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Abstract. In this article, a new censoring scheme is considered,
namely, a middle part of a random sample is censored. A treatment
for reconstructing the missing order statistics is investigated. The
proposed procedure is studied in detail under exponential distribu-
tion which is widely used as a constant failure model in reliability.
Different approaches are used to obtain point and interval reconstruc-
tors and then they are compared. A numerical example is presented
for illustrating all the proposed inferential procedures. Eventually,
we present some remarks including how the results of the paper can
be used when the parameters of the exponential distribution are un-
known.
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1 Introduction

There are some situations in life testing and reliability experiments in
which a middle part of the sample (or subjects) are lost or removed
from the experiment. For example, in a life testing experiment, sup-
pose n items are placed on test simultaneously. The first few observa-
tions may be observed at the beginning of the experiment, then some
other data points may be censored due to negligence or problems,
while the last few observations are recorded. In such situations, the
experimenter may not obtain complete information on failure times
for all experimental units. What motivated us to write the paper
is that “How can one reconstruct the missing observations?”. This
scheme is the complementary to the idea of double censoring in which
the middle part of the sample is actually stored. The doubly censored
data model has been studied by several authors, see for example,
Fernández (2004) and Sun et al. (2008). Meanwhile, the proposed
scheme can be considered as a special case of middle censoring model
which was first introduced by Jammalamadaka and Mangalam (2003)
for which all random intervals are the same. The later plan is studied
by Jammalamadaka and Iyer (2004) and Mangalam et al. (2008) in
nonparametric set up and Iyer et al. (2008) in the parametric set up.

Now, suppose n independent and identical units are placed on
a life test with corresponding lifetimes X1, . . . , Xn with probability
density function (pdf) f and cumulative distribution function (cdf)
F . Denote the ith order statistic of the sample X1, . . . , Xn by Yi.
Assume that some order statistics are lost, that is we only observed
the data set

Y = {Y1, . . . , Yr, Ys, . . . , Yn},

where 0 ≤ r < s ≤ n + 1, for convenience of notation, we let Y0 = 0
and Yn+1 = ∞. If r = 0, we indeed observe {Ys, . . . , Yn} which
coincides with the left censoring model and in the case s = n + 1,
the data set {Y1, . . . , Yr} is observed where is the same as Type II
censored data. In life testing and survival analysis, several researches
have been done based on left and right censored data. The main
goal of this paper is to reconstruct the value of Yl for r < l < s
based on observed ordered data Y while the underlying distribution
is exponential.

A random variable X is said to have a two-parameter exponential
distribution, which we shall write X ∼ Exp(µ, σ), if its cdf is

F (x) = 1− e−
x−µ
σ , x ≥ µ, σ > 0, (1)
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where µ and σ are the location and scale parameters, respectively. It
is well known that the exponential distribution is the simplest and
most important distribution in reliability studies, and is applied in a
wide variety of statistical procedures, especially in life testing prob-
lems. See Balakrishnan and Basu (1995) for some researchs based on
this distribution.

The rest of this paper is as follows: In Section 2, some preliminar-
ies are presented. Three point reconstructors for the censored data
points of the exponential distribution are given in Section 3. Section
4 is focused on the interval reconstruction. In order to illustrate the
proposed scheme, we present a numerical example in Section 5. At
the end, we present some remarks including how the results of the pa-
per can be used when the parameters of the exponential distribution
are unknown.

2 Some Preliminaries

Here, we present some well known properties of order statistics which
will be used to obtain the new results in the next sections. Let
X1, . . . , Xn be independent and identically distributed (iid) contin-
uous random variables with cdf Fθ(x) and pdf fθ(x). In order to
reconstruct the lth (r < l < s) order statistic based on the data set
Y, we propose various methods and obtain some reconstructors of
Yl. First of all, notice that by Markove property of order statistics
(see, David and Nagaraja, 2003), the conditional pdf of Yl given Y is
equivalent to that of Yl given Yr and Ys. Hence,

fYl|Y(yl|y) = fYl|Yr,Ys
(yl|yr, ys)

=

(
F (yl)− F (yr)

)l−r−1(
F (ys)− F (yl)

)s−l−1

B(l − r, s− l)
(
F (ys)− F (yr)

)s−r−1 f(yl),

yr < yl < ys, (2)

where y = (y1, . . . , yr, ys, . . . , yn) is the observed value of Y and
B(a, b) is the complete beta function.

