
JIRSS (2013)

Vol. 12, No. 1, pp 113-126

Exact Statistical Inference for Some Parametric

Nonhomogeneous Poisson Processes

Bo Henry Lindqvist1, Gunnar Taraldsen2

1Department of Mathematical Sciences, Norwegian University of Science and

Technology, Trondheim, Norway.
2SINTEF ICT, Trondheim, Norway.

Abstract. Nonhomogeneous Poisson processes (NHPPs) are often used
to model recurrent events, and there is thus a need to check model fit for
such models. We study the problem of obtaining exact goodness-of-fit
tests for certain parametric NHPPs, using a method based on Monte
Carlo simulation conditional on sufficient statistics. A closely related
way of obtaining exact confidence intervals in parametric models is also
briefly considered.
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1 Introduction

Nonhomogenous Poisson processes (NHPP) are widely used as models
for events occuring in time. In practice it may be of interest to check
the NHPP property by statistical tests given observed data. In a recent
paper, Lindqvist and Rannestad [7] presented a Monte Carlo approach
for goodness-of-fit testing in NHPP models, where conditional tests are
performed by simulating conditional samples given a sufficient statistic
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under the hypothesized NHPP model. In particular, they presented tests
for the power law and the log-linear law NHPP models. It was noted
that while exact algorithms for the power law case are well known in the
literature, the availability of exact tests for the log-linear case are less
known (Gaudoin [4] probably presented the first test of this kind).

The approach of the present paper is closely related to the one of
[7], but differs in the way the conditional samples are obtained. More
specifically, the present approach is based on the Monte Carlo simulation
method of Lindqvist and Taraldsen [8].

It should be stressed that our emphasis is on how to obtain exact
tests when a goodness-of-fit statistic W is given. The construction or
choice of a test statistic W is hence beyond the primary scope of this
article. A nice and informative discussion of how to perform goodness-of-
fit testing in NHPP models is given in Baker [1]. Commonly used tests
are based on the Cramer-von-Mises test or the Kolmogorov-Smirnoff
test. We refer to [7] for more information on the choice of test statistics
and relevant references.

2 Observations, Likelihood Functions and
Sufficient Statistics

We assume that an NHPP is observed from time t = 0 and until n events
have occurred. In reliability applications the events are usually failures
of some repairable system, and the above given observation scheme is de-
noted as “failure truncation” or “failure censoring”. Most of our results
may be modified to the case of “time truncation” or “time censoring”,
where the process is observed until a given time t0, but for the sake of
brevity this will not be done here.

Suppose we observe an NHPP with intensity function λ(t) and let
the n first event times be denoted T = (T1, . . . , Tn). The log likelihood
function resulting from observed failure times {tj ; j = 1, 2, . . . , n} is then
given as (Crowder et al. [3]),

n∑
j=1

log λ(tj)−
∫ tn

0
λ(u)du. (1)

Two popular parametrizations of NHPPs are the power law, with
intensity function given by

λ(t) = abtb−1
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and the log-linear law, with intensity function

λ(t) = exp(a+ bt).

Substituting each of these functions into (1) and using the factorization
criterion for sufficiency (Casella and Berger [2]), gives that the two-
dimensional statistic

S =

log Tn,
n−1∑
j=1

log Tj

 (2)

is sufficient in the power law case, while

S =

Tn,
n−1∑
j=1

Tj

 (3)

is sufficient in the log-linear case (see also [7]).

3 Conditional Testing Given a Sufficient
Statistic

Let T be the vector of failure times as described in the previous section,
and consider testing of the null hypothesis H0 that these data come from
an NHPP of a particular parametric type. More precisely, consider null
hypotheses of the form H0 : T1, T2, . . . are observations from an NHPP
with intensity function λ(t; θ), where λ(·; θ) is a parametric nonnegative
function with θ varying in a specified finite-dimensional parameter set.
Note that the parameter value θ is unspecified in the null hypothesis.
Simple examples of such parametric functions are the power law and
log-linear law intensity functions considered in the previous section, and
which will be the objects of main study here.

