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Abstract. Prediction on the basis of censored data is very important
topic in many fields including medical and engineering sciences. In this
paper, based on progressive Type-II right censoring scheme, we will dis-
cuss Bayesian two-sample prediction. A general form for lifetime model
including some well known and useful models such as Weibull and Pareto
is considered for obtaining prediction bounds as well as Bayes predictive
estimations under squared error loss function for the sth order statistic
in a future random sample drawn from the parent population, inde-
pendently and with an arbitrary progressive censoring scheme. As an
illustration, we will present two numerical examples as well as a simula-
tion study to carry out the performance of the procedures obtained.
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1 Introduction

Reliability and survival analysis are involved with censored data. There-
fore, prediction of unobserved failure times has an important role in
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many fields such as medical sciences and reliability analysis. Discus-
sion of the prediction intervals for a future sample is valuable in lifetime
studies. Common prediction includes one-sample and two-sample pre-
diction. Bayes predictive approach is receiving much attention among
other issues of prediction (see Wang and Veraverbeke, 2009). Prediction
problems have been discussed by Dunsmore (1974), Aitchison and Dun-
smore (1975), Geisser (1993), Raqab and Nagaraja (1995), Al-Hussaini
and Jaheen (1995; 1996). Howlader (1985) presented highest posterior
density (HPD) prediction intervals for the kth order statistic of a future
sample. Ouyang and Wu (1994) considered non-Bayesian prediction in-
tervals for Pareto model. Fernandez (2000) considered Bayesian predic-
tion for independent future sample from the Rayleigh distribution based
on Type-II double censoring. Ali Mousa (2001) derived inference and
prediction for the Burr Type-X model using records. Raqab and Madi
(2002), based on doubly Rayleigh censored samples, derived estimation
of the predictive distribution of the total time on test up to a certain
failure in a future sample, as well as that of the remaining testing time
until all the items in the original sample have failed. Ali Mousa and
Jaheen (2002) considered two-parameter Burr Type-XII model for ob-
taining Bayesian prediction in a two-sample problem on the basis of pro-
gressive censored data. Kundu and Howlader (2010) presented Bayesian
prediction for the inverse Weibull distribution under Type-II censoring
scheme. Also, AL-Hussaini and Al-Awadhi (2010) obtained Bayes two-
sample prediction and interval predictors of generalized order statistics
based on further sample of fixed size as well as random size. Based
on records, Asgharzadeh and Fallah (2011) considered the problem of
estimation and prediction for a family of exponentiated distributions.

Censoring is usual in lifetime data because of time and cost restric-
tions. In statistics, engineering and medical research, censoring arises
when exact lifetimes are only partially known. Also, there are many
types of censoring such as Type-II censoring, doubly Type-II censoring,
random censoring and progressive censoring. Progressive Type-II right
censoring scheme can be described as follows:
As can be seen from Balakrishnan and Aggarwala (2000), suppose that
we have n independent and identical units for a lifetime test. In this cen-
soring scheme, m < n and R1, R2, . . . , Rm all are prefixed integers such
that R1 + R2 + . . . + Rm + m = n. At the first failure time x(1), we ran-
domly withdraw R1 items from the remaining n−1 surviving units. Then
immediately after the second observed failure time x(2), R2 items are
withdrawn from the remaining n−2−R1 surviving units at random, and
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so on. The experiment continues until at the mth failure time x(m), the
remaining items Rm = n−m−R1−R2−. . .−Rm−1 are withdrawn. Thus,
we have a progressive censoring scheme (R1, R2, . . . , Rm) and m ordered
observed failure times X

(R1,R2,...,Rm)
1:m:n ,X

(R1,R2,...,Rm)
2:m:n , . . . ,X

(R1,R2,...,Rm)
m:m:n .

These are called progressively Type-II right censored order statistics of
size m from a sample of size n. Note that for R1 = R2 = . . . = Rm−1 = 0,
Rm = n − m, the progressively Type-II censored ordered statistics are
reduced to the ordinary the Type-II censored order statistics.

Based on progressively Type-II censored data, many authors have
made statistical inference and prediction for future observations (failure
times). Cohen (1963) and Cohen and Norgaard (1977) studied statistical
inference for several failure time distributions based on Type-II progres-
sive censoring. Other examples of progressive censoring were given by
Mann (1969; 1971), Thomas and Wilson (1972), Cacciari and Montanari
(1987) and Viveros and Balakrishnan (1994).

Balakrishnan and Sandhu (1995) and Aggarwala and Balakrishnan
(1998) presented an algorithm to generate general progressively Type-II
censored data from a continuous distribution. A comprehensive review
of theory, methods and applications of the progressive censoring, can be
seen in the book by Balakrishnan and Aggarwala (2000).
Bayesian prediction and inference for Pareto distribution based on pro-
gressive censoring discussed by Ali Mousa (2001). Balakrishnan et al.
(2001) computed bounds for means and variances of progressively Type-
II censored order statistics. In addition, Ali Mousa and Al-Sagheer
(2005) obtained Bayesian two-sample prediction bounds with progressive
Type-II censoring for Rayleigh model. Recently, best linear unbiased
predictors and ML predictors based on progressive Type-II censoring
for Pareto distribution were presented by Raqab et al. (2010).

