, EE

iq(s)
is the time elapsed since the most recent failure due to any risk; while
under the partial repair model, EA

iq(s) is the time elapsed since the most
recent failure due to risk q only.

The filtration that is augmented to the basic probability space (Ω,F,
P ) on which all random entities are defined is F = {Fs : s ≥ 0}, where
Fs is the σ-field containing all information up to time s, defined via

Fs = F0 ∨

{
n∨

i=1

σ
{(

N †
iq(v), Y

†
i (v+)

)
: q = 1, 2, . . . , Q; 0 ≤ v ≤ s

}}
,

where F0 is the σ-field containing all the information available at time
0.

Proposition 3.1. The intensity process of N †
iq with respect to F is

Y †
i (s)λq(E

†
iq(s);θq), that is, with dN †

iq(s) = N †
iq((s + ds)−) − N †

iq(s−),
lim0<ds→0 (ds)

−1P
{
dN †

iq(s) = 1|Fs−

}
= Y †

i (s)λq(E
†
iq(s);θq).

Proof. For infinitesimal ds > 0, there will either be no failures or
exactly one failure in [s, s + ds). Now, P (dN †

iq(s) = 1|Fs−) is the con-
ditional probability, given Fs−, of exactly one failure for the ith system
that is due to cause q in the interval of time [s, s + ds). We have for
such a ds that

P (dN †
iq(s) = 1|Fs−) = P{dN †

iq(s) = 1;∩q′ ̸=q[dN
†
iq′(s) = 0]|Fs−}

= (Y †
i (s)λq(E

†
iq(s);θq)ds+ o(ds))

×
s+ds∏
v=s

1−
∑
q′ ̸=q

λq′(E
†
iq′(v);θq′)dv


= (Y †

i (s)λq(E
†
iq(s);θq)ds+ o(ds))

× exp

−
∫ s+ds

s

∑
q′ ̸=q

λq′(E
†
iq′(v);θq′)dv


= (Y †

i (s)λq(E
†
iq(s);θq)ds+ o(ds))

× exp

−∑
q′ ̸=q

[Λq′(E
†
iq′((s+ ds)−);θq′)− Λq′(E

†
iq′(s−);θq′)]

 ,
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where
∏

denotes product integral. Dividing by ds and then taking the

limit as ds→ 0, the result follows since Λq′(E
†
iq′(s);θq′) is left-continuous

in s.

The intensity process ofN †
iq(·) with respect to F is Y †

i (·)λq(E
†
iq(·);θq)

so that the process A†
iq = {A

†
iq(s;θq) : s ≥ 0}, defined by

A†
iq(s;θq) =

∫ s

0
Y †
i (v)λq(E

†
iq(v);θq)dv,

is therefore the compensator of N †
iq(s). By the Doob-Meyer decomposi-

tion theorem,

{M †
iq(s;θq) = N †

iq(s)−A†
iq(s;θq) : s ≥ 0}

is a zero-mean square-integrable F-martingale for each i and q. The vec-
tor M†

i (v;θ) = (M †
i1(v;θ1), . . . ,M

†
iQ(v,θQ))

T is a Q×1 vector of square-
integrable zero-mean martingale processes. Its predictable quadratic
variation process is a diagonal matrix process with diagonal elements

⟨M †
iq⟩(s;θq) = A†

iq(s;θq), q = 1, 2, . . . , Q.

By results of Jacod [9], the full likelihood process at time s is given
by

L(θ, s) =

s∏
v=0

n∏
i=1

Q∏
q=1

{
[Y †

i (v)λq(E
†
iq(v);θq)]

dN†
iq(v)

×
[
1− Y †

i (v)λq(E
†
iq(v);θq)

]1−dN†
iq(v)

}

=

n∏
i=1

Q∏
q=1

{(
s∏

v=0

[Y †
i (v)λq(E

†
iq(v);θq)]

dN†
iq(v)

)

× exp

{
−
∫ s

0
Y †
i (v)λq(E

†
iq(v);θq)dv

}}
.