Let W ≡ W (T ) be any test statistic for revealing departure from the
null model, assuming for simplicity that the null hypothesis is rejected
for large values of W . Suppose that S ≡ S(T ) is a sufficient statistic for
the unknown parameters under the null hypothesis, such as for example
the ones given in (2) and (3).

An α-level conditional test of H0 rejects, conditionally given S = s,
when W ≥ k(s), where k(s) is a critical value chosen such that

PH0(W ≥ k(s)|S = s) = α. (4)
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We here assume for convenience that exact equality to the right of (4)
is always possible, which will be the case in our applications. It is
readily seen by unconditioning that (4) implies PH0(reject H0) = α.
Thus any α-level conditional test is an α-level (unconditional) test, while
the opposite need not be true.

The clue of using a conditional test is that, by sufficiency of S, the
conditional distibution of W given S = s is independent of unknown
parameters, and hence that it is, at least in principle, possible to calcu-
late k(s). Note also that we will need to compute k(s) for the observed
value of S only. Still this might, however, be difficult or even practically
impossible. In the following we therefore describe an equivalent formula-
tion of the problem which instead involves computation of (conditional)
p-values.

Let the observed data be Tobs, and let sobs = S(Tobs) and wobs =
W (Tobs) be the observed values of, respectively, the sufficient statistic
and the test statistic. Instead of computing k(sobs) we shall consider the
conditional p-value,

pobs = PH0(W ≥ wobs|S = sobs). (5)

Now (4) and (5) together imply that pobs ≤ α if and only if wobs ≥
k(sobs), and hence the α-level conditional test is equivalent to the test
which rejects the null hypothesis if pobs ≤ α. The key to performing
the conditional test is hence reduced to computation of the conditional
p-value in (5).

In [7] this computation was made by simulating a large number,
M say, of realizations T ∗ from the conditional distribution of T given
S = sobs, then computing W ∗ = W (T ∗) for each of them, and finally
approximating the conditional p-value pobs by the relative frequency

p̂obs = #{W ∗ ≥ wobs}/M.

Basically, this is also what we will do here, but now using the method
considered in Lindqvist and Taraldsen [8] which is a way of computing
conditonal expectations of the form E(ϕ(T )|S = s) when S is a sufficient
statistic. Note that p̂obs given above indeed can be written in this form.

4 Monte Carlo Conditioning on a Sufficient
Statistic

As described in the previous section, we let the model for the observation
T under the null hypothesis be specified in terms of a finite-dimensional
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parameter θ. The treatment of the present section is valid more generally
than the case of parametric NHPP models.

Suppose that for a given value of θ we can simulate realizations of T
by T = χ(U, θ) for some function χ and a random vector U with known
distribution. Further, suppose S(T ) ≡ S is a sufficient statistic for θ.
Then of course S can be simulated by the function τ(U, θ) ≡ S(χ(U, θ)).
How to choose U and χ is shown in the next section for, respectively,
the power law and the log-linear NHPP models.

Consider now the computation of conditional expectations of the
form E(ϕ(T )|S = s) for given functions ϕ, where s is the observed value
of S. By the definition of sufficiency, this conditional expectation is
independent of θ and the clue of the approach of the present paper is
that it can be expressed in terms of ordinary expectations of functions
of U (Theorems 1 and 2 below).

