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Abstract. Recent studies have shown that the variable sampling
interval (VSI) scheme helps practitioners detect process shifts more
quickly than the classical scheme (FRS). In this paper, the economi-
cally and statistically optimal design of the VSI T 2 control chart for
monitoring the process mean vector is investigated. The cost model
proposed by Lorenzen and Vance (1986) is minimized through a ge-
netic algorithm (GA) approach. Then the effects of the costs and
operating parameters on the optimal design (OD) of the chart pa-
rameters and resulting operating loss through a fractional factorial
design is systematically studied and finally, based on the ANOVA
results, a Meta model to facilitate implementation in industry is pro-
posed to determine the OD of the VSI T 2 control chart parameters
from the process and cost parameters.
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chart, Markov chain and genetic algorithm, variable sampling interval scheme.
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1 Introduction

A common multivariate control chart is the Hotelling s T 2 control
chart (Hotelling 1947). The traditional sampling strategy in the
Hotelling s T 2 control chart is the fixed ratio sampling (FRS) scheme
in which samples of fixed size are obtained at constant intervals to
monitor a process. A major deficiency of the FRS T 2 control scheme
is that its efficiency to detect small and moderate shifts or drifts in
the process mean is poor. Consequently several modifications have
been suggested in the quality control literature to improve the per-
formance of the FRS policy.

One procedure to improve the statistical performance of the FRS
control schemes is a Variable Sampling Interval (VSI) scheme that
varies the sampling interval between successive samples as a func-
tion of prior sample results. In this procedure, the area between the
control limits and the origin has been divided into two zones by a
warning line for the use of two different sampling intervals (h1 > h2)
. If the current sample value falls in a particular zone, then the next
sample is to be drawn from the process after according to correspond-
ing sampling interval. The use of the VSI control schemes requires
the user to select five design parameters: the long and short sam-
pling intervals h1 and h2, the fixed sample size n, the warning limit
w and the control limit k. Traditionally, the design of VSI schemes
involves the selection of convenient sample size and the control limit
is then determined upon a maximum probability of a Type I error
(false alarm) and/or a Type II error (failure to sound an alarm). The
parameters w, h1 and h2 are determined such that the statistical per-
formance or the speed with which process mean shifts are detected
is minimized. Faraz et al (2010) provides a literature review on the
statistical design of the VSI schemes.

The economic statistical design (ESD) of control charts is of great
importance. Based on the ESD procedure, the chart is designed in
such a way that the overall costs associated with maintaining current
control of a process is minimized while keeping good statistical prop-
erties. This procedure is first developed by Saniga (1989) and was so
well received that Montgomery (1996) strongly endorsed it for prac-
tice; It is called the optimal design (OD) in the literature. A more
detailed literature review and discussion on the economic design of
control charts can be found in Montgomery (1980) containing fifty
one references on the topic. A study evaluating the optimal design of
the VSI T 2 control chart has not been found in the literature; this is
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the contribution of this paper. This paper is organized as follows: In
section 2 the VSI T 2 control scheme and Markov chain approach are
briefly reviewed. In section 3, the cost model proposed by Lorenzen
and Vance (1986) based on the Markov chain approach is modified as
the objective function. Section 4 is devoted to GA procedure for solv-
ing the cost model and the solution procedure is illustrated in section
5. The meta model to construct the VSI T 2 scheme is proposed in
section 6 to determine the optimal values of the control chart param-
eters directly from the process and cost parameters which also shall
facilitate implementation in industry. Besides, the proposed model
can be acting as a guide line for practitioners to specify the important
process and cost parameters and finally, concluding remarks make up
the last section.

2 VSI T 2 control scheme and Markov chain
approach

In order to control a process with p correlated characteristics using
the T 2 scheme, it is first assumed that the joint probability distri-
bution of the quality characteristics is a p-variate normal distribu-
tion with in-control mean vector µ′

0 = (µ01, · · · , µ0p) and variance-
covariance matrix

∑
. Then the subgroups (each of size n) statistics

T 2
i = n(x̄i−µ0)′

∑−1(x̄i−µ0) are plotted in sequential order to form
the T 2 control chart. The chart signals as soon as T 2

i ≥ k. In sta-
tistical design methodology, if the process parameters (µ0 and

∑
)

are known, k is given by the upper a percentage point of chi-square
variable with p degrees of freedom. However µ0 and