Consequently, the log-likelihood process is {ℓ(θ, s) : s ≥ 0} with

ℓ(θ, s) =

n∑
i=1


∫ s

0

Q∑
q=1

log[Y †
i (v)λq(E

†
iq(v);θq)]dN

†
iq(v)

−
∫ s

0
Y †
i (v)

Q∑
q=1

λq(E
†
iq(v);θq)dv

 .
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For purposes of obtaining the maximum likelihood estimators and
their properties, we seek the p• × 1 score vector process U = {U(θ, s) :
s ≥ 0} and the p• × p• observed information matrix process I(θ) =
{I(θ, s) : s ≥ 0}. For this purpose, for a vector a, define the gradient
operator ∇a ≡ ∂

∂a and, for q = 1, 2, . . . , Q, let

ρq(s;θq) = ∇θq log λq(s;θq) and V q(s;θq) = ∇θT
q
∇θq log λq(s;θq).

Thus, ρq(s;θq) is a pq×1 vector of functions, while V q(s;θq) is a pq×pq
matrix of functions.

Since the vector of score process is obtained via U(θ, s) = ∇θℓ(θ, s),
it is straightforward to obtain that the vector of score processes is
U(θ, s) = (UT

1(θ1, s),U
T
2(θ2, s), . . . ,U

T
Q(θQ, s))

T, where U q(θq, s) is the
pq × 1 vector given by

U q(θq, s) =
n∑

i=1

∫ s

0
ρq(E

†
iq(v);θq)dM

†
iq(v;θq).

On the other hand, the observed Fisher information matrix process is
defined via I(θ, s) = −∇θTU(θ, s). It is straightforward to verify that
I(θ, s) is a block-diagonal matrix with the (q, q)th block matrix being
the pq × pq matrix

Iqq(θq, s) = −∇θT
q
U q(θq, s)

=
n∑

i=1

∫ s

0
Y †
i (v)ρq(E

†
iq(v);θq)

⊗2λq(E
†
iq(v);θq)dv

−
n∑

i=1

∫ s

0
V q(E

†
iq(v);θq)dM

†
iq(v;θq),

where for a vector a, we have a⊗2 = aaT. The ML estimator of θq based

on the realization of the processes up to calendar time s∗, denoted θ̂q(s
∗),

is obtained as a solution of the equation

U q(θq, s
∗) = 0. (2)

Numerical methods, such as the Newton-Raphson algorithm, will typi-
cally be needed to obtain the estimate θ̂q(s

∗) of θq based on equation
(2). The Newton-Raphson iteration is based on the updating

θ̂
new

q ← θ̂
old

q + Iqq(θ̂
old

q , s∗)−1U q(θ̂
old

q , s∗).
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3.2 Asymptotics

Asymptotic properties of θ̂ = (θ̂
T

1, θ̂
T

2, . . . , θ̂
T

Q)
T, such as consistency and

asymptotic normality, as n → ∞, follow from Borgan’s [3] results re-
garding ML estimators from parametric counting process models. De-
fine Iqq(θq, s) to be the in-probability limit of 1

nIqq(θq, s), and also let
I(θ, s) be the p• × p• block-diagonal matrix with block-diagonal ele-
ments Iqq(θq, s), q = 1, 2, . . . , Q. Recalling the standard ‘asymptotic
normality’ notation (cf., [15]) that Tn ∼ AN (µn,Σn) means that

Σ−1/2
n (Tn − µn)

d−→ N(0, I),

we have that under certain regularity conditions,

θ̂(s∗) ∼ AN

(
θ,

1

n
I(θ, s∗)−1

)
.

Because of the block-diagonal structure of I(θ, s∗), we can conclude
that the θ̂q are asymptotically independent and also that for each q =
1, 2, . . . , Q, we have

θ̂q(s
∗) ∼ AN

(
θq,

1

n
Iqq(θq, s

∗)−1

)
.

A consistent estimator of Iqq(θq, s
∗) obtained from the predictable quad-

ratic variation process of the score process is given by

1

n
⟨Uq⟩(θ̂q, s

∗) =
1

n

n∑
i=1

∫ s∗

0
ρq(E

†
iq(v); θ̂q)

⊗2Y †
i (v)λq(E

†
iq(v); θ̂q)dv. (3)

The estimate could be computed on a case-by-case basis depending on
the form of the hazard rate function λq.

