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Abstract. In the perspective of biomedical applications, consider a re-
current event situation with a relatively low degree of recurrence. In this
setting, the focus is placed on successive inter-event gap times which are
observed in the presence of both a terminal event like death and inde-
pendent censoring. The terminal event is potentially related to recurrent
events while the censoring process is an independent nuisance that bears
on the total observation time i.e. on the sum of the successive gap times.
We review different modeling and inferential strategies. We also present
a nonparametric estimation method of joint distribution functions and
outline the need for future developments.
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1 Introduction

Many clinical and epidemiological cohort studies involve health out-
comes that a participant may experience a few times during the follow-
up period. Interest is particularly centered on life-threatening recurrent
events that each patient may experience at most a very few times. Clas-
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sical examples of such recurrent events from longitudinal studies include
solid tumor recurrences in cancer patients, transient ischaemic attacks
in atherosclerotic patients and recurrent leukaemia in patients undergo-
ing allogeneic haemopoietic stem cell transplantation. The occurrence
of recurrent events as serious as tumor recurrence or ischaemic attack is
associated with a high risk of death so that the subject may die during
the study. Obviously, the death of a patient stops any subsequent occur-
rence of recurrent events, hence the name “terminal event”. In addition,
during a trial, right-censoring phenomenon is common and should also
be accounted for. Studies such as CARE (Pfeffer et al., 1996), ASPIRE
(Bowker et al., 1996), CAPRIE (Gent et al., 1996), LIPID (The LIPID
Study Group, 1995, 1998 and Marschner et al., 2001) fall within this
framework.

For a given patient, the occurrence of a recurrent event often im-
pacts the risk of novel recurrent event and even of death. Therefore the
assumption of independence among the gap times of an individual is
often violated for recurrent event data and the death time is also likely
to be dependent on the recurrent event history. This dependence should
be taken care of in the inferential procedures and accounted for in the
joint modeling of recurrent and terminal events. On the opposite, when
no covariates are available, the censoring process is often assumed to be
independent of both the recurrent and terminal processes. Possible rea-
sons for such an independent censoring are loss to follow-up (non-related
to side-effects of the treatment under study) or end of study. When co-
variates are available, it is often assumed that the censoring process is
independent of both the recurrent and terminal processes conditionally
on covariates.

Throughout, the recurrent and the terminal processes are all assumed
to have distribution such that recurrent event and death cannot happen
at the same time.

The kind of data collected during such a trial is illustrated on Fig-
ure 1 for six subjects labeled S1 to S6. The follow-up time for a given
patient is represented by a straight line along which the different events
are indicated. Recurrence time data can be regarded as multivariate
data that have specific characteristics:

• the different recurrence times of a given subject are stochastically
ordered,

• the different patients do not experience the same number of events
and the number of observed events for each subject is not known
in advance,
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• the number of patients still alive and still under study decreases
as the events occur,

• the terminal event stops the further occurrence of recurrent events,

• the last recurrence time of a subject is either a censoring time or
a death time,

• censoring occurs at most once for a given patient and prevents any
further event from being observed.

S6

censoring

S5
RE RE death

S4
RE death

S3
death

S2
RE RE censoring

S1
RE censoring

Figure 1: Example of data (RE = recurrent event).

Traditional statistical methods for the analysis of cohort study have
been focused either on the survival time or on the first occurrence of
a composite outcome due to lack of appropriate methodology. For in-
stance, the primary pre-specified endpoint in the LIPID (1995) study
was coronary heart disease related death and for secondary analyzes a
composite of coronary heart disease related death or non-fatal myocar-
dial infarction.

Focusing only on the most serious issue i.e. on the fatal one and
comparing treatments only with respect to total lifetime would lead to
efficacy problems. Coping with these efficacy problems would require
longer trial duration and larger sample size. It would also result in a
considerable loss of information that would obscure the issue of serious
non-fatal event recurrence which is also a major concern even if the re-
currence degree is relatively low. This was a serious matter in Jokhadar
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et al. (2004) who outlined that, as myocardial infarction hospital fatal-
ities decline, survivors are candidates for recurrent events. This paper
also states that the question of morbidity after non-fatal myocardial
infarction and how it may have changed over time with the arrival of
contemporary treatments is still of interest. Assessment of prognostic for
further recurrence is a critical step in evaluating the need for treatment
and lifestyle modifications to manage the risk of future events.

On the other hand, the most common analysis consists of restrict-
ing attention to first event occurrence and of focusing on a predefined
composite endpoint that combine fatal and non-fatal events to demon-
strate treatment efficacy. The first consequence of this is bias problems
toward shorter lifetimes. The second consequence is more subtle and
has been outlined in a number of paper including Pocock (1997), Mahé
and Chevret (1999), Ferreira-Gonzàles et al. (2007) and Kleist (2007)
among many others. All outlined the fact that composite endpoints
should be clinically meaningful and that the expected effects on each
endpoint component should be similar, based on biological plausibility.
All components of the composite endpoint need to be analyzed sepa-
rately. Difficulties in interpretation then arise when the results on single
components of the composite endpoint go in opposite directions and
when hard clinical outcomes are combined with soft endpoints, particu-
larly if the latter occur more frequently but are of inferior relevance.

As a conclusion to this discussion, patients need to be followed up on
assigned treatment until death or end of planned follow-up in the absence
of events and must not be regarded as ’a trial completer’ after occurrence
of the first component event. More specific regulatory guidelines, better
reporting standards and appropriate statistical methodology are needed
to this aim. In this set-up, some progress are still to be made to support
clinical decision making.

Various modeling approaches have been considered with recurrent
event data to address different types of questions. The appropriateness
of a selected model depends on the nature of the recurrent event data
as well as on the interest of the study. In the analysis of recurrent event
data, the focus can be placed either on the times to recurrent event or
on the gap times between successive events or on the recurrent event
process N∗(.) where, for t ≥ 0, the process N∗(t) records the number of
recurrent events occurring in the time interval [0, t].

Note that a connection can be made with multi-state models by
considering the multi-state model depicted in Figure 2 with boxes rep-
resenting the states and arrows the possible transitions. In this model,
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the first (k0+1) states represent the cumulative number of events expe-
rienced, the last state is absorbing and represents death. Only forward
transitions are possible. The “gap time” timescale can be linked to time-
homogeneous semi-Markov models in which the transition probability
between two states only depends on the gap time whereas the “time-
to-event” scale can be linked to time-inhomogeneous Markov models in
which the transition probability between two states only depends on the
time since inclusion in the study. Dealing in full details with multistate
models is beyond the scope of this paper. Nevertheless, we refer to
the recent papers by Andersen and Pohar Perme (2008) and by Meira-
Machado et al. (2009).

0 RE - 1 RE - 2 RE - . . . - k0 RE

Death

XXXXXXXXXXXXXXXXXXXXXXXXXXz

PPPPPPPPPPPPPPPPPPPq

HHHHHHHHHHHHj ?

Figure 2: Multistate model view (RE = recurrent event).

From now on, interest is specifically focused on successive gap times
since this approach is rather suited to studying recurrent events dynam-
ics. Modeling and analyzing the waiting times between successive events
is attractive in specific settings. First of all, analyzes based on waiting
times are often useful when the recurrence degree is relatively low. More-
over, when evaluating the efficacy of a treatment on a life-threatening
illness where only a few recurrences are expected, it is important to as-
sess whether or not the treatment delays the time from treatment start
to the first episode, the time from the first episode to the second episode
and so on... Indeed, several phenomenons may affect the understanding
of the illness mechanism. On the one hand, a treatment which delays the
first episode will inevitably lengthen the total time to the second episode
even if it becomes ineffective after the first episode. On the other hand,
in some cases, a compensating phenomenon between the different stages
of a disease or of a treatment may exist. For example, a treatment may
delay the occurrence of the first recurrent event but have the reverse
effect on the occurrence of the subsequent recurrent events. It is impor-
tant to detect such a phenomenon. The distribution of successive gap
times between recurrent events is then a valuable information.
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At last, joint modeling of successive gap times including a possible
fatal event and independent censoring is needed for practical purposes
as stated in the paper of Cui et al. (2010). This problem is currently
not fully addressed, up to our knowledge.

In Section 2, different modeling strategies frequently used in the
literature for gap times inference are exposed. In Section 3, we inves-
tigate relevant cause-specific distribution functions. Some perspectives
are given in Section 4.

2 A Review of Modeling Strategies for Gap
Times

In the literature, various modeling approaches have been adopted for the
analysis of recurrent event data. Amongst these are renewal processes,
frailty models or multi-state models. Regression models that incorpo-
rate either the past event history as covariates or explanatory covariates
or both are also of much use. At last, a purely non-parametric approach
with as few assumptions as possible regarding either the gap times dis-
tribution or association structure is also of much interest.