In this paper, we will focus on Bayesian prediction bounds and Bayes
predictive estimator for the sth order statistic in a future random sample
drawn from the parent population independently and with arbitrary
progressive censoring schemes under squared error loss function (SEL)
in a general class of lifetime model. In Sections 3 and 4, Weibull and
Pareto distributions as special cases of the general class are considered
in more details. Finally, an illustrative example and a simulation study
for each model are given to carry out the proposed performance of the
procedures.
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2 Prediction in a general lifetime model

The joint probability density function of order statistics X
(R1,R2,...,Rm)
1:m:n ,

X
(R1,R2,...,Rm)
2:m:n , . . . ,X

(R1,R2,...,Rm)
m:m:n is (see Balakrishnan and Aggarwala,

2000, p. 8)

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, . . . , xm; θ) = A

m∏
i=1

f(xi)
(
1 − F (xi)

)Ri

, (1)

where

A = n(n−R1−1)(n−R1−R2−2) . . . (n−R1−R2−. . .−Rm−1−(m−1)),

is a normalizing constant, f(xi) and F (xi) are respectively the proba-
bility density function (pdf) and the cumulative distribution function
(cdf) of Xi, i = 1, 2, . . . ,m. Suppose that Kθ(x) be cumulative hazard
rate of cdf Fθ(.) which is increasing in x and non-negative. Then

Fθ(x) = 1 − e−Kθ(x), x > 0. (2)

Substituting (2) into (1), the likelihood function will be

L(θ;x1, x2, . . . , xn) = A exp
{ m∑

j=1

(
ln(K ′

θ(xj))−(Rj +1)Kθ(xj)
)}

, (3)

where A is given by (1). Let X
(R1,R2,...,Rm)
1:m:n ,X

(R1,R2,...,Rm)
2:m:n , . . . ,

X
(R1,R2,...,Rm)
m:m:n be a progressively Type-II censored ordered statistics from

a sample of size n with progressive censoring scheme (R1, R2, . . . , Rm)
from a continuous distribution. According to Ali Mousa and AL-Sagheer
(2005), assume that Y

(S1,S2,...,SM)
1:M :N , Y

(S1,S2,...,SM )
2:M :N , . . . , Y

(S1,S2,...,SM )
M :M :N is an-

other (unobserved) independent progressively Type-II right censored or-
dered statistics of size M from a sample of size N with progressive
censoring scheme (S1, S2, . . . , SM ). The first sample is considered as
“informative” (past) sample, whereas the second sample is considered
as the “future” sample. Now, assume that Ys represents the sth order
statistic in the future sample of size M, 1 ≤ s ≤ M . The problem of
prediction is very important in practice such as for determining optimal
experiments. For more details, see Aitchison and Dunsmore (1975). In
this paper, our aim is to predict the Ys of future sample.

For the general lifetime model (2) with a vector of parameters θ and
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using (2), the pdf of Ys, s = 1, 2, . . . ,M is obtained as (see Balakrishnan
and Aggarwala, 2000, p. 26)

h(ys|θ) = Cs−1fX(ys|θ)
s∑

i=1

ai

(
1 − FX(ys|θ)

)γi−1
,

= Cs−1

s∑
i=1

ai exp
{

ln(K ′
θ(ys)) − γiKθ(ys)

}
, (4)

where

γi =
M∑
j=i

(Sj + 1) = N −
i−1∑
j=1

(Sj + 1), Cs−1 =
s∏

i=1

γi,

ai =
s∏

j=1

1
γj − γi

, ∀i �= j, s > 1, (5)

and a1 = 1 for s = 1. We will use the conjugate prior density, suggested
by AL-Hussaini (1999), of the form

π(θ; δ) = C(θ; δ) e−D(θ; δ), θ ∈ Θ, δ ∈ Ω, (6)

where Ω is the hyperparameter space. From (3) and (6), the posterior
density function takes the form

q(θ|x) = A × B × C(θ; δ)

× exp
{
−

m∑
j=1

(
(Rj + 1)Kθ(xj) − ln(K ′

θ(xj))
)
− D(θ; δ)

}
, (7)

where B is a normalizing constant, i.e.

B−1 =
∫

Ω
A × C(θ; δ)

× exp
{
−

m∑
j=1

(
(Rj + 1)Kθ(xj) − ln(K ′

θ(xj))
)
− D(θ; δ)

}
dθ.