For the purpose of getting exact efficiency expressions for some mod-
els, we now seek an expression of Iqq(θq, s

∗) for q = 1, 2, . . . , Q. To
achieve a unified notation for the perfect and partial repair schemes, for
i = 1, 2, . . . , n and q = 1, 2, . . . , Q, let

S∗
i0q = 0 and S∗

ijq = inf{s > S∗
i,j−1,q : E†

iq(s) = 0};
K∗

iq(s
∗) = max{j : S∗

ijq ≤ (s∗ ∧ τi)};
T ∗
ijq = S∗

ijq − S∗
i,j−1,q, j = 1, 2, . . . ,K∗

iq(s
∗).

A generalized at-risk process could now be defined via

Y ∗
iq(s

∗, w) =

K∗
iq(s

∗−)∑
j=1

I{T ∗
ijq ≥ w}+ I{(s∗ ∧ τi)− S∗

i,K∗
iq(s

∗),q ≥ w}.
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Let us denote the expectation of this generalized at-risk process by

y∗q (s
∗, w;θ, G) ≡ y∗q (s

∗, w) = E{Y ∗
iq(s

∗, w)},

where G is the distribution of the censoring variable τ . Fortunately,
not much work is needed since this expectation can be obtained from
Proposition 1 of Peña, Strawderman, and Hollander [14]. It follows that

1

n

n∑
i=1

Y ∗
iq(·, w)

up−→ y∗q (·, w),

where ‘
up−→’ means uniform convergence in-probability on [0, s∗]. Analo-

gously to the derivations in [14] using a change-of-variable in the integral,
it follows that

Iqq(θq, s
∗) =

∫ ∞

0
y∗q (s

∗, w;θ, G)ρq(w;θq)
⊗2λq(w;θq)dw.

Specializing to the perfect repair scheme, we have in this case that
T ∗
ijq = minq′=1,2,...,Q Tijq′ , so the distribution function is identical to the

system life, which is

FS(t;θ) = 1−
Q∏

q=1

[1− Fq(t;θq)].

Thus, from [14], with Gs(t) = G(t)I{t < s} + I{t ≥ s}, it follows that
for this perfect repair scheme, y∗q (s

∗, t;θ, G) is equal to

yEq (s
∗, t;θ, G) = F̄S(t;θ)Ḡs∗(t) + F̄S(t;θ)

∫ ∞

t
ϑS(w − t;θ)dGs∗(w),

where ϑS(·;θ) is the renewal function of FS(·;θ).
On the other hand, for the partial repair scheme, T ∗

ijq = Tijq whose
common distribution is Fq(·;θq). Thus, again from [14], we obtain that
for this partial repair scheme, y∗q (s

∗, t;θ, G) is equal to

yAq (s
∗, t;θq, G) = F̄q(t;θq)Ḡs∗(t) + F̄q(t;θq)

∫ ∞

t
ϑq(w − t;θq)dGs∗(w),

where ϑq(·;θq) is the renewal function of Fq(·;θq).
The estimation of the parameter vector of each of the component life

distributions is perhaps more of secondary importance than the estima-
tion of the system life distribution FS . Upon obtaining the estimators of
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the θq’s, we could now obtain an estimator of FS by plugging-in θ̂q(s
∗)

for θq in the expression for FS(t;θ) from equation (1) to obtain the
estimator

F̂S(s
∗; t) = FS(t; θ̂(s

∗)) = 1−
Q∏

q=1

[1− Fq(t; θ̂q(s
∗))].

By using the delta-method and noting that θ̂(s∗) is asymptotically multi-
variate normal with mean θ and asymptotic covariance matrix 1

nI(θ, s
∗)−1,

it follows that for each t ≤ s∗,

ˆ̄FS(s
∗; t) ∼ AN

(
F̄S(t;θ),

1

n
σ2
S(s

∗; t;θ)

)
,

where

σ2
S(s

∗; t;θ) = F̄S(t;θ)
2

Q∑
q=1

•
Λq (t;θq)

TIqq(θq, s
∗)−1

•
Λq (t;θq)

with
•
Λq (t;θq) = ∇θqΛq(t;θq). We remark with regards to the notation

that when we let s∗ →∞, we simply drop the argument s∗ in the above
expressions. For example, F̂S(s

∗ =∞; t) will simply be written as F̂S(t).
Since we would like to compare the gain in efficiency obtained by

utilizing this RCRM relative to the SCRM, we recall that the associated
ML estimator of θ for the SCRM, denoted by θ̃, is asymptotically multi-
variate normal with mean θ and asymptotic covariance matrix 1

n Ĩ(θ)
−1,

where Ĩ(θ) is the p• × p• block-diagonal matrix with (q, q)th block ma-
trix given by the pq × pq matrix

Ĩqq(θq) =

∫ ∞

0
F̄S(w;θq)Ḡ(w)ρq(w;θq)

⊗2λq(w;θq)dw.