Theorem 4.1. (Lindqvist and Taraldsen [8]) Suppose that θ and
S take values in Rk and suppose that the equation τ(u, θ) = s has the
unique solution θ = θ̂(u, s) for each fixed u and s. Let f(θ) be a nonneg-
ative function defined on the parameter space, and let det ∂θτ(u, θ) be
the determinant of the matrix of partial derivatives of τ(u, θ) for fixed
u. Then

E(ϕ(T )|S = s) =
EU

[
ϕ(χ(U, θ̂(U, s)))| f(θ)

det ∂θτ(U,θ)
|θ=θ̂(U,s)

]
EU

[
| f(θ)
det ∂θτ(U,θ)

|θ=θ̂(U,s)

] . (6)

It is tacitly assumed above that f is such that the expectations exist
and such that the denominator is positive, but f may otherwise be
arbitrarily chosen. It should be noted that f can be thought of as a
(possibly improper) density of a distribution for θ, similar to a prior
distribution in Bayesian statistics. For such connections to Bayesian
and also fiducial statistics we refer to [8]. Lindqvist and Taraldsen [9]
argue that traditional noninformative priors such as the Jeffreys’ prior
for f will generally work well. The problem of choosing f will be further
discussed in connection with the application in Section 5.2.

The practical consequence of Theorem 4.1 is that the expectations
can be computed by simulation by drawing independent versions of the
random vector U (which has a known distribution) and averaging the ex-
pressions inside the expectations on the right hand side of (6). It follows
that if a function f(·) can be chosen so that |f(θ)/det ∂θτ(U, θ)|θ=θ̂(U,s)

does not depend on U , then we will have E(ϕ(T )|S = s) = EU [ϕ(χ(U,

θ̂(U, s)))
]
which means that the function χ(U, θ̂(U, s)) can be used to
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sample directly from the conditional distribution of T given S = s. Un-
fortunately, it is not always possible to find such an f , but the following
sufficient condition can be given.

Theorem 4.2. (Lindqvist and Taraldsen [8]) Let the situation
be as in Theorem 4.1. Assume that there exist functions r and τ̃ with
τ(u, θ) = τ̃(r(u), θ), such that the equation τ̃(v, θ) = s has a unique
solution v = ṽ(θ, s) for all (θ, s). Then χ(U, θ̂(U, s)) is distributed as the
conditional distribution of T given S = s.

The new assumption of Theorem 4.2 means that τ(u, θ) depends on u
only through r(u), which usually has a much lower dimension than u, and
has the property that for given θ, r(u) is uniquely determined by s. Note
that ṽ(θ, S) is in this case a pivotal quantity in the classical meaning in
statistical theory. The new condition of the theorem is therefore called
the pivotal condition.

As we shall see in the next section, the pivotal condition turns out to
hold for an NHPP with the power law intensity function, while it does
not hold for the log-linear intensity in which case Theorem 4.1 should
be used.

5 Conditional Simulation for Parametric NHPP
Models

It is well known (e.g. Ross [14]) that the first n events of an NHPP with
intensity function λ(·) can be simulated by letting U = (U1, U2, . . . , Un)
be the first n events of a homogeneous Poisson process with unit inten-
sity, and then letting

Tj = Λ−1(Uj) ; j = 1, . . . , n, (7)

where Λ−1 is the inverse function of the cumulative intensity function
Λ(t) ≡

∫ t
0 λ(u)du.

5.1 Power Law Intensity

From Section 2 follows that Tj = (Uj/a)
1/b. With notation from the

previous section we simulate T by

χ(u; a, b) = ((u1/a)
1/b, . . . , (un/a)

1/b),
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while the sufficient statistic S = (log Tn,
∑n−1

j=1 log Tj) is simulated by

τ(u; a, b) = ((log un − log a)/b, (
n−1∑
j=1

log uj − (n− 1) log a)/b).

Thus the pivotal condition in Theorem 4.2 holds with r(u) = (log un,∑n−1
j=1 log uj). Letting the observed times be t = (t1, . . . , tn) and let-

ting s = (log tn,
∑n−1

j=1 log tj), it is straightforward to obtain θ̂(u, s) ≡
(â(u, s), b̂(u, s)) by solving τ(u; a, b) = s for a and b. The solutions can
in fact be written in the simple form

b̂(u, s) =

∑n−1
j=1 log(uj/un)∑n−1
j=1 log(tj/tn)

,

â(u, s) = un/t
b̂(u,s)
n .