Hence, by applying (4) and (7), the Bayes predictive density function of
Y := Ys, s = 1, 2, . . . ,M becomes

H(ys|x) =
∫ +∞

0
h(ys|θ)q(θ|x) dθ = A × B × Cs−1

s∑
i=1

ai

∫ +∞

0
C(θ; δ)

× exp
{
−

m∑
j=1

(
(Rj + 1)Kθ(xj) − ln(K ′

θ(xj))
)
− γiKθ(ys)

+ ln(K ′
θ(ys)) − D(θ; δ)

}
dθ , (8)
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where A, γi, Cs−1, ai and B are given by (1), (5) and (7), respectively.
The Bayesian prediction bounds for Y := Ys, s = 1, 2, . . . ,M are ob-
tained by evaluating Pr(Ys ≥ ε|x), for some positive value of ε. It turns
out from (8) that

Pr(Ys ≥ ε|x) =
∫ +∞

ε
H(ys|x) dys

= A × B × Cs−1

s∑
i=1

ai

∫ +∞

0

C(θ; δ)
γi

× exp
{
−

m∑
j=1

(
(Rj + 1)Kθ(xj) − ln(K ′

θ(xj))
)

−γiKθ(ε) − D(θ; δ)
}

dθ. (9)

A τ × 100% Bayesian prediction bounds for Y := Ys, s = 1, 2, . . . ,M
is obtained by solving the following two equations{

Pr(Ys ≥ Ls(x)|x) = 1+τ
2 ,

P r(Ys ≥ Us(x)|x) = 1−τ
2 ,

where Ls(x) and Us(x) are the lower and upper Bayesian predictive
bounds of the sth order statistic Ys, s = 1, 2, . . . ,M , respectively. Now,
the predictive estimator of Ys, s = 1, 2, . . . ,M under SEL can be ob-
tained as

ỹs = E(Ys|x) =
∫ +∞

0
ysH(ys|x) dys =

∫ +∞

0

∫ +∞

0
Pr(Ys ≥ ε|x) dε,

= A × B × Cs−1

s∑
i=1

ai

∫ +∞

0

C(θ; δ)
γi

exp
{
−

m∑
j=1

(
(Rj + 1)Kθ(xj)

− ln(K ′
θ(xj))

)
− γiKθ(ε) − D(θ; δ)

}
dε dθ. (10)

3 Weibull Family

The Weibull distribution is one of the most popular distributions in
reliability and survival analysis. This distribution has been widely used
for analyzing lifetime data. Here θ = (α, β) and Kθ(x) = αxβ, α, β > 0.
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The corresponding pdf, cdf and reliability function are

f(x|α, β) = αβxβ−1e−αxβ
, x > 0, α, β > 0,

F (x|α, β) = 1 − e−αxβ
, x > 0, α, β > 0,

r(x) = e−αxβ
, x > 0, α, β > 0, (11)

respectively. Thus, from (1), the joint pdf of X
(R1,R2,...,Rm)
1:m:n ,X

(R1,R2,...,Rm)
2:m:n ,

. . . ,X
(R1,R2,...,Rm)
m:m:n is

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, . . . , xm;α, β)

= A × (αβ)m(
m∏

i=1

xβ−1
i )

× exp{−
m∑

j=1

αxβ
j (Rj + 1)}, (12)

where x(1) > 0 and the constant A is given by (1). On the other hand,
from (4), for given values of the parameters α and β, the pdf of the Ys

becomes

h(ys|θ) = Cs−1fX(ys|θ)
s∑

i=1

ai

(
1 − FX(ys|θ)

)γi−1

= Cs−1 αβ yβ−1
s

s∑
i=1

ai exp{−αγiy
β
s }, (13)

where γi, Cs−1 and ai are given in (5). In this section, we discuss two
cases:

Case I: α is unknown and β is known

With respect prior distribution given in (6), assume that the param-
eter α is a random variable with the Gamma conjugate prior density of
the form

π1(α) =
dc

Γ(c)
αc−1 e−dα, α > 0, (14)

i.e. α ∼ Γ(c, 1
d). It follows from (12) and (14) that the posterior pdf of

the parameter α can be expressed as

q(α|x) = D1α
m+c−1 exp

{
− α

( m∑
j=1

(Rj + 1)xβ
j + d

)}
, (15)
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where D1 is a normalizing constant given by

D−1
1 =

Γ(m + c)( ∑m
j=1(Rj + 1)xβ

j + d
)m+c .

Thus, α|x ∼ Γ(m + c, (
∑m

j=1(Rj + 1)xβ
j + d)−1). Hence, the Bayes

predictive density function of Y := Ys from (13) and (15) is obtained as

H(ys|x) =
∫ +∞

0
h(ys|α)q(α|x) dα,

= D2 yβ−1
s β

s∑
i=1

ai

(
1 +

γiy
β
s∑m

j=1(Rj + 1)xβ
j + d

)−(m+c+1)
, (16)

where D2 = (m+c)Cs−1∑m
j=1(Rj+1)xβ

j +d
and γi, Cs−1 and ai are given by (5). Ac-

cording to (9) and (16), the Bayesian prediction bounds for Y := Ys are
obtained as

Pr(Ys ≥ ε)|x) =
∫ +∞

ε
H(ys|x) dys,

= Cs−1

s∑
i=1

ai

γi

(
1 +

γiε
β∑m

j=1(Rj + 1)xβ
j + d

)−(m+c)
. (17)