The literature about gap times distribution function or hazard func-
tion inference may be broadly classified into three categories according
to whether authors focused on univariate functions, joint functions or
conditional-on-past-event-history functions. These three analyzes can
also be carried out conditional on explanatory covariates if some are
available. As we will see in the sequel, the two dominant methods to in-
corporate explanatory covariates are Cox’s proportional hazards model
and the accelerated failure time model. We now review some important
contributions.

In the discussion to come, let us denote by Y [k] for k = 1, 2, ... the
successive gap times between successive recurrent events and by D the
death time if considered. We adopt the convention that Y [0] = 0 and that
Z is a vector of explanatory covariates when available. Time-dependent
vectors of covariates are written as Z(.). Throughout, the use of y is
dedicated to the gap timescale while the use of t is dedicated to the
calendar timescale.

2.1 Models for Univariate Functions

Models for univariate functions are useful when interest lies in under-
standing the evolution through time of separate gap times even though
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possible association is accounted for by some authors. In the absence of
(within-subject) gap time independence, two major statistical issues in
the marginal analysis of gap times are identifiability and induced depen-
dent censoring. On the one hand, since the study duration is typically
less than the support of the first failure time, the marginal distribution
of, say, the second gap time is not identifiable unless (within-subject)
successive gap times are independent as discussed for instance by Wang
and Wells (1998), Wang (1999), Lin et al. (1999). This explains the
need for more or less strong modeling assumptions even though marginal
methods are often said to be robust to the subject-specific correlation
structure between gap times. On the other hand, even if censoring acts
independently on the first gap time and on the total observation time,
the second and subsequent gap times are subject to induced depen-
dent censoring. For example, a greater first event time implies higher
censoring probabilities for the second and subsequent gap times since
independent censoring bears on the times-to-event ie on the sums of the
successive gap times. Failures to account for this association may lead
to substantial bias in dealing with gap times after the first.

We now review different approaches to univariate modeling.

Renewal processes have the property that the gaps between succes-
sive events are independent and identically distributed. Even though
much less suited to biomedical applications, one can nonetheless men-
tion the work of Peña et al. (2001) under this renewal process assump-
tion. The authors established Nelson-Aalen-like and Kaplan-Meier-like
estimators of the gap times marginal cumulative hazard function and dis-
tribution function using the method of moments and then argued that
they are NPMLE respectively for the gap times marginal cumulative
hazard function and the marginal distribution function. The authors
showed that any deviation from the independence assumption provokes
bias problems that logically increase as the level of association between
gap times increases.

The assumption that gap times are independent and identically dis-
tributed is very strong when no covariates are present. Therefore it is
important to consider diagnostic checks. An important way of model
checking is by fitting models that include renewal processes as special
case. The independence assumption can also be checked informally when
no covariates are present by, for example, looking at scatter plots of suc-
cessive gap times within individuals. There should be an absence of
trend if the renewal assumption is valid. If the gap times are indepen-
dent, then informal checks on the assumption of a common distribution
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can also be made by comparing separate empirical distributions for the
different gaps. Anyway, the independence assumption is a very strong
condition and renewal processes are mainly useful in reliability when a
subject is repaired in some sense after each event. The renewal assump-
tion is clearly untenable in most biomedical applications.
Specific extensions of renewal processes can be found in Cook and Law-
less (2008) and in Gill and Keiding (2010).

A classical generalization of renewal models that allows association
between gap times consists of considering a frailty model in which a la-
tent variable is used to take into consideration a subject-specific random
effect. Specifically, it is supposed that, for any given subject, there exists
an unobserved random variable U , called the frailty, with distribution
FU such that given U = u the successive gap times of the individual are
i.i.d. with some distribution F (.|u). This unmeasured effect is assumed
to follow a distribution with mean equal to one and unknown finite vari-
ance. A distribution such as the Gamma (most popular frailty model)
or Inverse Gaussian or positive stable or log-normal can be assumed for
the frailty. The goal of the frailty model analysis is generally to esti-
mate the distribution function F (.) =

∫
F (.|u)dFU (u) unconditional on

the frailty or the hazard function also unconditional on frailty. Tech-
nically speaking, frailty models can be fitted either with a frequentist
approach by maximizing the marginal likelihood or with a Bayesian ap-
proach by computing parameter posteriors densities. Hougaard (2000)
and Duchateau and Janssen (2008) provided a comprehensive coverage
of this area.

Wang and Chang (1999) focused on a marginal approach for the
gap times between successive events using this less restrictive frailty
approach. They derived a weighted moment estimator for the marginal
gap times distribution under a nonparametric frailty model assuming
that, given the frailty, the successive duration times are independent
and identically distributed. Their correlation structure is quite general
and contains both the i.i.d. and multiplicative (hence Gamma) frailty
model as special cases.

Peña et al. (2001) also proposed an estimator when the gap times
follow a Gamma frailty model and compared the performance of their
estimator to Wang and Chang’s (1999) estimator by simulations. The
authors found out that, when applied to i.i.d. gap times, their estimator
is expected to be more efficient than that of Wang and Chang (1999).

From a practical viewopint, it is interesting to note that both Peña
et al. (2001) and Wang and Chang (1999) estimators are implemented
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in the R package survrec.

One limitation of many types of random effect models is that only
one or two parameters are used to model association among a number
of successive gap times. This can be inadequate when association struc-
tures are complex or changing over time. Moreover these approaches do
not readily deal with negative associations. At last, it should be noted
that misspecification of the frailty distribution can cause severe bias in
estimation procedures with recurrent event data, see e.g. Kessing et al.
(1998). This remark entails that the possibility of testing model ade-
quacy is an important issue that should be dealt with. Kvist et al. (2007)
developed a procedure for checking the adequacy of Gamma frailty to
recurrent events. To apply their model checking procedure, a consis-
tent non-parametric estimator for the marginal gap time distributions
is needed. The performance of the model checking procedure depends
heavily on this estimator. Moreover, the authors concluded that their
procedure in its current state only works when the within-subject asso-
ciation between gap times is weak. They suggested possible future im-
provement of their methods consisting of checking of the Gamma frailty
model for recurrent events from a comparison of conditional distribu-
tions instead of marginal distributions. Up to now, there is still a room
for improvements on that issue.

When covariates are available, marginal methods are also helpful to
understand how either population-level characteristics (e.g. treatment
group) or subject-specific (e.g. sex) or gap-time specific characteristics
(e.g. some biological marker) influence the marginal gap time distribu-
tion. Explanatory covariates are often incorporated through Cox-like or
accelerated-failure-time-like assumptions for their ease of interpretation.

Assuming that the successive gap times of each individual are i.i.d.
(unconditional on covariates), Huang and Chen (2003) considered a pro-
portional hazards assumption of the form

Λ(y|Z) = Λ0(y) exp(β
′.Z)

to assess the effect of a vector Z of time-independent covariates on the
common baseline cumulative hazard function Λ0(.) of the successive gap
times. The authors developed an inferential procedure that improves the
functional formulation of Cox regression by Huang and Wang (2000)
with respect to efficiency. To this aim, the authors noticed that the
uncensored gap times are exchangeable provided the model assumptions
are valid, then constructed specific clustered data. For each cluster, the
first gap time is chosen if the subject has only one censored gap time,
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otherwise all the uncensored gap times are selected. Then they got their
new estimates of β and Λ0(.) through a modified estimating equation
obtained from the clustered data. This procedure is shown to perform
well for practical sample sizes. The authors also noted that their model
and inferential procedure still apply for covariates that depend on time
from earlier episode and have uniform effects across all gap times but
that difficulties arise if time-varying covariates are episode-specific.

Obviously, the validity of statistical inference depends on the ad-
equacy of the model. Recent progress have been made in Cox-type
model checking for gap times in Huang et al. (2010) who proposed both
graphical techniques and formal tests for checking the Cox model with
recurrent gap time data to assess different aspects of goodness-of-fit for
this model.

In the same setting, ie also assuming that the successive gap times of
each individual are i.i.d. (unconditional on covariates), Sun et al. (2006)
considered an alternative model under the form of an additive hazards
model defined as

λ(y|Z) = λ0(y) + β′.Z

where λ0(.) is the common baseline instantaneous hazard function of the
successive gap times. The authors used the same inferential procedure
as in Huang and Chen (2003) to ensure satisfying efficiency properties.