Samples t̃ = (t̃1, . . . , t̃n) from the conditional distribution of T given
S = s can now be obtained by first sampling u = (u1, . . . , un) from
a unit intensity homogeneous Poisson process and then computing t̃ =
χ(u; θ̂(u, s)). We get in this way

t̃j = (uj/un)
1/b̂(u,s)tn ; j = 1, . . . , n,

which can be easily simulated since the uj/un are distributed as the
order statistics of a sample of n − 1 independent uniforms on [0, 1]. In
fact this is the same formula for t̃j that one would get from Lemma 1 of
[7] by a straightforward modification to the failure truncation case.

5.2 Log Linear Intensity

In this case (7) becomes Tj = log(1 + be−aUj)/b, so T is simulated by

χ(u; a, b) = (log(1 + be−au1)/b, . . . , log(1 + be−aun)/b),

while S = (Tn,
∑n−1

j=1 Tj) is obtained as

τ(u; a, b) = (log(1 + be−aun)/b,
n−1∑
j=1

log(1 + be−auj)/b).

It is clear that the pivotal condition of Theorem 4.2 is not satisfied here.
This should be no surprise since it is well known that the log-linear
NHPP model has no interesting pivotal statistic. In order to compute
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p-values of conditional tests, we thus have to use Theorem 4.1 with some
properly chosen function f(a, b) (see below for a discussion of possible
choices).

First we find θ̂(u, s) ≡ (â(u, s), b̂(u, s)) by solving for a, b the equa-
tions

tn =
1

b
log(1 + be−aun), (8)

n−1∑
j=1

tj =
1

b

n−1∑
j=1

log(1 + be−auj). (9)

From (8) we readily get

e−a =
ebtn − 1

bun
(10)

which by substitution in (9) gives

b
n−1∑
j=1

tj =
n−1∑
j=1

log

[
1 +

uj
un

(etnb − 1)

]
, (11)

which is an equation in b only. By differentiating twice it is seen that
the right hand side of (11) is convex in b. Further consideration leads
to the conclusion that equation (11), in addition to the trivial solution
b = 0, has a unique additional solution, which is the one that solves our
problem, and which is easily found by numerical methods. The solution
for a is then finally obtained from (10).

Now the entries of t̃ = χ(u; â(u, s), b̂(u, s)) are given by

t̃j = log
(
1 + (etnb̂(u,s) − 1)(uj/un)

)
/b̂(u, s),

and a straightforward computation shows that the determinant det ∂a,b
τ(u; a, b) with (â(u, s), b̂(u, s)) substituted for (a, b) is given bytn

n−1∑
j=1

hj − hn

n−1∑
j=1

tj

 /b̂(u, s)2,

where hj = ((etnb̂ − 1)(uj/un))/(1 + (etnb̂ − 1)(uj/un)) and b̂ ≡ b̂(u, s).
As for the power law case we can simulate the uj/un for j = 1, . . . , n−1
as the order statistics from a set of n− 1 i.i.d. uniforms on [0, 1].

What remains in order to estimate the expectations in (6) for the
current application is then to choose f(a, b). It is tempting to try first



Exact Statistical Inference for Some Parametric ... 121

a constant function f(a, b) ≡ 1. It turns out, however, that in this
particular case this leads to non-convergence of the method. This was
in fact pointed out for a modified version of the current problem in
personal communication with Federico O’Reilly, who found satisfactory
results by using Jeffreys’ prior as the choice for f . The computation of
Jeffreys’ prior seems, however, to be unnecessarily complicated in the
present case. It turns out on the other hand that the problem of using a
constant function f is due to the behaviour of f around b = 0. In order
to avoid this problem, the following function f was used:

f(a, b) =

{
0 if b ∈ (−ϵ, ϵ)
1 otherwise

for some ϵ > 0, where suitable values can be found by trial and error. It
should furthermore be noted that in the present case there is no function
f for which the weight |f(θ)/ det ∂θτ(U, θ)|θ=θ̂(U,s) does not depend on

U . This is because, as already noted, the pivotal condition (see end of
Section 4) is not satisfied in the log-linear case.