Thus, if one only had data from the SCRM, an estimator of FS(t;θ) will
be

F̃S(t) = FS(t; θ̃) = 1−
Q∏

q=1

[1− Fq(t; θ̃q)].

Using again the delta-method, it follows that for each t,

˜̄FS(t) ∼ AN
(
F̄S(t;θ),

1
n σ̃

2
S(t;θ)

)
;

σ̃2
S(t;θ) = F̄S(t;θ)

2
∑Q

q=1

•
Λq (t;θq)

TĨqq(θq)
−1

•
Λq (t;θq).
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A measure of asymptotic relative efficiency (ARE) of the RCRM-based

estimator ˆ̄FS(t) relative to the SCRM-based estimator ˜̄FS(t) is given by

ARE( ˆ̄FS(t) :
˜̄FS(t)) =

σ̃2
S(t;θ)

σ2
S(t;θ)

=

∑Q
q=1

•
Λq (t;θq)

TĨqq(θq)
−1

•
Λq (t;θq)∑Q

q=1

•
Λq (t;θq)TIqq(θq)−1

•
Λq (t;θq)

.

(4)

Theorem 3.1. The RCRM-based estimator ˆ̄FS(t), with either a perfect
repair or a partial repair strategy, dominates the SCRM-based estimator
˜̄FS(t) in terms of asymptotic relative efficiency, that is, ARE( ˆ̄FS(t) :
˜̄FS(t)) > 1.0.

Proof. For the perfect repair strategy, this result is immediate from
the fact that for each q ∈ {1, 2, . . . , Q}, we obtain from their respective
expressions that IE

qq(θ) > Ĩqq(θ). On the other hand, for the partial
repair strategy, by first noting that for each q′ = 1, 2, . . . , Q, we have
F̄S(t) =

∏Q
q=1 F̄q(t) ≤ F̄q′(t), it follows that IA

qq(θ) > Ĩqq(θ), from
which the assertion of the theorem for the partial repair strategy follows.

4 Efficiency Comparisons

In this section we examine in concrete settings the magnitude of the gain
in asymptotic efficiency when utilizing the RCRM versus the SCRM in
estimating the system lifetime distribution FS . From Theorem 3.1 we
already know that the RCRM-based estimator will always be more ef-
ficient than the SCRM-based estimator, so getting an idea of the mag-
nitude of this efficiency improvement will provide us more information
regarding the merits of adopting the RCRM design in real studies. We
will consider two concrete situations: (i) when the component failure
distributions are exponential and (ii) when the component failure dis-
tributions are Weibull.

4.1 Exponential Component Lifetimes

Let us now assume that the component lifetime distributions are expo-
nential, so that Fq(t; θq) = 1− exp(−θqt) for t ≥ 0. We also assume that
G is exponential so that G(t; γ) = 1 − exp(−γt) for t ≥ 0. Solving for
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θq in the ML estimating equation in (2) yields the estimator

θ̂q(s
∗) =

∑n
i=1N

†
iq(s

∗)∑n
i=1

∫ s∗

0 Y †
i (v)dv

,

which is the occurrence-exposure rate under risk q. With θ• =
∑Q

q=1 θq,
from [14] (see also [8]) we are able to obtain that

yEq (w) = exp{−(θ• + γ)w}
(
1 +

θ•
γ

)
;

yAq (w) = exp{−(θq + γ)w}
(
1 +

θq
γ

)
.

Straightforward calculations then yield that

IEqq(θq) =

∫ ∞

0

(
1 +

θ•
γ

)
e−(θ•+γ)w 1

θ2q
θqdw =

1

θqγ
.

Similarly, we find that

IAqq(θq) =

∫ ∞

0

(
1 +

θq
γ

)
e−(θq+γ)w 1

θ2q
θqdw =

1

θqγ
.

It is not surprising that these information values under the perfect
and partial repair schemes are identical owing to the memoryless prop-
erty of the exponential distribution. It follows therefore that under
the assumption of exponential component lifetime distributions and an
exponentially-distributed monitoring period, the RCRM-based estima-
tors of F̄S(t;θ) under either perfect or partial repair strategies satisfy

ˆ̄FS(t) ∼ AN

(
F̄S(t;θ),

1

n
t2θ•γ exp{−2tθ•}

)
.