Strawderman (2005) also proposed a marginal regression model for
consecutive gap times of the accelerated failure type but alleviated the
i.i.d. property of gap times. Specifically, he assumed that, conditional
on a vector of covariates Z, the variables Y [k] exp(β′.Z) for k = 1, 2, ...
are i.i.d. or equivalently that the common hazard function of Y [k] con-
ditional on Z is of the form

λ0(ye
β′.Z) exp(β′.Z)

where λ0(.) is an unspecified baseline function. Similarly to the accel-
erated failure time model, explanatory population-level (ie not episode-
specific) covariates serve to accelerate or decelerate a baseline gap time
hazard function. The problem of obtaining an efficient estimation of β
is investigated.

However, the same restrictions and pitfalls as previously also apply
to regression models in which the gap times are independent conditional
on covariates. Here again, the conditional independence is questionable.
We also mention that questions exist concerning the interpretation of
baseline functions when there is association between the successive gap
times.
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A possible extension consists of incorporating episode-specific covari-
ates.

Chen, Wang and Huang (2004) considered a situation in which episode-
specific vectors of covariates, say Z[k] for k = 1, 2, .. are available and
assumed that the gap times are i.i.d. conditional on covariates. Account-
ing for right-truncation phenomenon in the observation of successive gap
times, they worked with a subject-specific reverse-time hazards function
defined for subject i by

κ
[k]
i (y|Z[k]

i ) = lim
h→0+

1

h
P
[
y − h ≤ Y

[k]
i ≤ y|Y [k]

i ≤ y, Z
[k]
i

]
=

d logP
[
Y

[k]
i ≤ y|Z[k]

i

]
dy

.

Their approach relies on modeling proportional reverse-time hazards
functions so that, for individual i, we have

κ
[k]
i (y|Z[k]

i ) = κi,0(y) exp(β
′.Z

[k]
i )

i.e. each individual is assumed to have its own baseline reverse-time
hazard function κi,0(.). Thus the model copes with high heterogeneity
across the patient population. The prize to pay for this generality is po-
tential identifiability problems. The authors suggested as a special case
that the baseline reverse-time hazard function could be modeled using a
frailty Ui for subject i as κi,0(y) = Uiκ0(y). Note that the effect of the
episode-specific covariates on the baseline reverse-time hazard function
is constrained to be identical across recurrences. The interpretation of
such a constraint may be tricky but has the advantage of allowing more
efficient estimation of β.

Similarly, Du (2009) assumed that each gap time Y [k] depends only
on an episode-specific covariate Z[k] such that the Y [k] conditionally on
the Z[k] are i.i.d. Stating that the history of a subject before each recur-
rence conveys information for that recurrence, Du (2009) suggested to
include the number of past recurrences in the episode-specific covariates.
The author investigated a nonparametric estimator for the marginal gap
time hazard function of Y [k] conditional on Z[k] = z, denoted by λ(.|.),
using a functional ANOVA decomposition of log λ of the form

log λ(y|z) = η0 + ηgap(y) + ηcov(z) + ηgap,cov(y, z)

where η0 represents the grand mean, ηgap(.) represents the main gap
time effect, ηcov(z) represents the main covariates effect and ηgap,cov(y, z)
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represents the interaction effect between gap time and covariates, pro-
vided some identifiability conditions are ensured. As a consequence, this
model can be applied to assess the validity of the proportional hazards
assumption by examining the interaction between gap times and covari-
ates. The inferential procedure is based on non-parametric penalized
likelihood with a cross-validation step to select smoothing parameter.
This model has the advantage of allowing greater flexibility for the func-
tional form of the different effects and of generalizing multiplicative form
of the hazard at the expense of loosing the usual interpretation in terms
of risk ratio.

An alternative approach to these models consists of accounting for as-
sociation between within subject gap times via random effects to lighten
the i.i.d. assumption on successive gap times, conditionally on covariates
in the regression setting.

Therneau and Grambsch (2000) considered that the successive gap
times are i.i.d. conditionally on both an (unobservable) frailty U and
an (observed) episode-specific vector of covariates Z[k]. The authors
discussed the fitting of a model for the conditional hazard function of
Y [k] of the form

λ[k](y|Z[k], U) = Uλ
[k]
0 (y) exp(β′

k.Z
[k])

where λ
[k]
0 (.) is an episode-specific baseline hazard function and where

βk is the episode-specific effect on the episode-specific baseline hazard
function of the episode-specific vector of covariates Z[k]. Note that here
the Y [k] are conditionally independent but not identically distributed.
This enlarged flexibility may lead to inconsistency problems as k grows
if too few patients experience k events. Except for the case where U has
a positive stable distribution, these models do not give unconditional
(on U) distributions for Y [k] given Z[k] of proportional hazards form.

Chang (2004) considered a marginal accelerated failure time frailty
model of the form

log Y [k] = U + β′.Z+ ε[k], k = 1, 2, ...

where the variables ε[k] for k = 1, 2, ... are i.i.d. This model assumes that
the covariates effect and the subject-specific frailty U are additive on the
gap time logarithm and that the covariates effect remains the same over
distinct episodes. The distributions of the frailty and the random error
in the model are left unspecified which decreases adequacy issues. The
author developed two estimation methods, the second of which being
robust to deviation from the hypothesis that the ε[k] for k = 1, 2, ... are
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identically distributed. The authors mentioned the possibility to extend
their model to allow the incorporation of an episode-specific covariate
effect

log Y [k] = U + β[k]′ .Z+ ε[k], k = 1, 2, ...

even though consistent estimation of β[k] may not be possible if the
number of subjects experiencing k events is not large enough.

All these methods, however, assume that recurrent events are not
terminated by death during the study.

Rondeau et al. (2007) accounted for death in their analysis. Specif-
ically, they jointly modeled the association between survival time and
within subject gap times through a Gamma frailty U . Conditional on
U and on an external time-dependent vector of covariates Z(.), they as-
sumed that the Y [k] for k = 1, 2, ... are i.i.d. with conditional hazard
function given by

λ(y|U,Z(.)) = Uλ0(y) exp(β
′.Z(t))

and are independent of the death time with conditional hazard function
given by

λD(t|U,Z(.)) = Uαλ0,D(t) exp(γ
′.Z(t)).

The frailty effect on recurrent events and death is different unless α = 1.
When α > 1, the recurrent rate ad the death rate are positively asso-
ciated since higher frailty results in both higher risk of recurrence and
higher risk of death. The authors proposed a semiparametric penalized
likelihood estimation method in which the model degree of freedom is
used to specify the smoothing parameter. Their method yields unbiased
and efficient estimates. It is noteworthy to say that the work of Rondeau
et al. is implemented in a very complete R package named frailtypack.

Huang and Liu (2007) considered a similar situation. Conditional on
a Gamma frailty U , on a baseline vector of covariates associated with
survival ZD and on an episode-specific vector of covariates Z[k], they
assumed that the Y [k] for k = 1, 2, ... are independent (but not identically
distributed) with Y [k] having conditional hazard function given by

λk(y|U,Z[k]) = Uλ
[k]
0 (y) exp(β[k]′ .Z[k])

and are independent of the death time with conditional hazard function
given by

λD(t|U,ZD) = Uαλ0,D(t) exp(γ
′.ZD).

The authors mentioned the fact that if covariate effects are believed to be
homogeneous across gap times in some appropriate practical situation, a
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common β may be use instead of the β[k] for k = 1, 2, ... in order to gain
efficiency. However, the additional flexibility of this model with respect
to that of Rondeau et al. (2007) induced by episode-specific baseline
hazard functions and episode-specific covariate effects may be of limited
practical use if data are sparse as k grows.

The standard assumption that the frailty U is fixed over time and
independent of observed covariates is still strong. With this respect,
Du et al. (2011) proposed a more general model even though they do
not account for the possibility of associated death. Conditional on an
unobserved vector of random effects U and on two vectors of observed
covariates Z and Z̃, Du et al. (2011) assumed that the Y [k] for k = 1, 2, ...
are independent with conditional hazard function satisfying

log λ(y|U,Z, Z̃) = η(y,Z) + Z̃′.U .

The vector of covariates Z is expected to impact the gap time dis-
tribution while the vector of covariates Z̃ is expected to impact the
random effects. The usual frailty model correspond to Z̃′.U = U for
a scalar-valued random variable U that is both time-independent and
covariate-independent. The random effects multivariate distribution is
left completely unspecified which allows to incorporate time-varying
frailty. Moreover, the very general form of the hazard function gives
the possibility to investigate a general shape of the conditional hazard
function and extract useful information that might be missed by para-
metric or semiparametric models. Inference is carried out by iteratively
minimizing a penalized likelihood in which the smoothing parameter
selection is reported as potentially challenging. Extension of episode-
specific covariates Z[k] is claimed to be straightforward.

As as summary of this subsection, in the current state of the lit-
erature, a balance has to be made between models relying on strong
assumptions that are more or less hard to check and, on the other hand,
more general flexible models in which one may have to face identifiability
and efficiency problems.