Now then, by (10) and (17), the Bayes predictive estimator under SEL
is written as

ỹs = E(Ys|x) =
∫ +∞

0
ysH(ys|x) dys =

∫ +∞

0
Pr(Ys ≥ ε|x) dε,

=
∫ +∞

0
Cs−1

s∑
i=1

ai

γi

(
1 +

γi εβ∑m
j=1(Rj + 1)xβ

j + d

)−(m+c)
dε,

=
Cs−1

β

s∑
i=1

ai

γi

(∑m
j=1(Rj + 1)xβ

j + d

γi

) 1
β

Γ(m + c − 1
β ) Γ( 1

β )

Γ(m + c)
.(18)

Case II: α and β are both unknown

In this subsection, we assume the joint prior density for the parame-
ters of the form (see Ahmadi et al., 2010) π(α, β) = π1(α)π2(β|α) where
π1(α) = dcαc−1e−dα

Γ(c) , α > 0 and π2(β|α) = (bα)a

Γ(a) βa−1e−bαβ , β > 0.
Thus,

π(α, β) =
dcba

Γ(c)Γ(a)
αc+a−1βa−1e−α(d+bβ). (19)
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In other words, α ∼ Γ(c, 1
d) and β|α ∼ Γ(a, (bα)−1). So, from (12) and

(19), the joint posterior density of the parameters α and β is derived as

q(α, β|x) = D3α
m+c+a−1βm+a−1

× exp
{
− α

(
d + bβ +

m∑
j=1

(Rj + 1)xβ
j

)
+ β

m∑
j=1

ln(xj)
}

, (20)

where

D−1
3 =

∫ +∞

0
Γ(m + c + a)

(
d + bβ +

m∑
j=1

(Rj + 1)xβ
j

)−(m+c+a)

× eβ
∑m

j=1 ln(xj)βm+a−1 dβ,

is a normalizing constant. From (13) and (20), the Bayes predictive
density function of Y := Ys is

H(ys|x) =
∫ +∞

0

∫ +∞

0
h(ys|α, β)q(α, β|x) dα dβ,

=
Cs−1

I0
(m + c + a)

s∑
i=1

ai

∫ +∞

0
βm+a

× exp
{
β

m∑
j=1

ln(xj) + (β − 1) ln(ys)
}

×
(
d + bβ +

m∑
j=1

(Rj + 1)xβ
j + γiy

β
s

)−(m+c+a+1)
dβ, (21)

where

I0 =
∫ +∞

0
βm+a−1 eβ

∑m
j=1 ln(xj)

(
d + bβ +

m∑
j=1

(Rj + 1)xβ
j

)−(m+c+a)
dβ.

By (21), the Bayesian prediction bounds for Y := Ys are derived as the
following probability

Pr(Ys ≥ ε|x) =
∫ +∞

ε
H(ys|x) dys

=
Cs−1

I0

s∑
i=1

ai

γi

∫ +∞

0
βm+a−1eβ

∑m
j=1 ln(xj)

×
(
d + bβ +

m∑
j=1

(Rj + 1)xβ
j + γiε

β
)−(m+c+a)

dβ, (22)
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where γi, Cs−1, ai and I0 are given by (5) and (21), respectively.
As mentioned above, the lower and upper τ ×100% Bayesian predic-

tion bounds for Y := Ys in Cases I and II, can be obtained numerically
by equating Pr(Ys ≥ ε|x) in (18) and (23), respectively, to (1+τ

2 ) and
(1−τ

2 ).
Also, from (10) and (22), the predictive estimator of Ys under SEL is
given by

ỹs = E(Ys|x) =
∫ +∞

0
ysH(ys|x) dys =

∫ +∞

0
Pr(Ys ≥ ε|x) dε,

=
Cs−1

I0

s∑
i=1

∫ +∞

0

ai

γ
1+ 1

β

i

(
d + bβ +

m∑
j=1

xβ
j (Rj + 1)

) 1
β
−(m+c+a)

× βm+a eβ
∑m

j=1 ln(xj)
Γ(m + c + a − 1

β ) Γ( 1
β )

Γ(m + c + a)
dβ. (23)

4 Pareto Family

As mentioned by Ali Mousa (2003) and Nigm et al. (2003), the Pareto
distribution has widespread usage in various socio-economic studies.
This distribution was suggested by Pareto (1897) for the distribution of
income. This distribution plays a major part in investigation of finan-
cial phenomena. In addition, it is used in determining times of mainte-
nance and in studying time to failure of equipment of components. Here
θ = (α, β) and Kθ(x) = ln(x+β

β )α, α, β > 0. The corresponding pdf, cdf
and reliability function of Pareto distribution are

f(x|α, β) = αβα(x + β)−(α+1), x > 0, α, β > 0,

F (x|α, β) = 1 −
(x + β

β

)−α
, x > 0, α, β > 0,

r(x) =
(x + β

β

)−α
, x > 0, α, β > 0, (24)

respectively. Thus, from (1), the joint pdf of X
(R1,R2,...,Rm)
1:m:n ,X

(R1,R2,...,Rm)
2:m:n ,

. . . ,X
(R1,R2,...,Rm)
m:m:n is

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, · · · , xm;α, β) = A × αmβnα