On the other hand, under the same distributional assumptions, the
SCRM-based estimator of F̄S(t;θ) satisfies

˜̄FS(t) ∼ AN

(
F̄S(t;θ),

1

n
t2θ•(θ• + γ) exp{−2tθ•}

)
.

As a consequence, the asymptotic efficiency of ˆ̄FS(t) relative to ˜̄FS(t)
under the exponential distribution assumptions is

ARE( ˆ̄FS(t) :
˜̄FS(t)) = 1 +

θ•
γ

= 1 +
E(τ)

E(S)
.

That is, the gain in efficiency using the RCRM over the SCRM, which
is always positive, is solely determined by the ratio of the mean length
of the monitoring period and the mean lifetime of the competing risk
system.
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4.2 Weibull Component Lifetimes

We were able to obtain an exact expression of the asymptotic relative

efficiency of ˆ̄FS(t) relative to ˜̄FS(t) under the exponential case because
of the fact that the renewal function of the exponential distribution is in
closed-form, which for an exponential distribution with rate θ is given
by ϑ(t) = θt. For many other distributions, such as the Weibull, no
closed-form expressions of their renewal function are available, hence
we are usually unable to obtain closed-form analytical expressions of
asymptotic relative efficiencies. Thus, we resort to simulation studies
to get an idea of the relative efficiencies under these non-exponentially
distributed models.

Note also from equation (4) that the asymptotic relative efficiency

of ˆ̄FS(t) relative to ˜̄FS(t) will, in general, depend on the time t. To
examine the efficiency of the RCRM-based estimator F̂S(t) relative to
the SCRM-based estimator F̃S(t) under the Weibull distributional model
we performed a simulation study. In this study, the component lifetime
distributions for Q = 2 competing risks are Weibull distributions with
respective shape and scale parameters (α1 = 2, β1 = 1/2) and (α2 =
3, β2 = 1/3). We used a sample of n = 30 systems, and the number of
simulation replications was N = 1000. The distribution of the time to
the end of monitoring period was an exponential distribution. We took
several values of the parameter of this exponential distribution.

Figure 2 and Figure 3 show the simulated relative efficiency compar-
ison between non-recurrent competing risks and recurrent competing
risks under a partial repair model with two competing risks for the com-
ponent lifetimes and the system lifetimes, respectively. For ease of com-
parison, the simulated relative efficiencies were plotted as SCRM-based
estimator relative to the RCRM-based estimator so that efficiencies are
bounded by 1. Data sets with 30 systems were generated (N = 1000
replications) in order to estimate the parameters of the Weibull distri-
butions so that 1000 estimates of the component lifetimes parameters
were obtained. The estimated components lifetime distributions were
evaluated at the 1st to the 99th percentiles. For each method, the bi-
ases and variances of the component lifetime estimates were calculated
for these percentiles and compared via their mean-squared error (MSE)
to estimate the relative efficiencies. This process yielded the smoothed
curves of Figure 2 and also of Figure 3. These curves are smooth since
the same data sets were used to estimate the bias and variance, hence
the MSE, at each of the percentiles. The system lifetime is plotted up
to the 95th percentile associated with the Weibull(2,1/2) distribution of
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Figure 2: Simulated relative efficiencies of the SCRM-based estimators
relative to the RCRM-based estimators for the two component lifetime
distributions under Weibull models for 30 systems based on N = 1000
simulation replications. The curves correspond to rates of the expo-
nential distribution pertaining to the length of the monitoring period.
These exponential rates are γ = 2, 1, 1/2, 1/5, and 1/10, from top to
bottom of figures.