∑
are generally

unknown and have to be estimated through m initial samples when
the process is in control. In this case, the parameter k is obtained
upon the 1− a percentage point F distribution with p and v degrees
of freedom as follows:

k = c(m, n, p)Fa(p, v) (1)

where

c(m,n, p) =

{
p(m+1)(n−1)
m(n−1)−p+1 n > 1
p(m+1)(m−1)

m(m−p) n = 1
(2)

v =

{
m(n− 1)− p + 1 n > 1
(m− p) n = 1

(3)
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In this paper, it is assumed that the process starts in a state of
statistical control with mean vector µ0 and covariance matrix

∑
and then an assignable cause occurs resulting in a shift in the pro-
cess mean (µ1 ). The magnitude of the shift is measured by d =
(µ1 − µ0)′

∑−1(µ1 − µ0). Further it is assumed that the time before
the assignable cause occurs has an exponential distribution with pa-
rameter λ. Thus, the mean time that the process remains in state of
statistical control is λ−1 (Faraz and Parsian, 2006).

Now, upon the VSI scheme, at each sampling stage, one of the
following transient states is met according to the status of the process
(in or out of control) and the size of the sample (small or large).
State 1: 0 ≤ T 2 < w and the process is in control;
State 2: w ≤ T 2 < k and the process is in control;
State 3: T 2 ≤ k and the process is in control (false alarm);
State 4: 0 ≤ T 2 < w and the process is out of control;
State 5: w ≤ T 2 < k and the process is out of control;

The control chart produces a signal when T 2 ≥ k. If the current
state is 3, the signal is a false alarm; the absorbing state (state 6)
is reached when the true alarm occurs. The transition probability
matrix is given by

P =



p11 p12 p13 p14 p15 p16

p11 × q2
q1

p12 × q2
q1

p13 × q2
q1

p14 × 1−q2
1−q1

p15 × 1−q2
1−q1

p16 × 1−q2
1−q1

p11 × q2
q1

p12 × q2
q1

p13 × q2
q1

p14 × 1−q2
1−q1

p15 × 1−q2
1−q1

p16 × 1−q2
1−q1

0 0 0 p14
1−q1

p15
1−q1

p16
1−q1

0 0 0 p14
1−q1

p15
1−q1

p16
1−q1

0 0 0 0 0 1


where pij denotes the transition probability that i is the prior state

and j is the current state. In what follows, F (x, p, v, η) will denote
the cumulative probability distribution function of a non-central F
distribution with p and v degrees of freedom and non-centrality pa-
rameter η = nd2, where, qi = exp(−λhi); 1, 2 and p′1js are

p11 = F (
w

c(m, n, p)
, p, v, η = 0)× q1

p12 = F (
k

c(m, n, p)
, p, v, η = 0)× q1 − p11

p13 = q1 − p12 − p11



The Optimal Design of the VSI T 2 Control Chart 5

p14 = F (
w

c(m,n, p)
, p, v, η = nd2)× (1− q1)

p15 = F (
k

c(m,n, p)
, p, v, η = nd2)× (1− q1)− p14

p16 = q1 − p15 − p14

The speed with which a control chart detects process mean shifts
measures its statistical efficiency and is calculated as follows:

AATS = ATC − 1
λ

(4)

where the AATS and ATC are the adjusted average time to signal
and the average time from the start of the production until the first
signal after the process shift, respectively. Figure 1 illustrates the
ATC and AATS measures. According to the elementary Markov
chain properties, the average time of the cycle (ATC) or the average
time from the start of the production until the first signal after the
process shift is calculated as follows:

ATC = b′(I−Q)−1h (5)

where b is a vector of initial probabilities, I is the identity matrix of
order 5, Q is the 5 × 5 matrix obtained from P on deleting the ele-
ments corresponding to the absorbing state and h′=(h1, h2, h2, h1, h2)
is the vector of sampling time intervals. In this paper the vector b′ is
set to (0, 1, 0, 0, 0), for providing an extra protection and preventing
problems that are encountered during start-up.