× exp
{
− α

m∑
j=1

(Rj + 1) ln(xj + β) −
m∑

j=1

ln(xj + β)
}

, (25)



Bayesian Two-Sample Prediction with ... 73

where x(1) > 0 and A is given by (1).
On the other hand, by (4), for given values of the parameters α and β,
pdf of the Ys is obtained by

h(ys|θ) = Cs−1 fX(ys|θ)
s∑

i=1

ai

(
1 − FX(ys|θ)

)γi−1
,

= Cs−1 αβ−1
s∑

i=1

ai

(ys + β

β

)−αγi−1
, (26)

where γi, Cs−1 and ai are given in (5). In this section, we consider three
cases: The shape parameter (α) unknown, the precision parameter (β)
unknown and both parameters (α and β) are unknown.

Case I: α is unknown and β is known

Suppose that the parameter α is a random variable with the Gamma
conjugate prior density of the form (Ali Mousa, 2001)

π1(α) =
θτ

Γ(τ)
ατ−1e−αθ, α > 0, (27)

namely, α ∼ Γ(τ, 1
θ ). From (25) and (27), we can conclude that the

posterior density of the parameter α is written as

q(α|x) = K1 αm+τ−1 exp
{
− α

(
θ +

m∑
j=1

(Rj + 1) ln(
xj + β

β
)
)}

, (28)

where K1 is a normalizing constant, i.e.

K−1
1 =

Γ(m + τ)(
θ +

∑m
j=1(Rj + 1) ln(xj+β

β )
)m+τ .

In other words, α|x ∼ Γ(m + τ, (θ +
∑m

j=1(Rj + 1) ln(xj+β
β ))−1). There-

fore, the Bayes predictive density function of Y := Ys from (26) and
(28), is found to be

H(ys|x) =
∫ +∞

0
h(ys|α) q(α|x) dα,

= B1 (ys + β)−1

×
s∑

i=1

ai

(
1 +

γi ln(ys+β
β )

θ +
∑m

j=1(Rj + 1) ln(xj+β
β )

)−(m+τ+1)
,(29)
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where B1 = (m+τ)Cs−1

θ+
∑m

j=1(Rj+1) ln(
xj+β

β
)

and γi, Cs−1 and ai are given in (5).

From (29), we have

Pr(Ys ≥ ε|x) =
∫ +∞

ε
H(ys|x) dys,

= Cs−1

s∑
i=1

ai

γi

(
1 +

γi ln(ε+β
β )

θ +
∑m

j=1(Rj + 1) ln(xj+β
β )

)−(m+τ)
. (30)

Similarly, we can use (30) for obtaining the Bayes predictive bounds for
Ys.
In addition, by (30), the Bayes predictive estimator under SEL becomes

ỹs = E(Ys|x) =
∫ +∞

0
ysH(ys|x) dys =

∫ +∞

0
Pr(Ys ≥ ε|x) dε,

=
∫ +∞

0
Cs−1

s∑
i=1

ai

γi

(
1 +

γi ln(ε+β
β )

θ +
∑m

j=1(Rj + 1) ln(xj+β
β )

)−(m+τ)
dε. (31)

Case II: β is unknown and α is known

Let the parameter β be a random variable of the form (Ali Mousa,
2001)

π2(β) = γδγ(β + δ)−(γ+1), β > 0, (32)

i.e. α ∼ Pa(γ, δ). From (25) and (32), the posterior density of the
parameter β can be expressed as

q(β|x) = K2 exp
{
− α

( m∑
j=1

(Rj + 1) ln(
xj + β

β
)
)

−
m∑

j=1

ln(xj + β) − (γ + 1) ln(δ + β)
}

, (33)

where K2 is a normalizing constant given by

K−1
2 =

∫ +∞

0
exp

{
− α

( m∑
j=1

(Rj + 1) ln(
xj + β

β
)
)

−
m∑

j=1

ln(xj + β) − (γ + 1) ln(δ + β)
}

dβ.
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Therefore, from (26) and (33), the Bayes predictive density function of
Y := Ys is

H(ys|x) =
∫ +∞

0
h(ys|β)q(β|x) dβ = K2 Cs−1 α

s∑
i=1

ai

∫ +∞

0
(ys + β)−1

× exp
{
− α

( m∑
j=1

(Rj + 1) ln(
xj + β

β
)
)
−

m∑
j=1

ln(xj + β)

−(γ + 1) ln(δ + β) − αγi ln(
ys + β

β
)
}

dβ, (34)

where γi, Cs−1, ai and K2 are given by (5) and (33), respectively. By
(34), we have

Pr(Ys ≥ ε|x) =
∫ +∞

ε
H(ys|x) dys = K2Cs−1

s∑
i=1

ai

γi

×
∫ +∞

0
exp

{
− α

( m∑
j=1

(Rj + 1) ln(
xj + β

β
)
)

