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Abstract. The dual generalized order statistics is a unified model which
contains the well known decreasingly ordered random data such as (re-
versed ordered) order statistics and lower record values. In the present
paper, some characterization results on the power function distribution
based on the properties of dual generalized order statistics are provided.
The results are proved without any restriction on the parameters of the
model of dual GOS.
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1 Introduction

In the literature, models of ordered random variables have been ex-
tensively studied. In testing the strength of materials, reliability anal-
ysis, lifetime studies, etc., the realizations of the experiment arise in
non-decreasing order and therefore we need to consider several models
of ascendingly ordered random variables. Theoretically, many of these
models are contained in the model of generalized order statistics (GOS).
The concept of GOS has been introduced by Kamps (1995). He showed
that usual order statistics, sequential order statistics, upper record val-
ues, progressively Type-II right censored order statistics and some other
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ordered random variables can be considered as special cases of the GOS.
We refer the reader to Kamps (1995) for a comprehensive study on the
properties of GOS.

Although the GOS contain many useful models of ordered random
variables, the random variables that are decreasingly ordered can not be
integrated into this framework. Burkschat et al. (2003) introduced so-
called dual GOS as a systematic approach to some models of descend-
ingly ordered random variables. The random variables Ud(1, n, m̃, k),
Ud(2, n, m̃, k), . . . , Ud(n, n, m̃, k) are called uniform dual GOS if their
joint density function is given by

fUd(1,n,m̃,k),Ud(2,n,m̃,k),...,Ud(n,n,m̃,k)(u1, u2, . . . , un)

= cn−1

⎧⎨⎩
n−1∏
j=1

u
mj

j

⎫⎬⎭ uγn−1
n , 1 ≥ u1 ≥ u2 ≥ · · · ≥ un > 0,

where n ∈ N, k > 0 and m1,m2, . . . ,mn−1 ∈ R such that γr = k +∑n−1
j=r (mj + 1) > 0 for all r ∈ {1, 2, . . . , n − 1}, cn−1 =

∏n
j=1 γj , and

m̃ = (m1,m2, . . . ,mn−1), if n ≥ 2 (m̃ ∈ R arbitrary, if n = 1). The quan-
tile transformation Xd(r, n, m̃, k) = F−1(Ud(r, n, m̃, k)), r = 1, 2, . . . , n,
yields dual GOS based on an arbitrary cumulative distribution func-
tion (cdf) F , where F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), is called the
quantile (or generalized inverse) function. The joint density function of
the first r dual GOS based on an absolutely continuous cdf F is then
given by

fXd(1,n,m̃,k),...,Xd(r,n,m̃,k)(x1, . . . , xr)

= cr−1

⎧⎨⎩
r−1∏
j=1

{F (xj)}mj f(xj)

⎫⎬⎭ {F (xr)}γr−1f(xr), (1)

x1 ≥ x2 ≥ · · · ≥ xr.

Dual GOS represent a unification of models of decreasingly ordered ran-
dom variables, e.g., reversed ordered order statistics, lower records, lower
k-records, and lower Pfeifer records.

The aim of the present paper is to give various characterization
results on the power function distribution based on dual GOS. We prove
the results without any restriction on the parameters of the model of
dual GOS. The rest of this paper is organized as follows. In Section 2,
we present a characterization result on the power function distribution
based on the independence of a normalized spacing between dual GOS
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Xd(r, n, m̃, k) − Xd(s, n, m̃, k) and Xd(r, n, m̃, k) where 1 ≤ r < s ≤
n. In Section 3, we prove a characterization based on the identical
distributions of some time dependent functions of dual GOS.

Throughout the paper, for any random variable W , fW and FW

denote the probability density function and the cdf of W , respectively.

2 Characterizations Involving Dependency
Assumptions

Let X be a lifetime (non-negative) random variable with survival func-
tion F̄ . The random variable X is said to have generalized Pareto dis-
tribution (GPD) with parameter vector (a, b, β), if its survival function
is given by

F̄ (x) =
(

b

a(x − β) + b

) 1
a
+1

, x ≥ β.

where a > −1, b > 0 and β ∈ R. This family of distributions includes,
depending on the values of a, three distributions; in the case where
a → 0, the distribution is exponential, for a > 0, it is Pareto, and for
−1 < a < 0, it is a rescaled beta model. Note that for −1 < a < 0 the
distribution is bounded above. Recently, Asadi and Bayramoglu (2006),
Tavangar and Asadi (2007, 2008, 2010), Hashemi and Asadi (2007) and
Hashemi et al. (2010) provided some characterization results on the GPD
based on GOS or its specialized versions. Applications of the GPD have
been extensively investigated in the literature. It is successfully applied
and widely used in a number of statistical problems related to finance,
insurance, hydrological frequency analysis and other areas.