2.2 Conditional-On-Past-Event-History Model

As a second modeling strategy, it is possible to estimate meaningful
and identifiable conditional distributions related to the gap times in the
presence of non-informative censoring. Such models usually specify how
the probability (or hazard) function of subsequent recurrence depends
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on the past event history which may not be a trivial task. Typically less
robust to bad specification of subject-level correlation structure between
events, these models are useful for studying local process dynamics and
predicting recurrence experience at the subject level.

Amongst the primary attempt to estimate P[Y [2] ≤ y2|Y [1] ≤ y1] is
the proposal by Lin et al. (1999) who investigated the estimate defined
as the ratio of the estimate of the joint distribution function of (Y1, Y2)
(see also next subsection) over the estimate of the marginal distribution
of Y [1]. Their inferential procedure is based on the inverse probability of
censoring weights which is a well-known and useful tool for adjusting the
induced dependent censoring when analyzing multiple gap times between
recurrent events. Adjusting for induced dependent censoring consists
of weighting risk set contributions by the inverse of the probability of
remaining uncensored. The estimate is obtained without any modeling
assumptions regarding the dependence structure of the successive gap
times. The standard errors are also derived.

Quite similarly, Schaubel and Cai (2004) proposed an estimator of
the conditional survival function for the k-th gap time conditional on
the (k − 1)-th event occurring prior to some fixed time point. Their
work shares with Lin et al. (1999) the fact that the estimate is obtained
without any modeling assumptions regarding the dependence structure
of the successive gap times. However, instead of being based on a ratio of
estimate, Schaubel and Cai (2004) proposed an estimator that is derived
directly from a cumulative hazard function. From a technical viewpoint,
their estimator is not subject to negative mass which is a problem that
may arise with an estimate that depends on the joint distribution of
the successive gap times. Another advantage of the proposed techniques
is the ease of computing standard errors which may be important to
practitioners. A method for computing simultaneous confidence bands
is also provided.

Regression methods are also available to incorporate covariates into
the analysis of conditional distributions.

Chang and Wang (1999) focused on semi-parametric regression for
conditional gap times analysis using a Cox model incorporating time-
dependent covariates and in which the number of past episodes serves
as a stratification variable. Two types of time-dependent covariates are
included. The first type of covariates has an effect which is expected to
remain constant through the distinct episodes while the second kind of
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covariates effect is episode-specific. Setting

Zk(y) =

Z(u) =

(
Z1(u)
Z2(u)

)
: 0 ≤ u ≤

k−1∑
j=1

Y [j] + y


and then

λ[k](y|Y [1], ..., Y [k−1],Zk(y)) =

lim
h→0+

1

h
P
[
y ≤ Y [k] ≤ y + h

∣∣∣Y [k] ≥ y, Y [1], ..., Y [k−1],Zk(y)
]
,

their model can be written as follows for y ≥ 0

λ[k](y|Y [1], ..., Y [k−1],Zk(y)) =

λ
[k]
0 (y) exp

β′.Z1

k−1∑
j=1

Y [j] + y

+ γ′k.Z2

k−1∑
j=1

Y [j] + y

 .

Implicitly, the prior event history is summed up by the time-dependent
covariates. To estimate the parameter β, a profile likelihood approach
based on all of the data is adopted to handle the nuisance parameters γk.
In the data, because the number of subjects who experience at least k
recurrent events decreases as k increases, a limitation in the estimation
of the γk is the lack of sufficient data for consistent estimation when k
has large values, as already mentioned elsewhere. However, the authors
point out that, with appropriate conditions, the regression coefficient β
can be consistently estimated regardless of whether the parameters γk
can or cannot be.

Lawless et al. (2001) reviewed conditional regression models applied
to shunt failure data. The following model

λ[k](y|Y [1], ..., Y [k−1],Z[k]) = λ
[k]
0 (y) exp

(
β′
k.(Y

[1], ..., Y [k−1])′ + α′
k.Z

[k]
)

which gives a symmetric role to episode-specific covariates Z[k] and past
gap times was considered with an emphasis on the condition βk =
(0, ..., 0, bk)

′ so that their model incorporates first-order dependence.
The main difference with the model of Chang and Wang (1999) is
that the conditional hazard function now explicitly depends on previ-
ous event. Besides the fact that the functional relationship between the
gap times should be adequate, a potential drawback to the conditional
approach is that the parameters have to be interpreted conditionally to
previous event times.
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Schaubel and Cai (2004b) considered estimation via semi-parametric
Cox regression models for conditional gap times hazard functions. Re-
specting the identifiability issues, the authors focused on the following
gap-time-specific hazard functions

λ[k](y; tk−1|Z[k](y))

= lim
h→0+

1

h
P

y ≤ Y [k] ≤ y + h
∣∣∣Y [k] ≥ y,

k−1∑
j=0

Y [j] ≤ tk−1, Z
[k](y)


for some pre-specified tk−1 chosen in the support of the total observa-
tion time distribution and for some external time-dependent covariates
Z[k](.). They assumed the proportional hazards formulation

λ[k](y; tk−1|Z[k](y)) = λ
[k]
0 (y; tk−1) exp(β

′.Z[k](y))

where λ
[k]
0 (.) is an unspecified continuous function. A sensibility analysis

is recommended for an appropriate choice of fixed time point tk−1. Infer-
ence can be carried out without making assumptions about association
among individual’s gap times.

Clement and Strawderman (2009) proposed a method for estimating
the parameters indexing the conditional means and variances of the gap
time distributions conditional on all the available explanatory covariates
history as well as on past gap times. Precisely, their work deal with

E

Y [k]|Y [1], ..., Y [k−1],

Z(u) : 0 ≤ u ≤
k∑

j=1

Y [j]


 = µk(θ) (1)

Var

Y [k]|Y [1], ..., Y [k−1],

Z(u) : 0 ≤ u ≤
k∑

j=1

Y [j]


 = σ2Vk(θ)

2 (2)

where µk(.) and Vk(.) are known scalar functions of the unknown pa-
rameter θ. The scalar parameter σ2 > 0 is also to be estimated. The
proposed methodology is an adaptation of generalized estimating equa-
tions for longitudinal data and permits the use of both time-fixed and
time-varying covariates, as well as transformations of the gap times.
Censoring is dealt with by imposing a parametric assumption on the
censored gap times. Simulations report the relative robustness to devia-
tions from this assumption although this supposed adequacy is identified
as a potential issue. It shall be emphasized that the parametric assump-
tions in (1) and (2) bear on the two first moments of the conditional
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distribution and not on the conditional hazard function itself. The R

package condGEE implements this conditional GEE for recurrent event
gap times.

Note also that all these methods do not account the possibility of
death.

The main issue with conditional models lies in the more or less ques-
tionable assumptions made to incorporate past events.

2.3 Models for Multivariate Functions

Several non-parametric statistical analysis have been proposed for joint
inference on consecutive gap times through multivariate functions in
the absence of death but accounting for non-informative censoring. The
nonparametric approach is quite classical to this aim. Nonparametric
statistics have the benefit of avoiding too restrictive assumptions espe-
cially regarding would-be independence or memoryless-type conditions.
It is a good method to understand basics and to produce descriptive
results. It also allows a first investigation of effects of covariates shown
by stratifying data into groups.

Such an approach was originally developed in Visser (1996). The
author considered joint nonparametric estimation for two successive du-
ration times in the presence of independent right-censoring restricted to
the setting where the gap times and the censoring variable are discrete.
His method can deal with situations where censoring may depend upon
previous gap times but relies on estimating the cumulative conditional
hazard of the second gap time given the first one and therefore discrete
censoring time and gap times are mandatory.

Wang and Wells (1998) studied the same problem but for any arbi-
trary distributions of the gap times and the censoring variable. They
also considered joint nonparametric estimation for two successive du-
ration times. They proposed an estimator for the bivariate survival
function of (Y [1], Y [2]) by estimating the cumulative conditional hazard
of Y [2] given Y [1] > y1. The estimator was shown to be consistent and
asymptotically normal, but do not guarantee a non-negative weighting
of the data. Moreover, no analytical variance expression is given due to
the complicated expression of the estimator.