From Eq. (2), it is deduced that the distribution of Yl given Y is
just the distribution of the (l− r)th order statistic in a sample of size

s− r − 1 drawn from a population with pdf f(x)
F (ys)−F (yr)

, yr < x < ys
(i.e., from the parent distribution truncated in the tails at yr and ys);
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Also for 0 ≤ r < l < s ≤ n+ 1, we have

F (Yl)− F (Yr)

F (Ys)− F (Yr)
| Y ∼ Beta(l − r, s− l), (3)

where Beta(a, b) denotes a beta distribution with parameters a >
0 and b > 0. It is obvious that the conditional distribution of
F (Yl)−F (Yr)
F (Ys)−F (Yr)

given Y is identical to the unconditional distribution of

the (l − r)th order statistic in a sample of size s − r − 1 from the
standard uniform distribution.

Now, suppose that Zr,s ∼ Beta(s−r, n−s+1), then for 0 < m < 1
we have

E
[
log(1−mZr,s)

]
=

1

B(s− r, n− s+ 1)mn−r

×
s−r−1∑
i=0

n−s∑
j=0

(
s− r − 1

i

)(
n− s

j

)
(−1)i

× (m− 1)n−s−j

(i+ j + 1)2

{
(1−m)i+j+1

(
1− (i+ j + 1) log(1−m)

)
− 1

}
= φ1(r, s,m), say. (4)

Also

E
[
log2(1−mZr,s)

]
=

2

B(s− r, n− s+ 1)mn−r

×
s−r−1∑
i=0

n−s∑
j=0

(
s− r − 1

i

)(
n− s

j

)
(−1)i(m− 1)n−s−j

(i+ j + 1)3

×
{
1− (1−m)i+j+1

(
1− (i+ j + 1) log(1−m)

+0.5(i+ j + 1)2 log2(1−m)

)}
= φ2(r, s,m), say. (5)

3 Point Reconstruction

To reconstruct the missing order statistics from a middle part of a
random sample based on the data set Y, in this section we propose
three approaches and then compare them.



Reconstruction of Order Statistics in Exponential Distribution 25

3.1 Convex Combination Reconstructor

If the data set Y = {Y1, . . . , Yr, Ys, . . . , Yn} is observed. Using the
structure dependence properties of order statistics, it is logical to as-
sume that a convex combination (CC) of Yr and Ys may be considered
as a reconstructor for Yl, denoted by Ŷl,CC , i.e.,

Ŷl,CC = wYr + (1− w)Ys, r < l < s, 0 < w < 1.

The main question arises: “how can one choose w”? It is reason-
able to select the optimal value of w which can be determined by
minimizing the mean squared error (MSE) of Ŷl,CC . Notice that

MSE(Ŷl,CC) = E(Ŷl,CC − Yl)
2

= E
[
(1− w)Wl,s − wWr,l

]2
= w2E(W 2

r,l) + (1− w)2E(W 2
l,s)

−2w(1− w)E(Wr,l)E(Wl,s), (6)

where Wr,l = Yl − Yr and the last equality deduces from the inde-
pendency of Wr,l and Wl,s in an exponential model (spacing of order
statistics). We recall that if X1, . . . , Xn are iid random variables from
Exp(µ, σ), then Wr,l can be expressed as

Wr,l =

l∑
i=r+1

Zi

n− i+ 1
, (7)

where Zi’s are iid random variables from Exp(0, σ). Using (7), we
readily have

σ−1E(Wr,l) =

l∑
i=r+1

1

n− i+ 1
= φ3(r, l), say (8)

and

σ−2E(W 2
r,l) =

l∑
i=r+1

1

(n− i+ 1)2
+ φ2

3(r, l) = φ4(r, l), say. (9)

Substituting (8) and (9) into (6), we have

σ−2MSE(Ŷl,CC) = w2φ4(r, l) + (1− w)2φ4(l, s)

−2w(1− w)φ3(r, l)φ3(l, s). (10)
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The optimal value of w may be obtained by minimizing (10) with
respect to w which is given by

wopt =
φ4(l, s) + φ3(r, l)φ3(l, s)

φ4(r, l) + φ4(l, s) + 2φ3(r, l)φ3(l, s)
, (11)

where φ3(r, l) and φ4(r, l) are defined in (8) and (9), respectively. For
given n, r, s and l, one can easily find the values of wopt from (11).
We derive the values of σ−2MSE(Ŷl,CC) for n = 10 and some selected
values of r, s and l with corresponding wopt, the results are presented
in Table 1.