In reliability theory and survival analysis to study the lifetime
properties of a component (or any other living organism) there are sev-
eral measures such as the mean residual life function and the mean inac-
tivity time (or mean past lifetime) function. Let T be a lifetime random
variable with continuous cdf F and survival function F̄ = 1 − F . The
mean residual life function m(t) and mean inactivity time function m∗(t)
are defined as m(t) = E(T −t | T > t) and m∗(t) = E(t−T | T ≤ t). We
refer the reader to Kotz and Shanbhag (1980) and Nanda et al. (2003)
for some results regarding these measures.

In the following result, we provide a characterization of the GPD.
The proof is similar to the proof of Theorem 3.4 of Asadi et al. (2001),
so it will be omitted.
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Theorem 2.1. Let F̄ be a continuous survival function on (β,∞),
β ∈ R, where we define it so that F̄ (x) = 1 − F (x), x ∈ (β,∞), with F
as a cdf concentrated on (β,∞) such that the corresponding distribution
has a finite mean. Let θ : (β,∞) → R+. Then there exist a point
x0 ∈ (β,∞) with F̄ (x0) > 0 and a sequence {xn : n = 1, 2, ...} of points
lying in (x0,∞) such that it converges to x0 and

F̄ (xn + θ(xn)y) = F̄ (xn)F̄ (y + β), n = 0, 1, 2, ...; y > 0, (2)

if and only if the distribution corresponding to F̄ is GPD with parameter
vector (., ., β), and θ(x) = m(x)/m(β), where m(x) is the mean residual
life function corresponding to F̄ .

Remark 2.2. Eq. (2) has a probabilistic interpretation as follows. Let
X be a continuous random variable on (β,∞). Then Eq. (2) is equivalent
to P{X−xn > θ(xn)y | X > xn} = P{X−β > y}, n = 0, 1, 2, ...; y > 0.
Hence Theorem 2.1 provide a characterization of the power function
distribution based on the equality in distribution of the residual life
relative to an accelerated life model and the original life.

We now begin by establishing a general theorem, namely, Theo-
rem 2.3, on characterization of the power function distribution; we refer
to this theorem in our derivations of the main results.

Theorem 2.3. Let F be a continuous cdf concentrated on (0, β) and
θ∗ : (0, β) → R+. Then there exist a point x0 ∈ (0, β) with F (x0) > 0,
and a sequence {xn : n = 1, 2, ...} of points lying in (0, x0) such that it
converges to x0, and

F (xn − θ∗(xn)y) = F (xn)F (β − y), n = 0, 1, 2, ...; y > 0, (3)

if and only if F is a (rescaled) power function distribution with parameter
vector (α, β) of the form F (x) = (x

β )α, x ∈ (0, β), for some α > 0,
and θ∗(x) = m∗(x)/m∗(β), where m∗(x) is the mean inactivity time
corresponding to F .

Proof. The ‘if’ part of the theorem is trivial and hence it is sufficient
if we prove the ‘only if’ part. Let Eq. (3) hold. Then we have∫ ∞

0
F (xn − θ∗(xn)y)dy = F (xn)

∫ ∞

0
F (β − y)dy,

which, in turn, implies that∫ xn/θ∗(xn)

0
F (xn − θ∗(xn)y)dy = F (xn)

∫ β

0
F (β − y)dy.
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From the fact that

m∗(t) =

∫ t
0 F (x)dx

F (t)
,

it follows that θ∗(x) = m∗(x)/m∗(β). Let X be a random variable with
cdf F and let Y = 2β − X. Then for all x ∈ (0, β], m∗(x) = m(2β − x),
where m(x) is the mean residual life function corresponding to Y , and
hence θ∗(x) = θ(2β − x), where θ(y) = m(y)/m(β), y > β. It is easy to
observe that Eq. (3) is equivalent to

S(tn + θ(tn)y) = S(tn)S(y + β), y > 0, (4)

where tn = 2β−xn, n = 0, 1, 2, ..., and S(y) is the survival function of Y .
Obviously S(t0) > 0 and the sequence {tn : n = 1, 2, ...} lyes in (t0,∞)
and it converges to t0. Appealing now to Theorem 2.1, it follows that Y
is distributed as GPD with parameter vector (a, b, β). Consequently, F
belongs to the class H = {Ha,b,β : a > −1, b > 0, β ∈ R} of distributions
with

Ha,b,β(x) = S(2β − x) =
(

b

a(β − x) + b

) 1
a
+1

, x ≤ β.