Lin et al. (1999) proposed a nonparametric estimator for the joint
distribution function of the gap times. Their estimator is based on the
inverse probability censoring weighted method used with the Kaplan-
Meier estimator. To enable comparison with other proposals, let us
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introduce the observable gap times T [1] = min(Y [1], C) and T [2] =
min(Y [2], (C − Y [1])I(Y [1] ≤ C)), the observable total duration time
T = min(Y [1] + Y [2], C) and the observable indicator variable δ =
I(Y [1] + Y [2] ≤ C) when C is the censoring variable independent of

(Y [1], Y [2]). Let (T
[1]
i , T

[2]
i , Ti, δi) for i = 1, .., n be i.i.d. replications of

(T [1], T [2], T, δ). Lin et al. (1999)’s estimator of P[Y [1) ≤ y1, Y
[2] ≤ y2]

can be written as

1

n

n∑
i=1

I(T
[1]
i ≤ y1)

1− Ĝn(T
[1]
i )

− 1

n

n∑
i=1

I(T
[1]
i ≤ y1, Y

[2]
i > y2)

1− Ĝn(T
[1]
i + y2)

where Ĝn is a suitable Kaplan-Meier estimate of the censoring distri-
bution function G. However, their estimator is not always a proper
distribution function in that it may have negative mass points though
it converges to a proper distribution function as n goes to ∞. Meira-
Machado and Moreira (2010) found out in simulation studies that this
estimator is almost unbiased but may have important variance.

Van der Laan et al. (2002) considered more general problems of
estimation that can be exploited for successive gap times. They also
used inverse probability of censoring weights techniques. The statistical
novelty of their approach lies in the derivation of locally efficient one-step
estimator.

In a more general situation of dependent censoring including the
present setting as special case, Van Keilegom (2004) derived a nonpara-
metric estimator for the bivariate and marginal distribution functions
of two gap times. The proposal by Van Keilegom (2004) consists of
writing the joint distribution function of (Y [1], Y [2]) as an average of the
conditional distribution F2|1(y2|y) = P[Y [2] ≤ y2|Y [1) = y] ie as

P[Y [1] ≤ y1, Y
[2] ≤ y2] =

∫ y1

0
F2|1(y2|y)dF1(y)

where F1(y) = P[Y [1] ≤ y1]. The conditional Kaplan-Meier estimator of
Beran (1981) is used to estimate F2|1. This relies on a kernel smoothing

around Y [1] = y with the modification that only uncensored observa-
tions of T [1] are allowed in the window. The practical choice of the
aforementioned window may be a limiting factor to a more frequent use
of this estimator even though this choice is reported as non crucial and
if a bootstrap procedure is advocated for.

De Uña-Álvarez and Meira-Machado (2008) proposed another non-
parametric estimator of bivariate distribution function of two consecu-
tive gap times. The estimator of de Uña-Álvarez and Meira-Machado
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(2008) is a weighted bivariate distribution function of the form

n∑
i=1

Wi I(T
[1]
i ≤ y1, T

[2]
i ≤ y2)

where the weight Wi is the Kaplan-Meier weight attached to Ti when
estimating the marginal distribution of Y [1] + Y [2] from the observable
random variables (Ti, δi). Their estimator is a proper distribution func-
tion contrarily to the proposal of both Wang and Wells (1998) and Lin
et al. (1999). Simulations revealed that this new estimator is reasonably
unbiased and may achieve efficiency levels clearly above the previous pro-
posals, which is promising. However, theoretical investigation is needed
to get general conclusions. It is also noted that the method can easily
be extended to cope with more than two successive gap times. Meira-
Machado and Moreira (2010) found out in simulation studies that this
estimator is almost unbiased but may still have important variance.

In general, the prize to pay for the absence of restrictive assump-
tions is a lack of efficiency. Some methods however exists to deal with
this issue. Presmoothing techniques may be useful to gain efficiency.
The idea of presmoothing goes back at least to Dikta (1998), see also
Dikta (2000), (2001) and Dikta et al. (2005). Presmoothing consists of
replacing the censoring indicator by a smooth fit of a binary regression
of the indicator on observable gap times. This replacement usually re-
sults in estimators with improved variance. That is why de Uña-Álvarez
and Amorim (2011) applied the idea of presmoothing to the estimation
of the bivariate distribution function of censored gap times. As in the
paper by de Uña-Álvarez and Meira-Machado (2008), the estimator of
de Uña-Álvarez and Amorim (2011) is a weighted bivariate distribution
function of the form

n∑
i=1

W̃i
∗
I(T [1] ≤ y1, T

[2] ≤ y2)

but the weight W̃i
∗
now uses a presmoothed version of the preceding

Kaplan-Meier weight Wi. The consequence of this is that the estimator
de Uña-Álvarez and Amorim (2011) can attach positive mass to pair of
gap times with censored second gap times which is not the case with the
estimator of de Uña-Álvarez and Meira-Machado (2008). Note that in
the limiting case of no presmoothing, the estimator de Uña-Álvarez and
Amorim (2011) reduces to that of de Uña-Álvarez and Meira-Machado
(2008). A simulation study by Meira-Machado and Moreira (2010) logi-
cally concluded that the presmoothed estimator improves efficiency with
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respect to the estimator of de Uña-Álvarez and Meira-Machado (2008)
but its bias is greater.

Van Keilegom et al. (2011) considered a non-parametric location-
scale model for the two first gap times assuming that the vector of gap
times (Y [1], Y [2]) satisfies

Y [2] = m(Y [1]) + σ(Y [1]) ε

where the functions m and σ are smooth and ε is independent of Y [1].
This allows the transfer of tail information from lightly censored areas
to heavily ones. Under this model, the authors proposed estimators of
P[Y [1] ≤ y1, Y

[2] ≤ y2], P[Y [2] ≤ y2|Y [1] = y1] and other related quan-
tities. In a related paper, Meira-Machado et al. (2011) discussed the
practical implementation and performance of the aforementioned esti-
mators and proposed some modifications. In an extensive simulation
study, the good performance of the method is shown. The main limita-
tion of their work lies in the fact that the adequacy of the model to the
data needs to be tested. However, the authors mentioned that deriving
such a test in the present setting is far from being straightforward.

The R package survivalBIV is much helpful to calculate the different
estimates for the bivariate distribution function.

We already mentioned the possible use of presmoothing to improve
efficiency. General and testable assumptions such as Koziol-Green model
also termed as informative censoring (Koziol and Green (1976), Cheng
and Lin (1987)) or proportionality constraints (Dauxois and Kirmani
(2003), Geffray and Guilloux (2011)) can also be used leading to more
efficient semi-parametric inference under not so much restrictive assump-
tions. Adekpedjou et al. (2010) adopted this strategy to tackle the
efficiency problem.

Two-sample tests have been briefly considered in the literature. Lin
and Ying (2001) proposed several classes of two-sample nonparametric
statistics for comparing the gap time distributions based on the nonpara-
metric estimator of the gap time distribution given by Lin et al. (1999).
These statistics are analogous to familiar censored data statistics, such
as weighted log-rank statistics.

Huang (2000) proposed a semi-parametric accelerated failure time
model to compare two treatment groups in terms of their successive
gap times. Let ∆ be the indicator function that takes value 1 when
the subject is in the first treatment group and 0 when the subject is in
the second treatment group. Specifically, the author parametrized the
group effect on gap times and survival time by a scale transformation
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assuming that the random variables exp(β1∆)Y [1], ...., exp(βk0∆)Y [k0]

follow an unspecified multivariate continuous distribution function that
is independent of ∆. A log-rank type statistic is then derived.

Joint regression models have also been considered.
Huang (2002) considered multivariate accelerated failure time models

for which the variables log Y [k] for k = 1, ..., k0 follow a multivariate
location-scale distribution of the form:

log Y [k] = β′
k.Z

[k] + ε[k]

where (ε[1], ..., ε[k0]) have an unspecified joint distribution that does not
depend on the vector of episode-specific covariates Z[k]. Note that infer-
ence is robust to misspecification of the gap time association structure
at the expense of strong assumptions on the censoring mechanism. It
turns out that, in this paper, censoring is assumed to be independent of
both covariates and the recurrent event process. Moreover, it is implic-
itly considered that each subject can experience at most k0 events. This
model may consequently appear less suited when the numbers of events
vary substantially across subjects.

He and Lawless (2003) presented multivariate parametric regression
models for proportional hazards specified either within a copula model or
within a frailty model. The method employs flexible piecewise constant
or spline specifications as baseline hazard functions in either models.
Because all the models considered are parametric, ordinary maximum
likelihood can be applied. The adequacy to the parametric assumptions
is crucial to get unbiased estimates which may be a drawback.

All these methods, however, assume that recurrent events are not
terminated by death during the study. Some efforts have been made
to account for death in a joint analysis for two-sample comparison pur-
poses. Chang (2000) proposed a semi-parametric accelerated failure time
model to compare two treatment groups jointly in terms of their suc-
cessive gap times and survival time. This model is similar to that of
Huang (2000) but accounts for death. Let ∆ be the indicator func-
tion that takes value 1 when the subject is in the first treatment group
and 0 when the subject is in the second treatment group. Specifi-
cally, the author parametrized the group effect on gap times and sur-
vival time by a scale transformation assuming that the random variables
exp(α∆)D, exp(β1∆)Y [1], ...., exp(βk0∆)Y [k0] follow an unspecified mul-
tivariate continuous distribution function that is independent of ∆. A
log-rank type statistic is then derived.