3.2 Conditional Median Reconstructor

In the context of prediction, the conditional median prediction ap-
proach has been studied by several authors, see for example Raqab
and Nagaraja (1995), Raqab et al. (2007) and Ahmadi et al. (2009).
Therefore, intuitively, the median of the conditional density of Yl
given Y can be considered as a reconstructor of Yl. So we say that
Ŷl,CM is a conditional median (CM) reconstructor of Yl, if P{Yl ≤
Ŷl,CM |Y} = P{Yl ≥ Ŷl,CM |Y}. Using (3), we have

Ŷl,CM = F−1{F (Yr) +med(Vr,l,s)[F (Ys)− F (Yr)]}, (12)

where Vr,l,s ∼ Beta(l− r, s− l) and med(X) stands for the median of
X.

By (12), the CM reconstructor of the lth order statistic in the
exponential distribution (1) is given by

Ŷl,CM = Yr − σ log

(
1−med(Vr,l,s)

(
1− e−Wr,s/σ

))
.

It is obvious that the pdf of Wr,l is

fWr,l
(w) =

e−(n−l+1)w/σ(1− e−w/σ)l−r−1

σB(l − r, n− l + 1)
, w > 0. (13)

Using (13), we obtain the MSE of Ŷl,CM which is given by

σ−2MSE(Ŷl,CM ) = φ4(r, l) + φ2

(
r, s,med(Vr,l,s)

)
+2φ5

(
r, l, s,med(Vr,l,s)

)
,
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where φ2(r, l) and φ4(r, s, ·) are defined in (5) and (9), respectively,
and

φ5(r, l, s,m)

=
n!

(r − 1)!(l − r − 1)!(s− l − 1)!(n− s)!∫ 1

0

∫ 1

z

∫ 1

y
log(

x

y
) log

(
1−m(1− z

x
)
)

(1− x)r−1(x− y)l−r−1(y − z)s−l−1zn−sdxdydz

=
(n− r)!

(l − r − 1)!(s− l − 1)!(n− s)!

l−r−1∑
i=0

s−l−1∑
j=0

(
l − r − 1

i

)(
s− l − 1

j

)
(−1)s−l−1+i−j

×
{

1

(i+ j + 1)2

(
φ6(r, l, s,m,−j − 1)− φ6(r, l, s,m, i)

)

− 1

i+ j + 1

(
φ6(r, l, s,m, i) logm+ φ7(r, l, s,m, i)

)}
,(14)

where

φ6(r, l, s,m, i) =
1

mn−l+i+1

n−l+i∑
k=0

(
n− l + i

k

)
(m− 1)n−l+i−k

(k + 1)2

×
{(

1−m)k+1
[
1− (k + 1) log(1−m)

]
− 1

}
and

φ7(r, l, s,m, i) =
1

mn−l+i+1

n−l+i∑
k=0

(
n− l + i

k

)
(m− 1)n−l+i−k

×
∫ − log(1−m)

0
x e−(k+1)x log(m− 1 + e−x)dx.

The numerical values of σ−2MSE(Ŷl,CM ) are presented in Table
1 for n = 10 and some selected values of r, s and l.
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3.3 Unbiased Conditional Reconstructor

It is logical to consider E[Yl|Y] as a reconstructor of Yl having ob-
served Y.Whis this in mind, using (3), we consider

Ŷl,UC = F−1

(
F (Yr) +

l − r

s− r
[F (Ys)− F (Yr)]

)
, (15)

as an unbiased conditional (UC) reconstructor of Yl. From (15), the
UC reconstructor of the lth order statistic in Exp(µ, σ) is given by

Ŷl,UC = Yr − σ log

(
1− l − r

s− r

(
1− e−Wr,s/σ

))
.

Using (13), we obtain MSE(Ŷl,UC) which is stated as

σ−2MSE(Ŷl,UC) = φ4(r, l) + φ2

(
r, s,

l − r

s− r

)
+ 2φ5

(
r, l, s,

l − r

s− r

)
,

where φ2(r, s, ·), φ4(r, l) and φ5(r, l, s, ·) are defined in (5), (9) and
(14), respectively.

We computed the numerical values of σ−2MSE(Ŷl,UC) for n = 10
and some choices of r, s and l, which are calculated in 4 decimal
places using the package R, the results are presented in Table 1.