Under the assumption F (0) = 0, we have F (x) = (x
β )α, x ∈ (0, β), with

α = −(1 + 1
a) and aβ + b = 0. Thus, we have the theorem. �

Remark 2.4. The probabilistic interpretation of Eq. (3) is as follows.
Let X be a continuous random variable on (0, β). Eq. (3) can be rewrit-
ten as P{xn − X > θ∗(xn)y | X ≤ xn} = P{β − X > y}, n = 0, 1, 2, ...;
y > 0. Hence, in Theorem 2.3, we have obtained a characterization re-
sult based on the equality in distribution of the inactivity time relative
to an accelerated life model and the original life.

Before stating the main result of this section, we obtain a representa-
tion for the joint density function of two dual GOS. For two consecutive
dual GOS, one can easily observe that

fUd(r,n,m̃,k),Ud(r+1,n,m̃,k)(ur, ur+1)

= crgr−1(ur)umr
r u

γr+1−1
r+1 , 1 ≥ ur ≥ ur+1 > 0, (5)

where

gr−1(u) =
∫
A

r−1∏
j=1

u
mj

j du1du2...dur−1,
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and A = {(u1, ..., ur−1) : 1 ≥ u1 ≥ u2 ≥ · · · ≥ ur−1 ≥ u > 0}. Using (5),
one can also obtain the marginal density function of rth dual GOS as
follows,

fXd(r,n,m̃,k)(xr)

= cr−1gr−1(F (xr)){F (xr)}γr−1f(xr), −∞ < xr < ∞. (6)

Now assume that r + 2 ≤ s ≤ n. Using (1), we have

fUd(r,n,m̃,k),Ud(s,n,m̃,k)(ur, us) = cs−1u
mr
r gr−1(ur)uγs−1

s

×
∫
B

s−1∏
j=r+1

u
mj

j dur+1dur+2...dus−1, (7)

where B = {(ur+1, ..., us−1) : ur ≥ ur+1 ≥ ur+2 ≥ · · · ≥ us−1 ≥ us}.
Upon making the transformation uj = urvj , j = r + 1, r + 2, ..., s − 1,
we obtain∫

B

s−1∏
j=r+1

u
mj

j dur+1dur+2...dus−1

=
∫
C
u

∑s−1
j=r+1(mj+1)

r

s−1∏
j=r+1

v
mj

j dvr+1dvr+2...dvs−1

= uγr+1−γs
r Ψr+1,s−1

(
us

ur

)
, (8)

where C = {(vr+1, ..., vs−1) : 1 ≥ vr+1 ≥ vr+2 ≥ · · · ≥ vs−1 ≥ us
ur
},

Ψr+1,s−1(u) =
∫
D

s−1∏
j=r+1

v
mj

j dvr+1dvr+2...dvs−1, 1 ≤ r < s ≤ n,

and D = {(vr+1, ..., vs−1) : 1 ≥ vr+1 ≥ vr+2 ≥ · · · ≥ vs−1 ≥ u}. Let us
define Ψr+1,r(u) ≡ 1. Substituting (8) in (7), we obtain the joint density
function of Xd(r, n, m̃, k) and Xd(s, n, m̃, k), 1 ≤ r < s ≤ n, as follows,

fXd(r,n,m̃,k),Xd(s,n,m̃,k)(xr, xs)

= cs−1{F (xr)}γr−γs−1gr−1(F (xr))f(xr)

× {F (xs)}γs−1Ψr+1,s−1

(
F (xs)
F (xr)

)
f(xs), xr > xs. (9)

Now we are ready to give the following theorem.
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Theorem 2.5. Let Xd(1, n, m̃, k),Xd(2, n, m̃, k), ...,Xd(n, n, m̃, k) be
the dual GOS based on an absolutely continuous cdf F which is con-
centrated on (0, β) and θ∗ : (0, β) → R+ be a continuous function with
θ∗(β) = 1, where β is a positive real number. Assume that F is strictly
increasing on (0, β) and also F has continuous derivative on this inter-
val. Then the random variable {Xd(r, n, m̃, k)−Xd(s, n, m̃, k)}/θ∗(Xd(r,
n, m̃, k)), 1 ≤ r < s ≤ n , is independent of Xd(r, n, m̃, k) if and only
if F is a (rescaled) power function distribution with parameter vector
(α, β), for some α > 0, and θ∗(x) = m∗(x)/m∗(β), where m∗(x) is the
mean inactivity time corresponding to F .