6 Statistical Inference in NHPP Models

6.1 Goodness-of-Fit Testing

The identity (7) is equivalent to Uj = Λ(Tj). It follows that if Λ(·) is the
cumulative intensity function of the NHPP T1, T2, . . ., then Λ(T1),Λ(T2),
. . . is a homogeneous Poisson process with unit intensity. Thus by a
standard result on Poisson processes ([14]), the transformed times Vj =
Λ(Tj)/Λ(Tn) for j = 1, . . . , n− 1 are distributed as the order statistic of
n−1 i.i.d. uniform variables on [0, 1]. If Λ∗(·) is an estimate of Λ(·) based
on data t = (t1, . . . , tn), then we shall define estimated transformed times
v∗1, . . . , v

∗
n−1 by

v∗j = Λ∗(tj)/Λ
∗(tn).

One then anticipates these to behave much similar to uniform variables,
and goodness-of-fit testing may thus be based on comparing the be-
haviour of the estimated transformed times to that of uniform variates.
The quantities v∗j are in fact the basis of a large class of goodness-of-fit
tests for NHPPs.

Baker [1], see also Rigdon [13], showed for the power law process
that when Λ∗ is based on the maximum likelihood estimates for the
parameters, then the estimated transformed times are pivots, i.e. have
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distributions which do not depend on the unknown parameters. This fol-
lows in fact from the representation tj = (uj/a)

1/b in Section 5.1, noting
that b∗ = −n/

∑n−1
j=1 log(tj/tn) is the maximum likelihood estimate of b

based on the data (Crowder et al. 1991). Then we have

v∗j = (tj/tn)
b∗ = (uj/un)

−n/
∑n−1

j=1
log(uj/un)

which are independent of the parameters.
Baker [1] derived a class of score tests based on the estimated trans-

formed times. A special case, which we shall use for illustration, is

W =
n∑

j=1

(v∗j − v∗j−1)
2,

where v∗0 = 0, v∗n = 1. This statistic was called the Greenwood statistic
in [7]. The null hypothesis of an NHPP of a particular parametric type
is rejected for either too small or too large values of this statistic. Note
that since the v∗j are pivots, we can in the power law case compute
(by simulation) the unconditional p-values which in this two-sided case
becomes

2 (min{PH0(W ≤ wobs), PH0(W ≥ wobs)}) .

In the case of log-linear intensity (Section 5.2) we get

v∗j = (eb
∗tj − 1)/(eb

∗tn − 1),

where b∗ is the maximum likelihood estimate of b. In Crowder et al. [3]
it is shown that b∗ is the solution for b of the equation

t̄+
1

b
− tne

btn

ebtn − 1
= 0, (12)

where t̄ =
∑n

j=1 tj/n.
Conditional p-values for the test based on W can then be computed

from Theorem 4.1 with ϕ(T ) = I(W ≤ wobs) and ϕ(T ) = I(W ≥ wobs),
and using the further specifications in Section 5.2. The resulting test was
considered also in [7], where a Gibbs sampling algorithm for computation
of conditional p-values was used.

6.2 Exact Confidence Intervals

From the general approach of Lilleg̊ard and Engen [6] it follows how the
b̂(u, s) of Section 5 can be used to obtain exact confidence intervals for
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the parameter b, both for the power law and the log-linear law cases.
Draw independent realizations u1, . . . , um of the vector U , for a specified
positive integer m. Let s be the observed value of the sufficient statistic
and let b̃(1) < · · · < b̃(m) be the ordered values of the b̂(uj , s). Then

(b̃(k), b̃(m−k+1)) is an exact 1 − 2k/(m + 1) confidence interval for b for
any m. Note that the intervals will depend on the actually drawn uj .