Table 1. The numerical values of σ−2MSE(Ŷl,CC), σ
−2MSE(Ŷl,CM ) and

σ−2MSE(Ŷl,UC) for n = 10.

r = 3 r = 4
l l

s 4 5 6 7 8 5 6 7 8
5 0.0118a

0.0097b

0.0097c

6 0.0158 0.0221 0.0165
0.0165 0.0244 0.0165
0.0157 0.0234 0.0165

7 0.0180 0.0337 0.0375 0.0222 0.0331
0.0189 0.0256 0.0376 0.0230 0.0315
0.0176 0.0256 0.0375 0.0219 0.0325

8 0.0194 0.0414 0.0621 0.0670 0.0253 0.0509 0.0622
0.0203 0.0399 0.0488 0.0638 0.0263 0.0488 0.0589
0.0188 0.0392 0.0530 0.0634 0.0245 0.0488 0.0609

9 0.0207 0.0479 0.0823 0.1205 0.1409 0.0276 0.0637 0.1060 0.1335
0.0212 0.0447 0.0704 0.1008 0.1241 0.0282 0.0593 0.0942 0.1192
0.0195 0.0434 0.0704 0.1045 0.1301 0.0261 0.0582 0.0958 0.1254
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r = 5
l

s 6 7 8
5

6

7 0.0246
0.0246
0.0246

8 0.0332 0.0547
0.0343 0.0528
0.0325 0.0541

9 0.0383 0.0859 0.1233
0.0391 0.0798 0.1121
0.0365 0.0798 0.1173

a, b and c indicate for σ−2MSE(Ŷl,CC), σ
−2MSE(Ŷl,CM ) and σ−2MSE(Ŷl,UC),

respectively.

From Table 1, it is observed that

1. For l = r + 1 < s − 1, MSE(Ŷl,CC) < MSE(Ŷl,CM ), but for
r + 1 < l < s it is usually vice versa.

2. It is usually observed that MSE(Ŷl,UC) < MSE(Ŷl,CC).

3. For fixed r and s, the MSEs of Ŷl,CC , Ŷl,CM and Ŷl,UC increase
as l increases.

4. For fixed r and l, the MSEs of Ŷl,CC , Ŷl,CM and Ŷl,UC increase as
s increases.

5. For fixed s and l, the MSEs of Ŷl,CC , Ŷl,CM and Ŷl,UC decrease
as r increases.

6. For fixed r and s, the MSE of Ŷl,UC is usually less than, equal to

and greater than that of Ŷl,CM when l is less than, equal to and
greater than r+s

2 , respectively. Specially, when s − r is even,

MSE(Ŷ r+s
2

,CM ) = MSE(Ŷ r+s
2

,UC).

4 Reconstruction Interval

In this section, we are interested in finding the reconstruction inter-
vals for the lth (r < l < s) order statistic in terms of observed data
set Y. Two methods are proposed and then compared in view of
shortest width criterion.
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4.1 Conditional Reconstruction Interval

We say that the interval [L,U ] is the exact 100(1−α1 −α2)% condi-
tional reconstruction interval (CRI) for Yl given Y if P (Yl ≥ L|Y} =
1− α1 and P (Yl ≥ U |Y} = α2. Using (3), it can be shown that

LCRI = F−1{F (Yr) +B(l − r, s− l, α1)[F (Ys)− F (Yr)]}, (16)

and

UCRI = F−1{F (Yr)+B(l− r, s− l, 1−α2)[F (Ys)−F (Yr)]}, (17)

where B(l− r, s− l, γ) is the 100γ% lower percentile of the Beta(l−
r, s− l) distribution, i.e., P

[
Vr,l,s ≤ B(l − r, s− l, γ)

]
= γ.

For two-parameter exponential distribution, using the Eqs. (16)
and (17), we obtain the lower and upper bounds of the exact 100(1−
α1 − α2)% CRI, respectively, as

LCRI = Yr − σ log

(
1−B(l− r, s− l, α1)

(
1− e−Wr,s/σ

))
, (18)

and

UCRI = Yr−σ log

(
1−B(l− r, s− l, 1−α2)

(
1−e−Wr,s/σ

))
. (19)

Hence, the expected width of the CRI, E(WCRI) = E(UCRI −LCRI),
is

E(WCRI) = σE

{
log

(
1−B(l − r, s− l, α1)

(
1− e−Wr,s/σ

)
1−B(l − r, s− l, 1− α2)

(
1− e−Wr,s/σ

))}
= σ

{
φ1

(
r, s, B(l − r, s− l, α1)

)
−φ1

(
r, s, B(l − r, s− l, 1− α2)

)}
, (20)

where φ1(r, s, ·) is defined in (4). Similarly,

E
[
W 2

CRI

]
= σ2

{
φ2

(
r, s, B(l − r, s− l, α1)

)
−φ2

(
r, s, B(l − r, s− l, 1− α2)

)
−2φ1

(
r, s, B(l − r, s− l, α1)

)
φ1

(
r, s, B(l − r, s− l, 1− α2)

)}
, (21)

where φ2(r, s, ·) is defined in (5). Using (20) and (21), we can obtain
variance of the width of the CRI.