Proof. Note that θ∗(x) is a continuous function and hence θ∗(Xd(r, n, m̃,
k)) is a random variable. We first prove the ‘only if’ part of the theorem.
From the assumption of the theorem, we have for all x, y ∈ (0, β),

P{Xd(r, n, m̃, k) − yθ∗(Xd(r, n, m̃, k)) ≤ Xd(s, n, m̃, k),Xd(r, n, m̃, k) ≤ x}
= P{Xd(r, n, m̃, k) ≤ x}G(y), (10)

where

G(y) = P{Xd(r, n, m̃, k) − yθ∗(Xd(r, n, m̃, k)) ≤ Xd(s, n, m̃, k)}.
From (6) and (9), we get, respectively,

P{Xd(r, n, m̃, k) ≤ x} = cr−1

∫ x

0
gr−1(F (u)){F (u)}γr−1dF (u)

and

P{Xd(r, n, m̃, k) − yθ∗(Xd(r, n, m̃, k)) ≤ Xd(s, n, m̃, k),Xd(r, n, m̃, k) ≤ x}

= cs−1

∫ x

0

∫ u

u−yθ∗(u)
{F (u)}γr−γs−1gr−1(F (u))

× {F (v)}γs−1Ψr+1,s−1

(
F (v)
F (u)

)
dF (v)dF (u)

= cs−1

∫ x

0
{F (u)}γr−γs−1gr−1(F (u))

×
{∫ 1

F (u−yθ∗(u))
F (u)

{F (u)}γszγs−1Ψr+1,s−1(z)dz

}
dF (u)

= cs−1

∫ x

0
{F (u)}γr−1gr−1(F (u))

×
{∫ 1

F (u−yθ∗(u))
F (u)

zγs−1Ψr+1,s−1(z)dz

}
dF (u).
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Substituting these equations in (10), we have

cs−1

∫ x

0
{F (u)}γr−1gr−1(F (u))

{∫ 1

F (u−yθ∗(u))
F (u)

zγs−1Ψr+1,s−1(z)dz

}
dF (u)

= cr−1G(y)
∫ x

0
gr−1(F (u)){F (u)}γr−1dF (u).

Note that under the assumptions of the theorem, two integrands in the
last equation are continuous on (0, β), and F is strictly increasing and
differentiable on (0, β). By fundamental theorem of calculus, the proba-
bility density function f corresponding to F equals the derivative of F .
Hence f(x) and gr−1(F (x)) must be positive on (0, β). Therefore after
differentiating the last equality with respect to x, we get

G(y) =
cs−1

cr−1

∫ 1

F (x−yθ∗(x))
F (x)

zγs−1Ψr+1,s−1(z)dz.

This implies that the fraction F (x − yθ∗(x))/F (x) does not depend on
x and is only a function of y, say, φ(y). (Note that the right hand side
of the last equation is a strictly decreasing function of the lower integral
bound.) By considering the limits as x → β− and using the continuity
of F and θ∗, we conclude that φ(y) = F (β − y). Now the result follows
from Theorem 2.3. The ‘if’ part of the theorem is easy to verify and
hence is omitted. The proof is complete. �

In the following, we describe some applications of Theorem 2.5 to
order statistics and lower k-record values.

Corollary 2.6. Let X1:n,X2:n, ...,Xn:n be the order statistics based on
a random sample of size n from an absolutely continuous cdf F which
is concentrated on (0, β) and θ∗ : (0, β) → R+ be a continuous function
with θ∗(β) = 1, where β is a positive real number. Assume that F is
strictly increasing on (0, β) and also F has continuous derivative on
this interval. Then the random variable {Xs:n − Xr:n}/θ∗(Xs:n), 1 ≤
r < s ≤ 1, and Xs:n are independent if and only if F is a (rescaled)
power function distribution with parameter vector (α, β), for some α > 0,
and θ∗(x) = m∗(x)/m∗(β), where m∗(x) is the mean inactivity time
corresponding to F .