Cause 1. Individual curves represent a different rate (2, 1, 1/2, 1/5, and
1/10, respectively from top to bottom) associated with an exponential
censoring distribution. As the rate increases (which results in a decrease
in the mean of the monitoring times), the simulated efficiency remains
less than 1. When the rate increases, the mean of the censoring times
eventually becomes less than the mean of both of the component lifetime
distributions for the two risks which ultimately results in data sets that
contain mostly censored observations for each of the 30 systems. There-
fore, the resulting relative efficiencies become closer to unity. However,
it is also interesting to note what happens when the rate associated
with the exponential censoring distribution decreases, which increases
the mean length of the monitoring period. When this occurs, the sim-
ulated relative efficiency converges to 0, indicating that the increase in
information gathered through repairing and recurring observations is
highly beneficial. The interesting multi-peaked shapes of the curves can
be attributed to the interplay between the variance curves of the esti-
mates for the SCRM and RCRM scenarios as can be seen, for example,
in Figure 4 which depicts these curves for the topmost curve of Figure
2 associated with an exponential censoring rate γ = 2. The simulated
MSEs at the 10th percentile are 0.001170 and 0.00261, respectively for
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Figure 3: Simulated relative efficiency of the SCRM-based system life-
time estimator relative to the RCRM-based system lifetime estimator
for the two component lifetime distributions under Weibull models for
samples of size 30 based on N = 1000 simulation replications. The
curves correspond to rates of the exponential distribution pertaining
to the length of the monitoring period. These exponential rates are
γ = 2, 1, 1/2, 1/5, and 1/10, from top to bottom of figures.

the RCRM and SCRM models, which yields a simulated relative effi-
ciency of approximately 0.4485. Comparatively, the simulated variances
at the 10th percentile are 0.001168 and 0.00255, respectively. Visual
inspection reveals that as the difference between the variances increases
in Figure 4 (with the largest difference being at approximately the 70th
percentile), a corresponding change can be seen in the simulated relative
efficiency which changes concavely at approximately the 70th percentile.
The biases of the SCRM and RCRM estimates are also shown in Figure
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4 but become essentially negligible in the MSEs since they get squared.

,

Figure 4: Variance and bias curves of the simulated estimates for the
component lifetime distribution associated with F1(t) and with an ex-
ponential censoring rate of γ = 2. SCRM is depicted by a solid curve
and RCRM by a dashed curve.

Overall, for the parameter values used in this simulation, there is a
significant increase in efficiency of the RCRM-based estimator relative
to the SCRM-based estimator. We expect that this efficiency behavior
will also be the case for other parameter values, though more empirical
investigations will be required especially for other distributional models.

5 Illustration Using Car Warranty Data

The time of failures (measured in mileage) for a sample of 189 cars under
warranty were recorded together with the mode of failure (indicated by
a 1 or 2). The circumstances of the data collection are not completely
known to us, and it may be that this data suffers from selection bias,
that is, only those cars that had warranty claims were in the sampled
population. This will entail that the resulting estimates of the failure
distributions based on this data set will tend to be stochastically smaller
than the true failure time distributions of all the cars under warranty.
This data, which was provided to us by Professor Ananda Sen of the
University of Michigan, is pictured in Figure 5 with blue triangles repre-
senting failures attributed to mode 1 and red circles denoting failures at-
tributed to mode 2. In some cases, there were multiple failures recorded
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at the same time. When this occurred, only the first recorded failure
mode was used in the analysis. The final observation for each of these
cars is a failure event. Thus, note that the actual data accrual does not
exactly coincide with our model where the time to the end of monitoring
is noninformative about the failure distributions. Additionally, the data
possess discrete inter-event times. As such, caution should be observed
in interpreting the results of this data illustration.

There were 153 failures attributed to failure mode 1 and 158 at-
tributed to failure mode 2. The average (standard deviation) of observed
miles between mode 1 failures was 675.1 (812.7) miles. Comparatively,
failure mode 2 had an average (standard deviation) of observed miles
between failures of 880.5 (800.8) miles. The data is modeled as partial
repairs since typically car mechanics, but as we all know not always,
only repair the failed components. Weibull distributions are assumed
for the inter-event times for each of the failure modes. The estimates
of the parameters are α̂1 = 0.553, β̂1 = 1465.011, α̂2 = 0.812, and
β̂2 = 1351.176. Utilizing equation (3), estimates of the standard er-
rors of these parameter estimates are obtained to be ŝe(α̂1) = 0.040,
ŝe(β̂1) = 192.609, ŝe(α̂2) = 0.059, and ŝe(β̂2) = 121.099. The associ-
ated marginal distribution curves and the system life distribution are
depicted in Figure 6 for this data. Additionally, Figure 6 depicts the
non-parametric estimator of the system life distribution based on the
product limit estimators of the marginal distributions using only the
first event (SCRM). Based on the discrepancies between the parametric
estimator and the non-parametric estimator of the system life, we see
that the Weibull assumption may not be an appropriate model for this
data, provided that the partial repair assumption is valid.