−
m∑

j=1

ln(xj + β) − (γ + 1) ln(δ + β)

−αγi ln(
ε + β

β
)
}

dβ, (35)

which implies the Bayes predictive estimator under SEL is

ỹs = E(Ys|x) =
∫ +∞

0
ysH(ys|x) dys =

∫ +∞

0
Pr(Ys ≥ ε|x) dε,

= K2 Cs−1

s∑
i=1

ai

γi(αγi − 1)

×
∫ +∞

0
exp

{
− α

( m∑
j=1

(Rj + 1) ln(
xj + β

β
)
)

−
m∑

j=1

ln(xj + β) − (γ + 1) ln(δ + β) + ln(β)
}

dβ. (36)
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Case III: α and β are both unknown

Suppose that the joint prior density for the parameters α and β is given
by

π(α, β) = π1(α) π2(β|α),

where

π1(α) =
θτ

Γ(τ)
ατ−1e−αθ, α > 0

and

π2(β|α) = αγδγα (β + δ)−(γα+1), β > 0.

Thus,

π(α, β) = K3α
τ exp

{
−α

(
θ− γ ln(δ) + γ ln(β + δ)

)
− ln(β + δ)

}
, (37)

where K−1
3 = Γ(τ)

γ θ−τ . In other words, α ∼ Γ(τ, 1
θ ) and β|α ∼ Pa(αγ, δ).

So, using (25) and (37), the joint posterior density of the parameters α
and β is reduced to

q(α, β|x) = K4α
τ+m exp

{
− α

( m∑
j=1

(Rj + 1) ln(
xj + β

β
) + θ

−γ ln(δ) + γ ln(β + δ)
)
−

m∑
j=1

ln(xj + β) − ln(δ + β)
}

, (38)

where

K−1
4 =

∫ +∞

0
Γ(m + τ + 1)

( m∑
j=1

(Rj + 1) ln(
xj + β

β
) + θ − γ ln(δ)

+γ ln(β + δ)
)−(m+τ+1)

exp
{
−

m∑
j=1

ln(xj + β) − ln(δ + β)
}

dβ,

is a normalizing constant. From (26) and (38), the Bayes predictive



Bayesian Two-Sample Prediction with ... 77

density function of Y := Ys, s = 1, 2, . . . ,M is derived as

H(ys|x) =
∫ +∞

0

∫ +∞

0
h(ys|α, β) q(α, β|x) dα dβ,

=
Cs−1

I ′0
(m + τ + 1)

m∑
i=1

ai

∫ +∞

0
(ys + β)−1

(
θ + γi ln(

ys + β

β
)

+
m∑

j=1

(Rj + 1) ln(
xj + β

β
) − γ ln(δ) + γ ln(β + δ)

)−(m+τ+2)

× exp
{
−

m∑
j=1

ln(xj + β) − ln(δ + β)
}

dβ, (39)

where

I ′0=
∫ +∞

0

( m∑
j=1

(Rj + 1) ln(
xj + β

β
) + θ − γ ln(δ) + γ ln(β + δ)

)−(m+τ+1)

× exp
{
−

m∑
j=1

ln(xj + β) − ln(δ + β)
}

dβ.

From (39), we have

Pr(Ys ≥ ε|x) =
∫ +∞

ε
H(ys|x) dys,

=
Cs−1

I ′0

m∑
i=1

ai

γi

∫ +∞

0

(
θ + γi ln(

ε + β

β
)

+
m∑

j=1

(Rj + 1) ln(
xj + β

β
)

−γ ln(δ) + γ ln(β + δ)
)−(m+τ+1)

× exp
{
−

m∑
j=1

ln(xj + β) − ln(δ + β)
}

dβ, (40)

where γi, Cs−1, ai and I ′0 are given by (5) and (39), respectively. As
mentioned in Section 2, the τ × 100% Bayesian prediction bounds from
(30), (35) and (40), for Y := Ys can be derived.
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5 Numerical Results

In this section, the performance of the proposed procedures is investi-
gated by a simulation study and two illustrative examples.

5.1 Simulation Study

This subsection is devoted to carry out the performance of the ob-
tained Bayesian prediction bounds and the Bayes predictive estimator
for the sth order statistics in a future progressively Type-II censored
sample described in Sections 3 and 4. For simplicity, we will consider
Si = 0, i = 1, 2, . . . ,M which represents the ordinary order statistics and
M = N = 10.
The 95% Bayesian prediction bounds and the Bayes predictive estimate
of Ys are computed according to the following steps:
(1) For given values of the parameters and the prior parameters, ac-
cording to an algorithm proposed by Balakrishnan and Sandhu (1995),
a progressively Type-II censored sample is generated for given values of
the censoring scheme Ri, i = 1, 2, . . . ,m.
(2) The 95% Bayesian prediction bounds and Bayes predictive esti-
mate of Ys, for different informative sample sizes (m = 10, 10, 20) and
s = 1, 5, 10 for Weibull and Pareto distributions are listed in Tables 2-5.
(3) For 100, 000 simulated independent future samples of size N = 10,
Bayesian coverage probabilities for Ys, s = 1, 5, 10 were obtained by the
statistical package R. The results are shown in Tables 2-5.
The integrals in equations (22), (23), (31), (35), (36) and (40) cannot
be reduced to a closed form and the evaluation of these integrals would
be tedious. Hence, we performed them by Riemann-sum approximation
to obtain the 95% Bayesian prediction bounds. Table 1 displays three
different cases of m and Ri’s.