Remark 2.7. For power function distribution, it can be shown that
θ∗(t) = t/β. Hence we obtain a characterization result based on the inde-
pendence of Xr:n/Xs:n and Xs:n that can be used to construct goodness-
of-fit tests.
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Corollary 2.8. Let Z
(k)
1 , Z

(k)
2 , ..., Z

(k)
n be the first n lower k-records

corresponding to a sequence of independent and identically distributed
random variables with an absolutely continuous cdf F which is concen-
trated on (0, β) and θ∗ : (0, β) → R+ be a continuous function with
θ∗(β) = 1, where β is a positive real number. Assume that F is strictly
increasing on (0, β) and also F has continuous derivative on this inter-
val. Then the random variable {Z(k)

m − Z
(k)
n }/θ∗(Z(k)

m ), n ≥ m + 1,
is independent of Z

(k)
m if and only if F is a (rescaled) power func-

tion distribution with parameter vector (α, β), for some α > 0, and
θ∗(x) = m∗(x)/m∗(β), where m∗(x) is the mean inactivity time corre-
sponding to F .

Remark 2.9. Let F γi , i = 1, 2, ..., be the underlying cdf until the
ith lower record occurs, where F is an absolutely continuous cdf. Then
the lower Pfeifer records are included in the model of dual GOS (see
Burkschat et al., 2003) and hence, from Theorem 2.5, we obtain a char-
acterization of the power function distribution based on the lower Pfeifer
records.

3 Characterizations Based on Distributional
Relationships

In this section, we prove some characterization results based on the
conditional random variable

[Xd(s, n, m̃, k) | Xd(r + 1, n, m̃, k) ≤ t < Xd(r, n, m̃, k)], 1 ≤ r < s ≤ n.

First, in the following lemma, we show that this conditional random
variable can be considered as a dual GOS based on a truncated distri-
bution.

Lemma 3.1. Let Xd(1, n, m̃, k),Xd(2, n, m̃, k), ...,Xd(n, n, m̃, k) de-
note the dual GOS based on any continuous cdf F . Then for each
1 ≤ r < s ≤ n,

[Xd(s, n, m̃, k) | Xd(r + 1, n, m̃, k) ≤ t < Xd(r, n, m̃, k)]
d= X∗

d (s − r, n − r, μ̃r, k),

where X∗
d (s− r, γr+1, μ̃r, k) is the (s− r)th dual GOS based on the cdf F

truncated from the right at t, μ̃r = (mr+1, ...,mn−1), and d= stands for
the equality in distribution.
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Proof. First we prove the result in the case where the underling distri-
bution is uniform U(0, 1). Let Ud(1, n, m̃, k), Ud(2, n, m̃, k), ..., Ud(n, n,
m̃, k) be uniform dual GOS and U∗

d (s−r, n−r, μ̃r , k) denote the (s−r)th
dual GOS based on the cdf Gt(x) = x

t , 0 ≤ x < t. In view of (1), one
can write

P{Ud(s − r, n − r, μ̃r, k) > x}

=
cs−1

cr−1

∫
E

uγs−1
s−r

⎧⎨⎩
s−r−1∏

j=1

u
mr+j

j

⎫⎬⎭ du1du2...dus−r, (11)

for each x ∈ [0, 1) where E = {(u1, ..., us−r) : 1 ≥ u1 ≥ u2 ≥ · · · ≥
us−r > x}. Then it is readily seen that

P{U∗
d (s − r, n − r, μ̃r, k) > x}

=
cs−1

cr−1

∫
F

uγs−1
s−r

⎧⎨⎩
s−r−1∏

j=1

u
mr+j

j

⎫⎬⎭ du1du2...dus−r, (12)

where F = {(u1, ..., us−r) : 1 ≥ u1 ≥ u2 ≥ · · · ≥ us−r > x
t }. From (5)

and the relation

gr(t) =
∫ 1

t
umr

r gr−1(ur)dur,

we obtain

P{Ud(r + 1, n, m̃, k) ≤ t < Ud(r, n, m̃, k)} = cr−1t
γr+1gr(t). (13)

Hence, in the case s = r + 1, we have

P{Ud(r + 1, n, m̃, k) > x | Ud(r + 1, n, m̃, k) ≤ t < Ud(r, n, m̃, k)}
= P{U∗

d (1, γr+1, μ̃r, k) > x}

= 1 −
(x

t

)γr+1

, 0 ≤ x < t.