Table 2 shows the numerical values of σ−1E(WCRI) and σ−2Var(WCRI)
for α1 = α2 = 0.1, n = 10 and some choices of r, s and l.
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Table 2. The numerical values of σ−1E(WCRI) and σ−2Var(WCRI) for

the 80% CRI, when n = 10.

r = 3 r = 4
l l

s 4 5 6 7 8 5 6 7 8
5 0.2455a

0.0348b

6 0.2885 0.3443 0.2898
0.0244 0.0747 0.0474

7 0.3024 0.4375 0.4461 0.3397 0.4200
0.0149 0.0575 0.1345 0.0316 0.1057

8 0.3037 0.4775 0.5889 0.5891 0.3548 0.5317 0.5712
0.0126 0.0375 0.1018 0.2293 0.0185 0.0759 0.1996

9 0.3133 0.4988 0.6570 0.7920 0.8314 0.3612 0.5782 0.7488 0.8159
0.0012 0.0215 0.0614 0.1580 0.3941 0.0099 0.0434 0.1332 0.3643

r = 5
l

s 6 7 8
5

6

7 0.3534
0.0683

8 0.4126 0.5376
0.0418 0.1606

9 0.4295 0.6759 0.7910
0.0215 0.1005 0.3246

a and b indicate for the value of σ−1E(WCRI) and σ−2Var(WCRI), respec-

tively.

From Table 2, it is observed that

1. For fixed r and s, E(WCRI) and Var(WCRI) increase as l increases.

2. For fixed r and l, E(WCRI) increases and Var(WCRI) decreases
as s increases.

3. For fixed l and s, E(WCRI) and Var(WCRI) decrease as r increases.

4.2 Highest Conditional Density Reconstruction Inter-
val

Similar to the idea of highest conditional density prediction interval,
the highest conditional density reconstruction interval (HCDRI) may
be considered such that the conditional pdf of Yl given Y for every
point inside the interval is greater than that for every point outside of
it. If the conditional pdf of Yl given Y is unimodal, it is sufficient to
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derive an optimal 100(1− α)% reconstruction interval [L∗, U∗], such
that {

P{L∗ < Yl < U∗|Y = y} = 1− α,

fYl|Y(L∗|y) = fYl|Y(U∗|y).
(22)

According to the Eqs. in (22) and using (3), the lower and upper
bounds of the HCDRI can be determined such that the following
equations are held

B

(
l − r, s− l, F (U∗)−F (Yr)

F (Ys)−F (Yr)

)
−B

(
l − r, s− l, F (L∗)−F (Yr)

F (Ys)−F (Yr)

)
= 1− α,

(
F (L∗)−F (Yr)
F (U∗)−F (Yr)

)l−r−1(
F (Ys)−F (L∗)
F (Ys)−F (U∗)

)s−l−1

= f(U∗)
f(L∗) .

Taking v1 = F (L∗)−F (Yr)
F (Ys)−F (Yr)

and v2 = F (U∗)−F (Yr)
F (Ys)−F (Yr)

, the HCDRI with
coefficient 1− α for Yl given Y is(
F−1

[
F (Yr)+v1

(
F (Ys)−F (Yr)

)]
, F−1

[
F (Yr)+v2

(
F (Ys)−F (Yr)

)])
,

(23)

where v1 and v2 can be determined by solving the following two equa-
tions 

B(l − r, s− l, v2)−B(l − r, s− l, v1) = 1− α,

(v1v2 )
l−r−1(1−v1

1−v2
)s−l−1 =

f
(
F−1

[
F (Yr)+v2

(
F (Ys)−F (Yr)

)])
f
(
F−1

[
F (Yr)+v1

(
F (Ys)−F (Yr)

)]) .
Now, let X1, . . . , Xn be iid random variables with exponential

distribution (1). Using (23), the HCDRI with coefficient 1−α for Yl
given Y can be found as follows[
Yr−σ log

(
1−v1

(
1−e−Wr,s/σ

))
, Yr−σ log

(
1−v2

(
1−e−Wr,s/σ

))]
,

(24)

such that v1 and v2 are the solutions of the following two equations
B(l − r, s− l, v2)−B(l − r, s− l, v1) = 1− α,

(v1v2 )
l−r−1(1−v1

1−v2
)s−l−1 =

1−v2
(
1−e−Wr,s/σ

)
1−v1

(
1−e−Wr,s/σ

) , (25)
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provided 1 > v2 > v1 > 0, otherwise the HCDRI does not exist. Here
we consider three special cases as follows.