As a brief summary, models for multivariate functions mostly belong
to the realm of non-parametric statistics in the absence of covariates



Modeling and Inferential Thoughts for Consecutive Gap Times 93

information. Fewer papers are available for multivariate functions in
the regression framework or in the presence of death.

3 Nonparametric Estimation of Cause-Specific
Distributions

In the recurrent events with death framework, functions describing the
stochastic dynamics in the tree of Figure 3 can be much useful. The
approach of Li and Lagakos (1997) and Derzko and Leconte (2004)
who treated death as a competing risk acting at each recurrence can
be adopted for that purpose. They modeled the terminal event as a de-
pendent competing event for each recurrent event i.e. they treated the
failure time for each recurrence as the first occurrence of the recurring
event or terminating event whichever came first. Thus, for each recur-
rence, the patient is submitted to two dependent competing risks (RE
and death) in the presence of independent right-censoring provided he
or she survived the previous occurrences. These step-by-step competing
risks models do not specify the association structure between recurrent
events and death. The work is centered on crude functions since these
are the only identifiable quantities without any assumptions regarding
the association structure among the competing risks. Non-parametric
inference under minimal assumption is investigated.

At risk subjects 
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Ĵ Death
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Figure 3: Competing risks at each recurrence in the presence of independent

censoring (RE = recurrent event).

We assume that the observed data consist of i.i.d. replicates of
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(Y [0], ..., Y [K], (D ∧ C) −
∑K

k=0 Y
[k], I(D ≤ C)) where D is the death

time, C is the independent right-censoring. The number K ∈ N is ran-
dom as in Wang and Chang (1999) and Peña et al. (2001), Y [0] is set
as 0, if K ≥ 1, the Y [k] for k = 1, ...,K are the observed gap times until
a recurrent event while the last gap time ends either with a death or a
censoring event.

With these remarks in view, the functions that can serve as useful
descriptive devices are the following. We consider for y1, y2 ≥ 0:

F [1(2)](y1) = P
[
D ≤ y1, Y

[1] > D
]
, (3)

F [1(1),2(1)](y1, y2) = P
[
Y [1] ≤ y1, Y

[1] ≤ D,Y [2] ≤ y2, Y
[2] ≤ D − Y [1]

]
, (4)

F [1(1),2(2)](y1, y2) = P
[
Y [1] ≤ y1, Y

[1] ≤ D,D − Y [1] ≤ y2, Y
[2] > D − Y [1]

]
.

(5)

This can be straightforwardly extended to further recurrences provided
the data are not too sparse.

Let FD be the distribution function of D. Denote by C the non-
negative random variable that stands for the independent right-censoring
with distribution function G. Let H be the distribution function defined
by 1 − H = (1 − FD)(1 − G) and let τH = sup{x : H(x) < 1} be the
right-endpoint of the distribution function H. The functions (3) to (5)
can be consistently estimated and it can be shown that the correspond-
ing estimators have an asymptotic Gaussian behavior on compact sets
such that the corresponding total observation time is inferior to τH . No-
tice that F [1](y1) is estimable only if y1 < τH , that F [1(1),2](y1, y2) is
estimable only if y1+y2 < τH and so on. The objective of this section is
to justify nonparametric estimation for the functions displayed in Equa-
tions (3) to (5) without any assumption regarding either the dependence
structure among the multiple endpoints.

For ease of exposition, note that the observable random variables
can be coded as follows.

• Let K+1 (with K ∈ N) be the total number of observed events for
a given individual (including recurrent events, death and censoring
events).

• For k = 1, . . . ,K + 1, let T
[k]
Y be the random variable that stands

for the gap time between the (k−1)-th and the k-th event and set

T
[0]
Y = 0

• For k = 1, . . . ,K + 1, the random variable



Modeling and Inferential Thoughts for Consecutive Gap Times 95

J [k] =


0 if the k-th event is censored

1 if the k-th event is a recurrent event

2 if the k-th event is a death

indicates the nature of the k-th observed event.

We suppose that observations are taken on an i.i.d. sample of n
individuals. For i = 1, . . . , n, the data for the i-th individual consists of
Ki+1 couples where Ki is the number of observed (non-fatal) recurrent

events. For k = 1, . . . ,Ki + 1, the k-th couple is given by (T
[k]
Y,i, J

[k]
i )

which is distributed as (T
[k]
Y , J [k]).

3.1 Estimation of the Censoring Distribution Function

An estimate of the censoring distribution function G will be used. This
subsection deals with this preliminary step.

As noted in Section 1, the last observation for a given patient is either
a censoring time or a death time. For a given patient, we do not observe
both the censoring event and the death but only the first event that
occurs. Since the death and the censoring processes are independent,
the censoring distribution function may be estimated by the Kaplan-
Meier estimator based on the total observation time for each patient i.e.

on the data (Ti :=
∑Ki+1

ℓ=0 T
[ℓ]
Y,i, J

[Ki+1]
i ) for i = 1, . . . , n.

The Kaplan-Meier estimator of the censoring distribution function
G is given for t ≥ 0 by:

Ĝn(t) = 1−
n∏

i=1

1−
I
(
Ti ≤ t, J

[Ki+1]
i = 0

)
∑n

ℓ=1 I (Tℓ ≥ Ti)

 .

If there are ties between recurrent event times and censoring times, the
Kaplan-Meier estimator of G cannot be obtained by using the indicator
status equal to zero. In such cases, the R package prodlim provides a
useful alternative to estimate the censoring distribution.

3.2 “Plug-in” Estimation of the Functions of Interest

To derive an estimator for the functions F [1(2)], F [1(1),2(1)] and F [1(1),2(2)],
we introduce the following distribution functions for y1, y2 ≥ 0:

H [1(1,2)](y1) = P
[
T
[1]
Y ≤ y1, J

[1] = 2
]
,

H [1(1,1),2(1,j)](y1, y2) = P
[
T
[1]
Y ≤ y1, T

[2]
Y ≤ y2, J

[1] = 1, J [2] = j
]
, j = 1, 2.
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For y ≥ 0, we obtain the following relation:

H [1(1,2)](y) = P
[
Y [1] ≤ y, Y [1] ≤ C,C[1] = 2

]
=

∫∫
I (u ≤ y, u ≤ c)G(dc)F [1(2)](du)

=

∫
u≤y

(
1−G−(u)

)
F [1(2)](du) .

with G− being the left-continuous modification of G. Consequently,
F [1(2)](y) can be written in terms of the estimable functions G and
H [1(1,2)]:

F [1(2)](y) =

∫
u≤y

H [1(1,2)](du)

1−G−(u)
.

We can obtain in the same way for j = 1, 2 and y1, y2 ≥ 0 that

H [1(1,1),2(1,j)](y1, y2) =

∫∫∫
I (u ≤ y1, v ≤ y2, c ≥ u+ v)

×G(dc)F [1(1),2(j)](du, dv)

=

∫∫
u≤y1,v≤y2

(
1−G−(u+ v)

)
F [1(1),2(j)](du, dv)

so that

F [1(1),2(j)](y1, y2) =

∫∫
u≤y1,v≤y2

H [1(1,1),2(1,j)](du, dv)

1−G−(u+ v)
.

Consequently, we propose “plug-in” estimates of the functions F [1(2)]

and F [1(1),2(j)] for j = 1, 2 by means of “plug-in” estimators denoted

respectively by F̂
[1(2)]
n and F̂

[1(1),2(j)]
n for j = 1, 2. These estimators are

obtained by replacing G by its Kaplan-Meier estimator defined in Sub-
section 3.1 andH [1(1,2)] andH [1(1,1),2(1,j)] by their empirical counterparts
which are defined respectively for y1, y2 ≥ 0 by:

H [1(1,2)]
n (y1) =

1

n

n∑
i=1

I
(
T
[1]
Y,i ≤ y1, J

[1]
i = 2

)
,

H [1(1,1),2(1,j)]
n (y1, y2) =

1

n

n∑
i=1

I
(
T
[1]
Y,i ≤ y1, T

[2]
Y,i ≤ y2, J

[1]
i = 1, J

[2]
i = j

)
.



Modeling and Inferential Thoughts for Consecutive Gap Times 97

Consequently, we let for y1, y2 ≥ 0

F̂ [1(2)]
n (y1) =

∫ y1

0

H
[1(1,2)]
n (du)

1− Ĝ−
n (u)

,

F̂ [1(1),2(j)]
n (y1, y2) =

∫∫
u≤y1,v≤y2

H
[1(1,1),2(1,j)]
n (du, dv)

1− Ĝ−
n (u+ v)

, j = 1, 2

where Ĝ−
n is the left-continuous modification of Ĝn.