6 Simulation Studies

In order to demonstrate the small sample properties of our estimators,
simulations that are similar to those for the efficiency comparisons were
performed. However, the intent of these simulations was to demonstrate
the properties of the estimation procedures for small samples. In these
simulations we consider a system with three competing risks operating
under partial repair with Weibull inter-event time distributions with dis-
tinct parameters for each risk, (α1, β1), (α2, β2), and (α3, β3). For the
first and second simulations, 1000 data sets were simulated with n = 5
and n = 10 units, respectively, each operating under three partially re-
paired Weibull causes of failure with θ = (α1 = 2, β1 = 2, α2 = 3, β2 =
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Figure 5: Recurrences of two types of failure modes for 189 cars under
warranty. Failure mode 1 = blue triangle, Failure mode 2 = red circle.

3, α3 = 4, β3 = 4). Censoring times were randomly generated from
an exponential distribution with mean 4. Utilizing the constrOptim

function in R to minimize the negative log-likelihood, the estimates are
obtained. The average estimate and standard error for the 1000 esti-
mates are reported in Table 1 for n = 5 units and Table 2 for n = 10
units. Histograms of the parameter estimates are given in Figure 7 for
the five units case and Figure 9 for the ten units case. There were on
average, approximately 43, 65, and 86 observations of each of the three
Weibull causes, respectively, for the five units case. Even with these
relatively large number of observations per simulation, the estimated
sampling distributions of the estimators for each of the parameters ex-



Parametric Estimation in a Recurrent Competing Risks Model 173

Figure 6: Estimated inter-event time distributions for two types of fail-
ure modes based on 189 cars under warranty.

hibit some skewness to the right for the shape parameters, α1, α2, and
α3. This feature of the sampling distributions is more pronounced for
the shape parameters’ estimates. With these sample sizes, the simulated
sampling distributions of the scale parameters, β1, β2, and β3, are ap-
proximately normal. A reviewer has suggested that a log-transformation
of the estimates could improve the normal approximations to the sam-
pling distributions. This suggestion is partly empirically validated by
looking at Figure 8 which is the sampling distribution histogram of the
logged estimates of α1 from Figure 7. Utilizing the logged estimates may
become beneficial, for instance, when constructing confidence intervals
for the parameter values through the use of the normal approximation
to the sampling distribution.
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When we increased to n = 10 units, the average number of observa-
tions increased to approximately 88, 132, and 174 observations for each
of the three Weibull causes, respectively. With this increase in the num-
ber of observations, the simulated sampling distributions for the shape
parameters, as well as the scale parameters, show approximately normal
distributions.

Average Number of Estimated Parameter
True Events per Replication (Estimated Standard Error) Estimated Bias

α1 = 2 43.184 2.082 (0.286) 0.082
β1 = 2 1.996 (0.176) -0.004
α2 = 3 64.943 3.096 (0.354) 0.096
β2 = 3 2.997 (0.151) -0.003
α3 = 4 85.984 4.072 (0.397) 0.072
β3 = 4 4.002 (0.126) 0.002

Table 1: 1000 simulations of five units operating under three Weibull
recurrent competing risks under a partial repair strategy and with a
censoring mechanism generated by an exponential distribution with a
mean of 4.

Average Number of Estimated Parameter
True Events per Replication (Estimated Standard Error) Estimated Bias

α1 = 2 87.746 2.037 (0.187) 0.037
β1 = 2 2.001 (0.116) 0.001
α2 = 3 131.961 3.047 (0.213) 0.047
β2 = 3 3.006 (0.097) 0.006
α3 = 4 174.411 4.033 (0.247) 0.033
β3 = 4 4.004 (0.083) 0.004

Table 2: 1000 simulations of 10 units operating under three Weibull
recurrent competing risks under a partial repair strategy and with a
censoring mechanism generated by an exponential distribution with a
mean of 4.