Case 1. Suppose that only one order statistic in a sample of size n is
missed and we are looking to reconstruct it. That is, we consider the
reconstruction of Yl on the basis of the data set Y such that r = l−1
and s = l + 1. In this case, the conditional pdf of Yl given Y is

fYl|Y(yl|y) =
e−yl/σ

σ

{
e−yr/σ − e−ys/σ

}−1
, yr < yl < ys,

which is a decreasing function of yl. Hence, there is not any two-sided
HCDRIs for Yl given Y. But, one can obtain a one-sided one with
coefficient 1− α as follows[

Yr, Yr − σ log

(
1− (1− α)

(
1− e−Wr,s/σ

))]
. (26)

The expected width and variance of the one-sided HCDRI (26) are
given by −σφ1(r, s, 1 − α) and σ2{φ2(r, s, 1 − α) − φ1(r, s, 1 − α)2},
respectively, where φ1(r, s, ·) and φ2(r, s, ·) are defined in (4) and (5),
respectively.

Case 2. Suppose that only two order statistics in a sample of size n
are missed and we are looking to reconstruct the smallest one. That
is, we consider the reconstruction of Yl based on the data set Y such
that r = l− 1 and s = l+2. Notice that in this case, the conditional
pdf of Yl given Y is a decreasing function of yl on the interval (yr, ys).
Similar to the Case 1, a one-sided HCDRI with coefficient 1− α can
be found which is[

Yr, Yr − σ log

(
1− (1−

√
α)

(
1− e−Wr,s/σ

))]
. (27)

The expected width and variance of the one-sided HCDRI (27) are
−σφ1(r, s, 1−

√
α) and σ2{φ2(r, s, 1−

√
α)− [φ1(r, s, 1−

√
α)]2}, re-

spectively.

Case 3. Suppose that the assumption of Case 2 holds and we are
attempting to reconstruct the largest one. That is, we consider the
reconstruction of Yl in terms of the data set Y such that r = l − 2
and s = l + 1. In this case, the conditional pdf of Yl given Y is

fYl|Y(yl|y) = 2
e−yr/σ − e−yl/σ(
e−yr/σ − e−ys/σ

)2 e−yl/σ

σ
, yr < yl < ys. (28)



34 Razmkhah, et al.

It can be shown that the conditional pdf in (28) is an increasing
function of yl on the interval (yr, ys) whenever Wr,s = wr,s < σ log 2,
otherwise it is a unimodal pdf. Therefore, we consider the following
two cases.
(i) Wr,s = wr,s < σ log 2. In this case, a one-sided HCDRI for Yl
given Y with coefficient 1− α may be determined as follows[

Yr − σ log

(
1−

√
α
(
1− e−Wr,s/σ

))
, Ys

]
. (29)

The expected width of the one-sided HCDRI (29), denoted by E(W1),
is

E(W1) = σ
{
φ1(r, s,

√
α) + φ3(r, s)

}
, (30)

where φ1(r, s, ·) and φ3(r, s) are defined in (4) and (8), respectively.
Also,

E(W 2
1 ) = σ2

{
φ4(r, s) + φ2(r, s,

√
α) + 2φ8(r, s,

√
α)

}
, (31)

where φ2(r, s, ·) and φ4(r, s) are defined in (5) and (9), respectively,
and

φ8(r, s,m) =
1

B(s− r, n− s+ 1)mn−r

s−r−1∑
i=0

n−s∑
j=0

(
s− r − 1

i

)(
n− s

j

)
(−1)i

×(m− 1)n−s−j

{
logm

(i+ j + 1)2[
1− (1−m)i+j+1

(
1− (i+ j + 1) log(1−m)

)]

−
∫ − log(1−m)

0
xe−(i+j+1)x log(m− 1 + e−x)dx

}
. (32)

(ii) Wr,s = wr,s > σ log 2. In this case a two-sided HCDRI for Yl
given Y can be found in the form of (24). By (25), we find v1 and v2
by solving the following two equations

v22 − v21 = 1− α,

v1

(
1− v1

(
1− e−Wr,s/σ

))
= v2

(
1− v2

(
1− e−Wr,s/σ

))
.