3.3 Asymptotics

Proposition 3.1.

1. For any σ < τH , the estimator F̂
[1(2)]
n is strongly consistent on [0, σ]

for F [1(2)].

2. For any σ < τH , the estimators F̂
[1(1),2(j)]
n are strongly consistent for

F [1(1),2(j)], for j = 1, 2, on the set Tσ = {(y1, y2) : y1 + y2 < σ}.

Remark 3.1. If y1 is taken equal to ∞ in the definition of the esti-

mator F̂
[1(2)]
n , one would have F̂

[1(2)]
n (∞) equal to F̂

[1(2)]
n (T

[1]
Y,n,n) where

T
[1]
Y,n,n is the last order statistic of the sample (T

[1]
Y,i)i=1,...,n. The con-

vergence F̂
[1(2)]
n (T

[1]
Y,n,n) → F [1(2)](τ1(2) ∧ τG) holds in probability where

τ1(2) is the right-endpoint of F [1(2)] and where τG is the right-endpoint

of G. But F [1(2)](τ1(2) ∧ τG) may be strictly inferior to F [1(2)](∞). This
is fulfilled in particular if τG < τ1(2) which is the case in a clinical trial
for example where this is to hope that some patients won’t experience a
recurrence by the end of study. This situation would lead to a biased es-
timation of F [1(2)](∞). The same kind of restriction holds for the other
estimators mentioned here.

Proposition 3.2. Assume that G is continuous. For any σ < τH , the

empirical processes
√
n
(
F̂

[1(2)]
n − F [1(2)]

)
and

√
n
(
F̂

[1(1),2(j)]
n − F [1(1),2(j)]

)
for j = 1, 2 converge jointly in distribution to zero-mean Gaussian pro-
cesses in the Skorohod space of càdlàg functions on Tσ.

Remark 3.2. The condition that G is continuous is restrictive since
it does not allow for a fixed time to follow-up. Further work would be
needed for such an extension.

To save place, the large sample arguments are purposefully sketchy.
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Proof of Proposition 3.1. We decompose F
[1(1),2(j)]
n − F̂ [1(1),2(j)] for

j = 1, 2 into

F [1(1),2(j)]
n (y1, y2)− F̂ [1(1),2(j)](y1, y2) =∫ y1

0

∫ y2

0

(
1

1− Ĝ−
n (u+ v)

− 1

1−G−(u+ v)

)
H [1(1,1),2(1,j)]

n (du, dv)

+

∫ y1

0

∫ y2

0

1

1−G−(u+ v)
(H [1(1,1),2(1,j)]

n (du, dv)−H [1(1,1),2(1,j)](du, dv))

We carry out integration by parts on the second term in the above
equality and get straightforwardly

sup
(y1,y2)∈Tσ

∣∣∣F [1(1),2(j)]
n (y1, y2)− F̂ [1(1),2(j)](y1, y2)

∣∣∣
≤ sup

t≤σ

∣∣∣∣∣ 1

1−G(t)
− 1

1− Ĝn(t)

∣∣∣∣∣
+

4

1−G(σ)
sup

(y1,y2)∈Tσ

∣∣∣H [1(1,1),2(1,j)](y1, y2)−H [1(1,1),2(1,j)]
n (y1, y2)

∣∣∣ .
The fact that G(σ) < 1 together with Glivenko-Cantelli’s theorem valid
with and without independent right-censoring give the required almost

sure convergence on Tσ. The proof is identical for F̂
[1(2)]
n . 2

Proof of Proposition 3.1. First, we endow the space of cadlag func-
tions on Tσ with the appropriate topology. This can be obtained by
transporting the Skorohod topology of the space of cadlag functions on
[0, 1]2 build in Neuhaus (1971) since the spaces Tσ and [0, 1]2 are home-
omorphic.

The weak convergence result is then obtained by empirical processes
techniques. It relies on appropriate decomposition of the processes
√
n
(
F̂

[1(2)]
n − F [1(2)]

)
and

√
n
(
F̂

[1(1),2(j)]
n − F [1(1),2(j)]

)
for j = 1, 2 that

permits to apply the joint convergence of univariate and multivariate
empirical processes based on the observed data. The functional delta-
method as in Andersen et al. (1993) is also of much use. Another
ingredient is the use of the existing results for the Kaplan-Meier process
which makes the assumption that G is continuous necessary. Let us

begin with the decomposition of
√
n
(
F̂

[1(1),2(j)]
n − F [1(1),2(j)]

)
for j =
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1, 2. The decomposition of
√
n
(
F̂

[1(2)]
n − F [1(2)]

)
is left to the reader.

√
n
(
F̂ [1(1),2(j)]
n (y1, y2)− F [1(1),2(j)](y1, y2)

)
=

√
n

∫ y1

0

∫ y2

0

H
[1(1,1),2(1,j)]
n (du, dv)−H [1(1,1),2(1,j)](du, duv)

1−G(u+ v)

+
√
n

∫ y1

0

∫ y2

0

Ĝ−
n (u+ v)−G(u+ v)

(1−G(u+ v))2
H [1(1,1),2(1,j)](du, dv)

+
√
n

∫ y1

0

∫ y2

0

Ĝn(u+ v)−G(u+ v)

(1−G(u+ v))2
(H [1(1,1),2(1,j)]

n (du, dv)

−H [1(1,1),2(1,j)](du, dv))

+
√
n

∫ y1

0

∫ y2

0

(
Ĝ−

n (u+ v)−G(u+ v)

1−G(u+ v)

)2
H

[1(1,1),2(1,j)]
n (du, dv)

1− Ĝ−
n (u+ v)

= I1(y1, y2) + I2(y1, y2) + I3(y1, y2) + I4(y1, y2) .

Terms I3 and I4 are negligible uniformly on Tσ thanks to the functional
delta-method and to the weak convergence of both the Kaplan-Meier

process and the empirical process
√
n(H

[1(1,1),2(1,j)]
n −H [1(1,1),2(1,j)]). Term

I2 needs to be further decomposed. Let H(0) be the censoring subdis-
tribution function defined by

H(0)(y) = P[T ≤ y, JK+1 = 0],

let its empirical counterpart be defined by

H(0)
n (y) =

1

n

n∑
i=1

I(Ti ≤ y, JKi+1
i = 0)

and let Hn be the empirical counterpart of H defined by

Hn(y) =
1

n

n∑
i=1

I(Ti ≤ y).

Applying the methods and results of Csörgő (1996), we can state since
G is assumed continuous that

sup
t∈[0,σ]

∣∣∣∣∣Ĝn(t)−G(t)

1−G(t)
−

(∫ t

0

d(H
(0)
n (s)−H(0))(s)

1−H−(s)

+

∫ t

0

H−
n (s)−H−(s)

(1−H−(s))2
dH(0)(s)

)∣∣∣∣ = oP

(
1√
n

)
.
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Consequently, the process
√
n
(
F̂

[1(1),2(j)]
n − F [1(1),2(j)]

)
is asymptotically

equivalent to

√
n

∫ y1

0

∫ y2

0

H
[1(1,1),2(1,j)]
n (du, dv)−H [1(1,1),2(1,j)](du, dv)

1−G(u+ v)

+
√
n

∫ y1

0

∫ y2

0

∫ (u+v)−

0

d(H
(0)
n (s)−H(0))(s)

1−H−(s)
H [1(1,1),2(1,j)](du, dv)

+
√
n

∫ y1

0

∫ y2

0

∫ (u+v)−

0

H−
n (s)−H−(s)

(1−H−(s))2
dH(0)(s)H [1(1,1),2(1,j)](du, dv) .