Table 1. Various censoring scheme Ri, i = 1, 2, . . . , m with various values of
m.

Case m Ri, i = 1, 2, . . . ,m
1 10 1 2 1 0 0 1 2 0 0 0
2 10 1 0 0 3 0 0 1 0 0 1
3 20 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0
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Table 2. The 95% Bayesian prediction bounds and Bayes predictive
estimator for Ys and their simulated Bayesian coverage probabilities, for
Weibull model, with β = 40 (known) and c = 10, d = 25 and α = 0.4.

One parameter Weibull
Case Ys (Lower, Upper) Estimate Percentage

1 Y1 (0.879, 0.998) 0.951 0.953
Y5 (0.985, 1.037) 1.013 0.964
Y10 (1.026, 1.075) 1.051 0.971

2 Y1 (0.884, 1.003) 0.956 0.961
Y5 (0.984, 1.037) 1.012 0.967
Y10 (1.027, 1.076) 1.052 0.967

3 Y1 (0.877, 0.994) 0.948 0.940
Y5 (0.984, 1.035) 1.012 0.962
Y10 (1.021,1.067) 1.044 0.951

Table 3. The 95% Bayesian prediction bounds and Bayes predictive
estimator for Ys and their simulated Bayesian coverage probabilities, for

Pareto model, with β = 20 (known) and τ = 26, θ = 5 and α = 5.2.

One parameter Pareto
Case Ys (Lower, Upper) Estimate Percentage

1 Y1 (0.009, 1.474) 0.300 0.951
Y5 (0.980, 8.297) 3.409 0.949
Y10 (4.178, 39.838) 14.022 0.957

2 Y1 (0.010, 1.694) 0.355 0.958
Y5 (0.871, 7.246) 2.991 0.960
Y10 (4.351, 42.356) 14.711 0.961

3 Y1 (0.010, 1.629) 0.341 0.958
Y5 (0.715, 5.644) 2.372 0.953
Y10 (4.504, 42.649) 14.998 0.959
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Table 4. The 95% Bayesian prediction bounds and Bayes predictive
estimator for Ys and their simulated Bayesian coverage probabilities for

Pareto model, with α = 3 (known) and γ = 9, δ = 16 and β = 2.

One parameter Pareto
Case Ys (Lower, Upper) Estimate Percentage

1 Y1 (0.001, 0.304) 0.073 0.962
Y5 (0.143, 1.695) 0.625 0.973
Y10 (0.520, 9.943) 2.790 0.953

2 Y1 (0.001, 0.335) 0.080 0.965
Y5 (0.169, 1.982) 0.735 0.954
Y10 (0.804, 14.702) 4.171 0.972

3 Y1 (0.001, 0.326) 0.081 0.961
Y5 (0.167, 1.708) 0.670 0.954
Y10 (0.953, 15.572) 4.550 0.960

In the two parameters case, we choose a = 5, b = 10, c = 4, d = 7,
α = 0.57 and β = 0.875 for Weibull model and τ = 168, θ = 12, γ = 10,
δ = 3892, α = 14 and β = 28 for Pareto model. The results are reported
in Table 5.

Table 5. The 95% Bayesian prediction bounds for Ys and their simulated
Bayesian coverage probabilities, for Weibull and Pareto models.

Weibull Pareto
Case Ys (Lower, Upper) Estimate Percentage (Lower, Upper) Percentage

1 Y1 (0.003, 0.653) 0.313 0.945 (0.004, 0.842) 0.960
Y5 (0.284, 2.516) 1.471 0.948 (0.260, 2.552) 0.954
Y10 (2.060, 19.042) 6.290 0.978 (2.382, 18.869) 0.971

2 Y1 (0.000, 0.471) 0.058 0.945 (0.004, 0.695) 0.947
Y5 (0.235, 3.166) 1.086 0.982 (0.350, 3.217) 0.976
Y10 (2.357, 34.078) 6.242 0.970 (1.392, 12.463) 0.942

3 Y1 (0.003, 0.765) 0.225 0.954 (0.004, 0.752) 0.952
Y5 (0.267, 2.637) 1.054 0.959 (0.420, 3.397) 0.966
Y10 (2.364, 14.677) 7.163 0.946 (2.330, 17.169) 0.967

We could not compute the Bayesian prediction for Ys in the two-parameter
pareto model because of complexities and tedious calculations in the in-
tegral (39) and (40). One can see from Tables 2-5 that the simulated
Bayesian coverage probabilities of Ys are close to the nominal level of
95%.
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5.2 Illustrative Examples

In this subsection, two data sets are used to illustrate the proposed
estimation in the preceding sections.