(33)
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Then,
v1 =

1−(1−α)
(
1−e−Wr,s/σ

)2
2
(
1−e−Wr,s/σ

) ,

v2 =
1+(1−α)

(
1−e−Wr,s/σ

)2
2
(
1−e−Wr,s/σ

) .

(34)

It is obvious that v1 < v2. By investigating the conditions in (25),
i.e., 0 < v1, v2 < 1,we deduce that an HCDRI exists if and only if

1− α <
(
1− 2e−Wr,s/σ

)(
1− e−Wr,s/σ

)−2
,

provided Wr,s = wr,s > σ log 2. Then, by substituting (34) into (24),
the HCDRI is given by[

Yr − σ log

(
1 + (1− α)

(
1− e−Wr,s/σ

)2
2

)
,

Yr − σ log

(
1− (1− α)

(
1− e−Wr,s/σ

)2
2

)]
. (35)

The expected width of the two-sided HCDRI (35), denoted by E(W2),
is

E(W2) = σ
{
φ9(r, s, α− 1)− φ9(r, s, 1− α)

}
, (36)

where

φ9(r, s,m) =
1

B(s− r, n− s+ 1)
n−s∑
i=0

(
n− s

i

)
(−1)i

∫ 1

0
log(1−mx2)xs−r+i−1dx.

Also,

E(W 2
2 ) = σ2

{
φ10(r, s, α− 1) + φ10(r, s, 1− α)− 2φ11(r, s, 1− α)

}
,(37)

where

φ10(r, s,m) =
1

B(s− r, n− s+ 1)
n−s∑
i=0

(
n− s

i

)
(−1)i

∫ 1

0
xs−r+i−1 log2(1−mx2)dx
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and

φ11(r, s,m) =
1

B(s− r, n− s+ 1)
n−s∑
i=0

(
n− s

i

)
(−1)i∫ 1

0
xs−r+i−1 log(1−mx2) log(1 +mx2)dx.

Now, we can determine the expected value and the variance of
the width of the HCDRI for the Case 3. Denote the width of the
HCDRI in this case by WHCDRI , then we have, for k ≥ 1,

E(W k
HCDRI) = p(n, r, s)E(W k

1 ) +
(
1− p(n, r, s)

)
E(W k

2 ), (38)

where from the relation between beta and binomial distributions, we
have

p(n, r, s) = P (Wr,s < σ log 2) = 2r−n
n∑

i=s

(
n− r

i− r

)
.

Using (30), (31), (36), (37) and (38), the exact values of σ−1E(WHCDRI)
and σ−2Var(WHCDRI) can be obtained. The results are presented in
Table 3 for 80% HCDRIs when n = 10.

Table 3. The numerical values of σ−1E(WHCDRI) and σ−2Var(WHCDRI)

for 80% HCDRIs when n = 10.

r = 3 r = 4 r = 5
l l l

s 4 5 5 6 6 7

5 0.2347a

0.0245b

6 0.2389 0.3109 0.2745
0.0135 0.4152 0.0328

7 0.2787 0.3838 0.3315
0.0170 0.5168 0.0457

8 0.3342 0.5029
0.0217 0.6297

a and b indicate for σ−1E(WHCDRI) and σ−2Var(WHCDRI), respectively.

Remark 4.1. Comparing Tables 2 and 3, it is observed that for
fixed r, l and s, the expected width of the HCDRI is less than that
of the corresponding CRI.
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5 Numerical Example

To illustrate the performance of the proposed reconstructors in Sec-
tions 3 and 4, we use the data presented in Table 4 denoting the
ordered observations of a random sample of size 10 generated from
Exp(2, 5).

Table 4. Ordered observations of a random sample of size 10 generated

from Exp(2, 5).

i 1 2 3 4 5 6 7 8 9 10
Yi 2.2293 2.5244 3.0421 4.1165 5.9887 6.3241 10.7144 13.3795 14.7893 18.3202

Suppose that we only observe {Y1, · · · , Y4, Y7, · · · , Y10}. Then, for
l = 5, 6, we reconstruct Yl using different mentioned approaches in
the previous sections. As shown in subsection 4.4, by (27) we find a
one-sided HCDRI for Y5. Also, we can obtain a two-sided HCDRIs

for Y6 with reconstruction coefficient at most 1−2e−w4,7/σ(
1−e−w4,7/σ

)2 = 0.867

provided W4,7 = w4,7 > 5 log 2 = 3.466, for which σ = 5 is known
and w4,7 = y7 − y4 = 6.5979.