3 The cost model

Faraz et al (2009) modified the Lorenzen and Vance (1986) economic
model based on some common assumptions and used the Markov
chain approach. In this paper, the same approach is applied to study
the OD of the VSI T 2 control chart. Figure 1 illustrates a quality
cycle observed by Duncan, which is divided into four time intervals
of in-control period, out-of-control period, time to take a sample and
interpret the results and time to find and repair an assignable cause.
The average time of a quality cycle is calculated as follows:

E(T ) =
1
λ

+ (1− γ1)T0ANF + AATS + nE + T1 + T2

= ATC + (1− γ1)T0ANF + nE + T1 + T2 (6)
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where γ1 = 1 if the process is not shut down during false alarms and
0 otherwise, T0 stands for the expected time spent searching for a
false alarm, E stands for the expected time to plot and chart the
sample which triggers an out-of-control signal. The expected time to
find the assignable cause and repair the process are given as T1 and
T2 respectively. ANF is the expected number of false alarms in each
quality cycle and is calculated as follows:

ANF = b′(I−Q)−1(0, 0, 1, 0, 0)′ (7)

The costs of a quality cycle is categorized into four main components:
the cost of producing nonconformities while the process is in control
(C0), the cost of producing nonconformities while the process is out
of control (C1), the cost of evaluating alarms - both false alarms (a′3)
and repairing the process (a3), and the cost of sampling ( a1 and a2

as the fixed and variable cost components of sampling and testing,
respectively). Then the expected cost per quality cycle, E(C), is
defined as:

E(C) =
C0

λ
+C1[AATS+nE+γ1T1+γ2T2]+a′3ANF +a3+(a1+a2n)ANS

(8)
where γ2 is an indicator function for if production continues during

the repair of the process, the stand for the expected number of in-
spected samples taken from the start of the process until the chart
signals and is calculated as follows:

ANS = b′(I−Q)−1(1, 1, 1, 1, 1)′ (9)

It is noted that when the process goes out of control, the sampling
procedure stops even if the process continues. Now, based on the
renewal reward process assumption (see Ross, 1995), the expected
cost per hour is just defined as follows:

E(A) =
E(C)
E(T )

(10)

4 The optimization problem and genetic al-
gorithm approach

In the ED of control charts, it is assumed that the nine process
parameters (p, λ, d, T0, T1, T2, γ1, γ2, E) and the six cost parameters
(C0, C1, a1, a2, a3, a

′
3) are previously estimated. Then, the procedure



The Optimal Design of the VSI T 2 Control Chart 7

continues to find the five chart parameters (k, w, n, h1, h2) which min-
imize (10). Among these five chart parameters, the sample size n is
always a discrete variable and the other four variables are continu-
ous where 0 ≤ w < k. To keep the chart practical, the minimum
and maximum value of sampling intervals are considered as the pos-
sible minimum time between successive samples and maximum hours
available in a work shift, respectively. i · e · 0 · 1 ≤ h2 ≤ h1 ≤ 8. The
sampling intervals less than 0 ·1 hour may be problematic in the field.
Therefore, the general optimization problem is defined as follows:

minE(A)
s.t :
α ≤ α0

k > 0 (11)
0 ≤ w < k,

0 · 1 ≤ h2 ≤ h1 ≤ 8
n ∈ Z+

For offering the best protection against false alarms, the Type I error
constraint α ≤ α0 is added to form the optimal design. The optimiza-
tion problem (11) has both continuous and discrete decision variables
and a discontinuous and non-convex solution space. In this paper,
the problem is solved via genetic algorithm (GA) approach which is
the most widely used tool in this area; for example see Faraz et al
(2009). Using GA requires one to determine the values of the most
significant GA parameters, i.e. the crossover rate (rC), number of
elites (Nelit), the initial population size (Npop) and the mutation rate
(rM ). Faraz et al (2009) found that the low crossover rate and large
mutation fraction values result in great explorations and refrain from
trapping many local minimums. Hence, they proposed the optimal
values of Npop = 100, Nelit = 5, rC = 0.05 and rM = 0.9. These
values are used here to study the OD of the VSI T 2 control scheme.
The procedure is as follows:
Step 1: generate a population of size Npop chromosomes to form initial
generation. Each chromosome is an arbitrary solution to optimiza-
tion problem (12) and usually is represented by a numerical string.
Step 2: find the expected cost per hour corresponding to each chro-
mosome
Step 3: scale chromosomes based on their expected cost per hour to
obtain fitness values and assign each chromosome the selection prob-
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ability corresponding to its fitness value. A lower expected cost per
hour causes a higher fitness value and consequently the corresponding
chromosome will have a higher chance for survive to next generation.
Step 4: select Nelit chromosomes with the best fitness values in the
current generation to survive to the next generation.
Step 5: select (randomly but biased by the fitness values) two chro-
mosomes from the mating pool of Npop chromosomes. An individual
can be selected more than once as a parent, in which case it con-
tributes its genes to more than one child.
Step 6: recombine these two chromosomes (parents) using the crossover
and mutation operators to produce two new chromosomes (children).
Repeat steps 5 and 6 until Npop−Nelit children are born to form the
new generation.
Step 7: repeat the steps from 2 to 6 until the termination conditions
are met, i.e. when the number of generations is large enough or no
more optimization in E(A) value is observed.