Example 1. (Weibull model): Consider the following data set of
failure times of the air conditioning system of an airplane (due to Gupta
and Kundu, 2001):

1, 3, 5, 7, 11, 11, 11, 12, 14, 14
14, 16, 16, 20, 21, 23, 42, 47, 52, 62

71, 71, 87, 90, 95, 120, 120, 225, 246, 261.

For m = 7, R = (3, 3, 3, 5, 3, 3, 3), M = N = 30 and Si = 0, i =
1, 2, . . . ,M , in the one-parameter case with β = 2 (known), c = 5 and
d = 9800, the 95% Bayesian prediction bounds and the Bayes predictive
estimator for Y15 were obtained from (17) and (18) as (22.312, 48.750)
and 33.504, respectively. Similarly, when both the parameters are un-
known, assuming a = 5, b = 11, c = 2 and d = 95, the 95% Bayesian
prediction bounds and the Bayes predictive estimator for Y15 are ob-
tained from (22) and (23) as (7.021, 37.782) and 18.911, respectively.
The observed failure times and the withdrawn items for one-parameter
and two-parameter cases (case 1 and case 2, respectively) are shown in
Table 6.

Table 6. The failure times and the censored points with m = 7,
R = (3, 3, 3, 5, 3, 3, 3).

Case 1 Observed Xi:m:n 1 3 5 11
Withdrawn Items 20,7,87 225,261,120 16,23,12 246,11,62,14,52

Case 1 Observed Xi:m:n 11 14 42
Withdrawn Items 14,90,14 16,71,21 95,71,120

Case 2 Observed Xi:m:n 1 3 5 7
Withdrawn Items 90,47,11 87,71,120 14,71,16 62,20,261,225,16

Case 2 Observed Xi:m:n 11 11 12
Withdrawn Items 246,14,14 21,52,95 120,23,14

Example 2. (Pareto model): The n = 20 items were put on test
simultaneously and their ordered failure times were given by Nigm et al.
(2003). The ordered observed data are as follows:

0.0009, 0.0040, 0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252
0.1404, 0.1498, 0.1750, 0.2031, 0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 0.6143.
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For illustration purposes, we assumed m = 10, R = (1, 1, 1, 1, 1, 1, 1,
1, 1, 1), M = N = 30 and Si = 0, i = 1, 2, . . . ,M . In the one-parameter
case with β = 0.9 (known), for τ = 5 and θ = 3, the 95% Bayesian
prediction bounds as well as the Bayes predictive estimator for Y15 were
computed from (30) and (31) as (0.094, 0.491) and 0.135, respectively.
Similarly, with α = 2 (known) and by choosing γ = 9 and δ = 18, the
95% Bayesian prediction bounds as well as the Bayes predictive estima-
tor for Y15 are obtained from (35) and (36) as (0.042, 0.308) and 0.128,
respectively. In the two-parameter case, by assuming τ = 7, θ = 5, γ = 7
and δ = 8, from (40), the 95% Bayesian prediction bounds for Y15 were
(0.045, 0.350). In Table 7, we also reported the observed failure times
and the censored points for one-parameter and two-parameter cases.

Table 7. The failure times and the withdrawn points with m = 10,
R = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

β known Observed Xi:m:n 0.0009 0.004 0.0142 0.0221 0.0261
Withdrawn Items 0.1404 0.0418 0.1091 0.1252 0.3465

β known Observed Xi:m:n 0.0473 0.0834 0.175 0.2099 0.2168
Withdrawn Items 0.1498 0.2031 0.2918 0.4035 0.6143

α known Observed Xi:m:n 0.0009 0.004 0.0221 0.0261 0.0418
Withdrawn Items 0.0142 0.175 0.3465 0.1404 0.2918

α known Observed Xi:m:n 0.0473 0.0834 0.1252 0.2031 0.2099
Withdrawn Items 0.1091 0.4035 0.1498 0.6143 0.2168

α and β unknown Observed Xi:m:n 0.0009 0.004 0.0221 0.0261 0.0418
Withdrawn Items 0.0142 0.0473 0.2918 0.1498 0.175

α and β unknown Observed Xi:m:n 0.0834 0.1091 0.1404 0.2031 0.2099
Withdrawn Items 0.3465 0.1252 0.2168 0.6143 0.4035

6 Concluding Remarks

In this paper, we obtained the prediction bounds as well as the Bayes
predictive estimation for the sth order statistic coming from a future
random sample with a known progressive censoring scheme under the
general class of distributions in Section 2. Results from the simulation
studies illustrate the performance of the prediction method for all var-
ious censoring schemes. For simulation section, we considered various
values for the hyperparameters. The results did not change the obtained
conclusions. The proposed procedures for the prediction problem may
be considered for other censoring schemes; and for some other distri-
butions such as Type-II progressively hybrid censoring and Generalized
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Exponential distribution (GE), respectively.
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