It remains to get the joint convergence of
√
n(H

(0)
n −H(0)),

√
n(H

(0)
n −

H(0)) and
√
n(H

[1(1,1),2(1,j)]
n −H [1(1,1),2(1,j)]) in order to apply once again

the functional delta-method and get the result. To see this, set TR
Y,i =∑Ki+1

ℓ=3 T
[ℓ]
Y,i and JR

i = JKi+1
i for i = 1, ..., n such that Ki + 1 ≥ 3. Set

also TR
Y =

∑K+1
ℓ=3 T

[ℓ]
Y with the sum being null if the summation index

set is void and JR = JK+1. Then, decompose (H
(0)
n −H(0)) into

H(0)
n (y)−H(0)(y)

=
1

n

n∑
i=1

(
I(T

[1]
Y,i ≤ y, J

[1]
i = 0)− P[T [1]

Y ≤ y, J [1] = 0]
)

+
1

n

n∑
i=1

(
I(T

[1]
Y,i + T

[2]
Y,i ≤ y, J

[1]
i = 1, J

[2]
i = 0)

−P[T [1]
Y + T

[2]
Y ≤ y, J [1] = 1, J [2] = 0]

)
+

1

n

n∑
i=1

(
I
(
T
[1]
Y,i + T

[2]
Y,i + T

[R]
Y,i ≤ y, J

[1]
i = J

[2]
i = 1, J

[R]
i = 0

)
− P

[
T
[1]
Y + T

[2]
Y + T

[R]
Y ≤ y, J [1] = J [2] = 1, J [R] = 0

])

and decompose (Hn −H) into

Hn(y)−H(y) =
1

n

n∑
i=1

(
I(T

[1]
Y,i ≤ y, J

[1]
i ̸= 1)− P[T [1]

Y ≤ y, J [1] ̸= 1]
)
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+
1

n

n∑
i=1

(
I(T

[1]
Y,i + T

[2]
Y,i ≤ y, J

[1]
i = 1, J

[2]
i ̸= 1)

−P[T [1]
Y + T

[2]
Y ≤ y, J [1] = 1, J [2] ̸= 1]

)
+

1

n

n∑
i=1

(
I
(
T
[1]
Y,i + T

[2]
Y,i + T

[R]
Y,i ≤ y, J

[1]
i = J

[2]
i = 1, J

[R]
i ̸= 1

)
− P

[
T
[1]
Y + T

[2]
Y + T

[R]
Y ≤ y, J [1] = J [2] = 1, J [R] ̸= 1

])
.

Pollard’s (1982) theorem valid for the empirical processes indexed by
the VC-class of sets {

∏2
i=1[0, yi] : y1 + y2 ≤ σ} concludes the argument.

Integration by parts permits to have the empirical processes in the in-
tegrand rather than in the measure of integration. This technicality is
left to the reader. 2

The variance function of the limiting process is not mentioned. Ob-
taining it through empirical processes techniques is quite cumbersome.
Moreover, a classical problem with competing risks is the variance ex-
plosion which entails far too wide confidence bands, see e.g. Geffray
(2009), making this calculus less interesting.

4 Some Perspectives

Martingale methods have been successfully used for survival analysis
purposes from the mid 1970’s. These developments go back to Aalen’s
work, see e.g. Aalen (1978a), (1978b), Aalen et al. (1978) then moved to
two-sample tests, Cox’s proportional hazards regression model, Markov
transition probabilities estimation among many other situations, see e.g.
Gill (1980), (1983), (1994), Andersen et al. (1993). It emerges that the
counting process and stochastic integral approach provides relatively
simple methods of inference in some situations where standard methods
of inference are too cumbersome or require too restrictive assumptions.
The martingale inference methods provide systematic methods for mo-
ment calculation, establish asymptotic normality of empirical processes
and gave rise to a variety of results in settings where a single time runs,
in particular, it enables to extend asymptotic results up to the last or-
der statistic of the observation instead of restricting their validity to
compact time-intervals.

The martingale methods of use in survival analysis could be gen-
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eralized to our setting where multiple times run. This would require
multi-parameter counting processes and martingales. The theory of
time-continuous multi-parameter martingale and stochastic integral has
developed extensively from the 1970’s, see e.g. Bickel and Wichura
(1971), Zakai (1981), Zakai et al. (1974), (1976), Merzbach (1988),
Ivanoff (1996), with a special emphasis to set-indexed martingales in
the nineties, see e.g. Ivanoff and Merzbach (2000) for an extensive
study of this subject. These probability results opened a new perspec-
tive for statisticians involved with multi-time periods inference prob-
lems. The use of martingale methods for multi-parameter problems in
survival analysis was initiated by Pons (1986) in the setting of bivari-
ate survival function estimation. In a tremendous paper, Ivanoff and
Merzbach (2002) developed a general model for survival analysis where
censored data are parametrized by sets instead of time points. Dis-
appointingly, their work is of little help for our purpose. Our specific
censoring scheme complicate technical matters considerably and, in par-
ticular, invalidate the direct use of their methods. However we anticipate
that some progress could be made in this direction.

We pointed out earlier the fact that the pure nonparametric approach
may suffer from a lack of efficiency. Considering a presmoothed version
of the estimate of functions (3) to (5) as in Cao et al. (2004), (2005),
Amorim et al. (2011), de Uña-Alvarez and Amorim (2011) could be an
interesting remedy.

In the framework of Section 3, conditional analysis could be interest-
ing since it allows dynamical prediction while incorporating a patient’s
history. The estimation of conditional probabilities such as

P
[
Y [2] ≤ y2, Y

[2] ≤ D − Y [1]|Y [1] = y1, Y
[1] ≤ D

]
and

P
[
D ≤ y2, Y

[2] > D − Y [1]|Y [1] = y1, Y
[1] ≤ D

]
is currently under investigation via projection methods without any as-
sumptions regarding dependence structure of successive gap times.

It is worth mentioning that investigators increasingly encounter data-
sets in which some patients are expected to be cured. This is a seri-
ous matter because a patient surviving the trial is considered censored
whereas the patient is cured if he or she will never experiment the event
under study. The difficulty comes from the fact that a cure can never
be observed due to a finite monitoring time. To address this problem,
cure rate models have been proposed and have received intensive atten-
tion for their ability to account for the probability of a patient being
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cured, see e.g. Yin and Ibrahim (2005). Recently, some progress have
been made to incorporate the possibility of cure into recurrent events
modeling. Rondeau (2010) developed a cure frailty model to evaluate
time-dependent medical treatment effects on the times to recurrence
among the uncured patients and on the cure probability. The probabil-
ity of cure here may evolve with time and is defined as the probability
of not developing further event after each event. Rondeau et al. (2011)
compared several forms of cure rate model within a frailty model for the
recurrent event part. To analyze recurrent events, it is first necessary
to define the cured proportion to be modeled. The first model considers
that immune patients are those who are not expected to experience the
events of interest over a sufficiently long time period. The other investi-
gated models account for the possibility of cure after each event i.e. the
probability of cure may evolve with time. The focus is placed on times
to recurrence and death is accounted for.

Account for the possibility of cure should be dealt with in the frame-
work of joint multivariate approach as well as th possibility of incorpo-
rating covariates acting on the uncured population survival. Investiga-
tion of both their practical and theoretical properties should be careful
reported for applied purposes.

Another point that is worth mentioning is the issue due to non-
reliable cause of death. In this situation, relative survival models can
be of use, see e.g. Lambert et al. (2010). Subjects may die of the
disease they are diagnosed with but they may also die of something else.
Deaths due to another cause than strictly the disease under study can
be broadly classified into “totally independent death” i.e. death from
a cause related neither to the disease under study nor to the treatment
and “possibly related death”. The “totally independent death” usually
constitutes part of the independent right-censoring process and is not
an issue. But the class “possibly dependent” leads to difficulties in
interpreting the results. Interest mostly lies in mortality strictly due to
the disease of interest and not to related causes. How to classify, for
example, deaths due to treatment complications? Consider a patient
diagnosed with lung cancer who dies following a myocardial infarction.
Do we classify this death as ‘due entirely to lung cancer’ or ‘due entirely
to other causes’? There may also exist problems with cause-specific
death distribution due to inaccuracy of death certificates. An alternative
to cause-specific distribution estimation is then to model relative survival
or its converse which is termed as excess mortality. Suppose that, S∗(t)
is the expected survival. Then the total survival S(t) can be written as
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the product of the relative survival R(t) and the expected survival S∗(t)
i.e. S(t) = S∗(t)R(t). Relative survival is often preferred over cause-
specific survival for the study of cancer patient survival. This issue is
particularly relevant here where possible applications are infarction or
cancer recurrence and related death and is worth investigating.

A last interesting point to note is that in our setting some events
may be rare. For instance, Cui et al. (2010) noted that the chance of
having two myocardial infarction events within 5 years was low among
all participants in the LIPID study. As a consequence, when analyzing
the pre-specified set, say (Y [1], Y [2]), the second gap times Y [2] won’t be
available for many patients leading to efficacy problems. The work of
Buyske et al. (2000) on two-sample log-rank statistics when the survival
event is rare could be extended to the present setting.
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Mahé, C. and Chevret, S. (1999), Estimation of the treatment effect in
a clinical trial when recurrent events define the endpoint. Statistics
in Medicine, 18(14), 1821–1829.

Marschner, I.,Colquhoun, D., Simes, R., Glasziou, P., Harris, P., Singh,
B., Fridlander, D., White, H., Thompson, P., and Tonkin, A.
(2001), Long-term risk stratification for survivors of acute coronary
syndrome. Results from the long-term intervention with Pravas-
tatin in ischemic disease (LIPID) study. Amer. J. Cardiol., 38(1),
56-63.
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