For the power law case it can be seen that the above constructed
interval, as m → ∞, is the same as the classical one based on the
pivotal statistic 2nb/b∗, which is known to be chi-square distributed
with 2(n− 1) degrees of freedom (e.g. Rausand and Høyland [12]).

The intervals obtained by this method for the log-linear case, how-
ever, appear to be new. Note that they are not given by a closed ex-
pression, even when m → ∞, but need to be computed by simulation.

6.3 Application to Data Set

We apply the above results to data from a reliability growth program,
taken from Leitch [5]. There are n = 10 failures, at times

103, 315, 801, 1183, 1345, 2957, 3909, 5702, 7261, 8245.

Suppose first that it is of interest to know whether the data are consistent
with a power law or a log-linear NHPP.

In the power law case we get for the Greenwood statisticW of Section
6.1,

wobs = 0.1263.

Simulating the distribution of W as described in Section 6.1, using 10000
repetitions, we find

PH0(W ≤ 0.1263) ≈ 0.024,

which implies some evidence against the power law NHPP. More pre-
cisely, as the test based on W is two-sided, we get a p-value of 0.048.

In the log-linear case we compute for the same W ,

wobs = 0.1466, sobs = (8245, 23576)

and
PH0(W ≤ wobs|S = sobs) ≈ 0.217,

following the recipe described in Section 5.2 and using the function f
given there. This result does not lead to rejection of the log-linear NHPP
assumption.
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An exact 90% confidence interval for b in the power law model, using
the chi-square distributed pivotal statistic as explained in Section 6.2,
follows by first computing the maximum likelihood estimate b∗ = 0.6249.
The resulting interval is then (0.2933, 0.9020). Since the interval does
not contain 1, we can conclude that we have reliability growth. It should
be noted, however, that we have already rejected at 5% level the null
hypothesis of power law NHPP. Thus the confidence interval may have
lost its meaning and is included mostly for illustration of the method.

For the log-linear case, where the model has not been rejected, an
exact 90% confidence interval for b was computed as

(−5.60 · 10−4,−3.83 · 10−5),

using 10000 simulations of b̂(u, s) as described in Section 6.2. Since
the interval is completely on the left side of 0, there is an indication of
reliability growth. It may also be of interest to compute the maximum
likelihood estimate of b, which by solving the equation (12) is obtained
as b∗ = −1.715 · 10−4.

7 Concluding Remarks

The present paper complements the computational methods of [7] for
exact goodness-of-fit testing in parametric NHPP models. The common
idea of the two papers is that such tests can be derived by conditioning
appropriate test statistics on a sufficient statistic under the hypothesized
model. As regards the power law case, although the derivations of the
methods of [7] and the method presented here are apparently different,
it has been demonstrated that the resulting methods are in fact iden-
tical. On the other hand, for the log-linear case, the methods turn out
to be quite different in nature. Here [7] uses Gibbs-sampling, following
ideas of Lockhart et al. [10], while the present paper uses the weighted
sampling suggested in Lindqvist and Taraldsen [8]. One particular dif-
ference is that Gibbs sampling produces dependent samples while the
weighted sampling is based on independent samples. The final results
should, however, still be independent of the method used to compute
them. A relevant comparison between the methods might therefore be
based on computing times and accuracy. For example, one may record
for each of the two methods the necessary computing time to obtain a
given precision; or, for a given computing time one may compare the
precision of the results of the two methods. Rannestad [11] did such a
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study with a conclusion that the Gibbs sampling methods of [7] are more
computationally efficient than the methods described in the present pa-
per. The reason for this is most probably the need for solving equations
and computing weights in the latter method.

As pointed out in [7], an alternative to the exact testing approach
based on conditional simulations considered here is the use of para-
metric bootstrapping. Indeed, if one relaxes the requirement of exactly
computed p-values, then bootstrapping is both a powerful and intuitive
tool. The basic idea is then to simulate samples from the null hypothesis
model by substituting parameter values estimated under the null model.
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