In the case that the scale parameter σ is unknown, one can plug
in the common estimator of σ, see the next section, so using Eq. (43),
we can obtain MLE(σ) ≃ 5.5056. In this case an HCDRI for Y6 can
be found with coefficient at most 0.8134.

Table 5 contains the values of different reconstructors of Yl (The
reconstruction coefficient 1− α = 0.80 is considered).

Table 5. The values of different reconstructors of Yl.

l Yl (exact value) Ŷl,CC Ŷl,CM Ŷl,UC CRI(Yl) HCDRI(Yl)

5 5.9887 5.8037 5.3244a 5.5167 (4.3081, 7.5926) (4.1165, 6.7129)∗

5.3763b 5.5753 (4.3174, 7.6903) (4.1165, 6.8021)∗

6 6.3241 7.9144 7.7669 7.4686 (5.4345, 10.0562) (5.7955, 10.3889)
7.8647 7.5658 (5.4903, 10.0964) (6.1192, 10.6552)

a, b and ∗ indicate for σ is known, σ is unknown and one-sided HCDRI,

respectively.

From Table 5, it is observed that

1. Among the point reconstructors of Y5, Ŷ5,CC is the closest to Y5.

2. Among the point reconstructors of Y6, Ŷ6,UC is the closest to Y6.

3. The width of HCDRIs for Y5 and Y6 are less than those of CRIs
in the both cases that σ is known or unknown.
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6 Concluding Remark

In this paper, we have tackled the problem of reconstruction of miss-
ing order data. Several methods proposed and we applied them
to reconstruct the missing order statistics based on the data set
Y = {Y1, . . . , Yr, Ys, . . . , Yn} from a two-parameter exponential dis-
tribution. Notice that by (1) and (2), we have

fYl|Y(yl|y) =
(
e−yr/σ − e−yl/σ

)l−r−1(
e−yl/σ − e−ys/σ

)s−l−1

B(l − r, s− l)
(
e−yr/σ − e−ys/σ

)s−r−1

e−yl/σ

σ
.

(39)

The density function in (39) does not depend on the location pa-
rameter µ. The reconstructors were obtained in the case that σ is
known. If the scale parameter is unknown, as mentioned in Balakr-
ishnan et al. (2009), we can substitute a common estimator of σ, for
example maximum likelihood estimator (MLE), in the corresponding
formulas.

Let X1, · · · , Xn be iid random variables with cdf Fθ(x) and pdf
fθ(x), where θ is an unknown parameter. Then, the likelihood func-
tion of θ on the basis of Y is

L(θ) =
n!

(s− r − 1)!

∏
i∈∆r,s

fθ(yi)[Fθ(ys)− Fθ(yr)]
s−r−1, (40)

where ∆r,s = {1, . . . , r, s, . . . , n}.
For the exponential distribution (1), we consider three cases as

follows:

Case 1. 0 = r < s ≤ n (left censored sample)
As mentioned in Section 1, this case coincides with the left cen-

sored sample. Then, MLE(µ) = Ys and hence using (40),

MLE(σ) =
1

n− s+ 1

n∑
i=s+1

Ws,i.

Case 2. 1 ≤ r < s = n+ 1 (right censored sample)
This special case coincides with the Type II censored sample.

Then MLE(µ) = Y1 and hence using (40),

MLE(σ) =
1

r

{ r−1∑
i=1

W1,i + (n− r + 1)W1,r

}
.
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Case 3. 1 ≤ r < s ≤ n.
Using (1), we have MLE(µ) = Y1 and by (40) the MLE of σ is

the solution of the following equation

(eWr,s/σ − 1)
(
A− (n− (s− r) + 1)σ

)
= (s− r − 1)Wr,s, (41)

where

A =
∑

i∈∆r,s

W1,i + (s− r − 1)W1,r. (42)

The solution Eq. (41) in terms of σ has no any closed form.
Expanding the exponential function ex in a Taylor series, we obtain
an approximation for the MLE of σ. By using the first two terms of
the Taylor series, we find

MLE(σ) =
1

n

{ ∑
i∈∆r,s

W1,i + (s− r − 1)W1,r

}
. (43)

If more precision is needed in the approximation, then we use
more terms of Taylor series expansion. Using the first j (j > 2)
terms of this series, the MLE of σ can be approximately found by
solving the following polynomial equation

j−1∑
i=2

σj−i

i!

(
iAW i−2

r,s − (n− (s− r) + 1)W i−1
r,s

)
+

AW j−2
r,s

(j − 1)!
= nσj−1,

where A is defined in (42).
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