To increase the number of observations for each cause, the mean of
the censoring mechanism’s distribution and the number of units were
increased to 6 and 50, respectively. The final simulation estimated the
parameters for three partially repaired Weibull causes of failure with θ =
(α1 = 2, β1 = 2, α2 = 2.1, β2 = 2.1, α3 = 2.2, β3 = 2.2) for 50 units under
an exponentially distributed censoring mechanism with mean 6. Again,
there were 1000 simulation replications. Results from this simulation are
shown in Table 3 and Figure 10. The simulated sampling distributions
for the shape and scale parameters exhibit approximate normality.
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Figure 7: Histogram of parameter estimates using α1 = 2, β1 = 2, α2 =
3, β2 = 3, α3 = 4, and β3 = 4 for 1000 simulations of 5 units.

7 Concluding Remarks

This paper proposes a resource-efficient method for analyzing recurrent
competing risks data. In particular, recurrent competing risks allow
for a better use of the monitoring period by utilizing a repair strategy.
Perfect and partial repair strategies were considered here. Other repair
strategies not utilized in this paper offer alternative realistic applica-
tions. For example, a minimal repair strategy would replace the failed
component with another component of equivalent lifetime, which is an
option when used parts are available. Given the resource-efficient nature
of recurrent competing risks in which monitoring for more events contin-
ues after a failure, it is not surprising that the recurrent competing risks
method leads to more efficient estimation of the marginal distribution
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Figure 8: Histogram of the logged parameter estimates of α1 depicted
in Figure 7.

functions of the component lifetimes, and consequently of the system
life distribution, when compared to the non-recurrent competing risks
model. The sampling distribution of the estimators are shown to be
approximately normal distributions for large sample sizes. Simulation
studies demonstrated the small (to moderate) sample properties of the
estimators.

The methods were applied to a car warranty data to estimate the
inter-event time distributions for the latent failure times. For the car
warranty data, it was assumed that the failures occurred under Weibull
marginal distributions, and under a partial repair strategy, aside from
the independence of the latent time-to-event variables. A possibly more
robust approach to the analysis of such types of recurrent competing
risks data sets are through nonparametric methods where parametric
assumptions are not imposed. Recent work on this has been done in [6],
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Figure 9: Histogram of parameter estimates using α1 = 2, β1 = 2, α2 =
3, β2 = 3, α3 = 4, and β3 = 4 for 1000 simulations of 10 units.

as well as in [16]. We also mention that a latent variable approach to the
modeling of competing risks has its limitation as has been pointed out
in [7, 10, 11, 17] among others. An important limitation, for instance,
is that a competing risks data is insufficient to empirically verify the
independence assumption among the latent failure-time variables, which
could be a serious limitation in biomedical applications, but possibly
may not be so serious for engineering and reliability applications. It will
therefore be of interest to develop methods for dealing with recurrent
competing risks data without using a latent variable approach and with
possible dependencies among the different risks.

We close by noting that in a World where Time is Money and Money
is Time, it is important to be considerate of both. When systems can
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Average Number of Estimated Parameter
True Events per Replication (Estimated Standard Error) Estimated Bias

α1 = 2.0 433.649 2.007 (0.077) 0.007
β1 = 2.0 2.001 (0.049) 0.001
α2 = 2.1 455.463 2.108 (0.074) 0.008
β2 = 2.1 2.100 (0.049) 0.000
α3 = 2.2 478.039 2.204 (0.079) 0.004
β3 = 2.2 2.201 (0.050) 0.001

Table 3: 1000 simulations of 50 units operating under three Weibull
recurrent competing risks under a partial repair strategy and with a
censoring mechanism generated by an exponential distribution with a
mean of 6.

Figure 10: Histogram of parameter estimates using α1 = 2, β1 = 2, α2 =
2.1, β2 = 2.1, α3 = 2.2, β3 = 2.2 for 1000 simulations of 50 units.

be monitored for periods that extend beyond the first failure time, it
is beneficial to allow systems to be repaired and to observe the recur-
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rences of failures over the monitoring period. So far, a limited amount
of data has been collected in this manner so as to utilize information
from recurrent events and competing risks. A data set that has been
used in [12] concerns a recurrent competing risks setting under perfect
repair by observing the failure of shunts due to multiple causes; see [4]
for additional analysis of this data set. The analyses of this data set are
first performed by ignoring the unique causes of failure and additionally
using multiplicative regression models for each of the causes of failures
to model three recurrences of shunt failures. However, we believe that it
is now the right time that future studies and data collection should allow
for recurrent competing risks to obtain more information, with a con-
sequent beneficial result of producing more reliable conclusions, which
will ultimately translate to better real-life decisions.
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