Now suppose that r + 2 ≤ s ≤ n. Using (1), we have

P{x < Ud(s, n, m̃, k) ≤ Ud(r + 1, n, m̃, k) ≤ t < Ud(r, n, m̃, k)}

= cs−1gr(t)
∫
G

uγs−1
s

⎧⎨⎩
s−1∏

j=r+1

u
mj

j

⎫⎬⎭ dur+1dur+2...dus

= cs−1t
γr+1gr(t)

∫
F

zγs−1
s−r

⎧⎨⎩
s−r−1∏
j=1

z
mr+j

j

⎫⎬⎭ dz1dz2...dzs−r,
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where G = {(ur+1, ..., us) : t > ur+1 ≥ ur+2 ≥ · · · ≥ us > x}, and in
the last equality we make use of the transformation ur+j = tzj , j =
1, 2, ..., s − r. It follows that

P{Ud(s, n, m̃, k) > x | Ud(r + 1, n, m̃, k) ≤ t < Ud(r, n, m̃, k)}

=
cs−1

cr−1

∫
F

zγs−1
s−r

⎧⎨⎩
s−r−1∏

j=1

z
mr+j

j

⎫⎬⎭ dz1dz2...dzs−r. (14)

From (12) and (14), we conclude that the result of the lemma is true for
uniform dual GOS. It follows from the quantile transformation and the
relation

X∗
d (s − r, n − r, μ̃r, k) d= F−1(U∗

d (s − r, n − r, μ̃r, k))

that the result is also true for dual GOS based on an arbitrary continuous
cdf F . This completes the proof of the result. �

Remark 3.2. Let the support of the absolutely continuous cdf F
is (α(F ), ω(F )) and F is strictly increasing on this interval. Taking
a clue from Eq. (13) and using the density function of a dual GOS
in (6), one could obtain the following relation between distributions of
Xd(r, n, m̃, k) and Xd(r + 1, n, m̃, k):

FXd(r+1,n,m̃,k)(x) − FXd(r,n,m̃,k)(x)

=
1

γr+1

F (x)
f(x)

fXd(r+1,n,m̃,k)(x), x ∈ (α(F ), ω(F )). (15)

Similar recurrence relations for distributions of order statistics can be
found in Balasubramanian et al. (1992).

Remark 3.3. Let conditions of Remark 3.2 hold. It is known that
the cdf of X(r, n, m̃, k) or Xd(r, n, m̃, k), for any fixed r = 1, 2, ..., n,
uniquely identifies F ; though there is not any closed form for F in terms
of the cdf of (dual) GOS. The following representation shows that F can
be recovered (in a closed form) from the distributions of two adjacent
dual GOS:

F (x) = exp

{
− 1

γr+1

∫ ω(F )

x

fXd(r+1,n,m̃,k)(t)
FXd(r+1,n,m̃,k)(t) − FXd(r,n,m̃,k)(t)

dt

}
,

x ∈ (α(F ), ω(F )).
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In the next result, we provide a characterization of the power function
distribution based on the equality in distribution of dual GOS.

Theorem 3.4. Let Xd(1, n, m̃, k),Xd(2, n, m̃, k), ...,Xd(n, n, m̃, k) de-
note the dual GOS based on an absolutely continuous cdf F which is
concentrated on (0, β) and θ∗ : (0, β) → R+ be a continuous function
with θ∗(β) = 1, where β is a positive real number. Let also there exist
a point t0 ∈ (0, β) with F (t0) > 0, and a sequence {ti : i = 1, 2, ...}
of points lying in (0, t0) such that it converges to t0. Then, for some
1 ≤ r < s ≤ n,[

ti − Xd(s, n, m̃, k)
θ∗(ti)

Xd(r + 1, n, m̃, k) ≤ ti < Xd(r, n, m̃, k)
]

d= β − Xd(s − r, n − r, μ̃r, k), i = 0, 1, 2, ..., (16)

if and only if F is a (rescaled) power function distribution with parameter
vector (α, β), for some α > 0, μ̃r = (mr+1, ...,mn−1), γr+1 = k +∑n−1

r+1 (mj + 1) and θ∗(x) = m∗(x)/m∗(β), where m∗(x) is the mean
inactivity time corresponding to F .

Proof. We first prove the ‘only if’ part of the theorem. Using Lemma
3.1, for x > t, we have

P{Xd(s, n, m̃, k) > x | Xd(r + 1, n, m̃, k) ≤ t < Xd(r, n, m̃, k)}

=
cs−1

cr−1

∫
K

uγs−1
s−r

⎧⎨⎩
s−r−1∏
j=1

u
mr+j

j

⎫⎬⎭ du1du2...dus−r,

= H

(
F (x)
F (t)

)
,

where K = {(u1, ..., us−r) : 1 ≥ u1 ≥ u2 ≥ · · · ≥ us−r > F (x)
F (t) } and

H(x) =
cs−1

cr−1

∫
E

uγs−1
s−r

⎧⎨⎩
s−r−1∏
j=1

u
mr+j

j

⎫⎬⎭ du1du2...dus−r.

Thus for each i = 1, 2, ...,

P

{
ti − Xd(s, n, m̃, k)

θ∗(ti)
≤ x Xd(r + 1, n, m̃, k) ≤ ti < Xd(r, n, m̃, k)

}

= H

(
F (ti − θ∗(ti)x)

F (ti)

)
. (17)
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On the other hand, using (11), we have

P{β − Xd(s − r, n − r, μ̃r, k) ≤ x} = H(F (β − x)). (18)

Note that H(x) is a strictly decreasing function of x. If (16) holds, then
from (17) and (18) we have, for every x ∈ (0, β) and i = 0, 1, 2, ...,

F (ti − θ∗(ti)x)
F (ti)

= F (β − x),

which in turn, in view of Theorem 2.3, implies that F is a (rescaled)
power function distribution. The ‘if’ part of the theorem is straightfor-
ward and hence is omitted. The proof is complete. �

We obtain the following corollaries from Theorem 3.4.

Corollary 3.5. Let X1:n,X2:n, ...,Xn:n be the order statistics based on
a random sample of size n from an absolutely continuous cdf F which
is concentrated on (0, β) and θ∗ : (0, β) → R+ be a continuous function
with θ∗(β) = 1, where β is a positive real number. Let also there exist
a point t0 ∈ (0, β) with F (t0) > 0, and a sequence {ti : i = 1, 2, ...}
of points lying in (0, t0) such that it converges to t0. Then, for some
1 ≤ r < s ≤ n,[

ti − Xr:n

θ∗(ti)
Xs−1:n < ti ≤ Xs:n

]
d= β − Xr:s, i = 0, 1, 2, ...,

if and only if F is a (rescaled) power function distribution with parameter
vector (α, β), for some α > 0, and θ∗(x) = m∗(x)/m∗(β), where m∗(x)
is the mean inactivity time corresponding to F .

Remark 3.6. The k-out-of-n structures are used in reliability engi-
neering to increase the reliability of the systems. It is well known that,
in a k-out-of-n system with n components, the life length of the system
is the (n − k + 1)th ordered lifetime in the system. The conditional
random variable [t−Xr:n | Xs−1:n ≤ t < Xs:n] is known as the inactivity
time of an (n− s + 2)-out-of-n system given that the system had failed,
but the sth (1 ≤ r < s ≤ n) component is working at time t ≥ 0. In
engineering reliability, a knowledge of [t − Xr:n | Xs−1:n ≤ t < Xs:n]
may help the engineer to initiate preventive maintenance or a replace-
ment of the whole system at some reasonable epoch (Zhao et al., 2008).
Therefore, the characterization result in Corollary 3.5 is based on the
equality in distribution of a normalized inactivity time of an (n− s+2)-
out-of-n system and the time that has elapsed since the failure of an
(s − r + 1)-out-of-n system.
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Corollary 3.7. Let Z
(k)
1 , Z

(k)
2 , ..., Z

(k)
n be the first n lower k-records

corresponding to a sequence of independent and identically distributed
random variables with an absolutely continuous cdf F which is concen-
trated on (0, β) and θ∗ : (0, β) → R+ be a continuous function with
θ∗(β) = 1, where β is a positive real number. Assume that F is strictly
increasing on (0, β). Then for some n ≥ m + 1,[

ti − Z
(k)
n

θ∗(ti)
Z

(k)
m+1 < ti ≤ Z(k)

m

]
d= β − Z

(k)
n−m, i = 0, 1, 2, ...

if and only if F is a (rescaled) power function distribution with parameter
vector (α, β), for some α > 0, and θ∗(x) = m∗(x)/m∗(β), where m∗(x)
is the mean inactivity time corresponding to F .
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