This procedure is illustrated through an industrial application in
the following section.

5 An illustrative example

In this section the proposed approach to the OD of the VSI T 2 con-
trol chart is illustrated through the industrial example taken from
Faraz et al (2009) which considers the GM Company casting oper-
ation. The model estimated parameters is given in Table 1. The
optimization problem (12) with Type I error constraint α ≤ 0.005 s
considered and the optimal designs are given in Table 2 for different
values of mean shift d = 0.5(0.25)1.5(0.5)3 with a cost comparison to
the corresponding optimal FRS scheme. The results indicate that the
VSI scheme is consistently cheaper than the FRS scheme while pos-
sessing a good statistical performance (AATS and α). The parameter
h2 is always set to a minimum value 0.1 and hence the practitioner
should take samples when the chart measure falls in the correspond-
ing zone. If the mean shift d increases, the values of sample size n
and large sampling interval h1 decrease with an increase in the val-
ues of parameter w. i.e., the sampling rate decreases as the value of
parameter d increases. It is intuitive that less effort is needed for de-
tecting larger amount of shifts in the process mean. In the example,
consider the case where the objective is to provide a good protection
over the shift d = 1. The optimal design of the VSI T2 control chart
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is set to k = 13.09, w = 2.93, n = 9, h1 = 1.57 (nearly 95 minutes)
and h2 = 0.1 (6 minutes) having a low Type I error α = 0.002 and
a good power AATS = 1.21 (73 minutes). Note that the optimally
designed VSI scheme has a smaller Type I error rate than the sta-
tistical designs (α0 = 0.005). When T 2 < 2.93 the next sample of
size 9 is taken after 95 minutes. Otherwise the next sample is taken
after 6 minutes. This design imposes $264.68 per hour to the com-
pany which results in 7% savings per hour when it is compared to
the optimally designed FRS scheme. Considering the process works
20 days a month, establishing the OD of the VSI T2 chart results
in more than $110, 000 annual savings with respect to the OD of the
FRS scheme.

In the next section, a Meta model for designing the OD of the VSI
T 2 control chart will be derived which can facilitate the application
of the chart in industry. Besides, it may be helpful to thoroughly
understand the effects of the cost and process parameters’ changes
on the optimal design of the VSI T 2 scheme.

6 A Sensitivity analysis for optimally designed
the VSI T 2 scheme

In the OD of the VSI T2 control charts, it is assumed that economic
information is readily available. However, in practice it is usually
difficult to estimate all fifteen process and cost parameters and also
the process of estimating needed parameters is often costly. Keats
et al. (1997) mentioned that difficulties in estimating the economic
model parameters are a substantial barrier for practitioners in ED of
the control charts implementation, but performing sensitivity analysis
can alleviate this problem. In this way, practitioners can spend most
of their efforts estimating the critical parameters. For example, if it
can be shown that the cost of repairing a process plays a small role
in determining the optimal design, then fewer resources can be used
to estimate repair cost.

Therefore, the fractional factorial design, resolution V, is used
here to fully examine the effects of all fifteen parameters on the OD
of the VSI T 2 control charts. Using a resolution V design ensures that
no main effects and no two-factor interactions are aliased with each
other, but the two factor interactions are confounded with higher level
interactions. Hence, it is assumed that all three-way and higher inter-
actions are zero. See Montgomery (2001) for a detailed discussion of
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factorial designs, fractional factorial designs, and design resolution.
Table 3 provides the high and low level settings for the fifteen factors
considered. High and low values for each cost and process parameters
were determined based on previous studies investigated.

A computer program called Design-Expert is used to perform the
analysis. By comparing the sum of squares among the fifteen factors
for each response, the significant factors can be determined. Tables
4 — 7 show the ANOVA tables as well as the regression models to
estimate the control chart parameters. The significant factors are
marked in bold face. However, the insignificant factors (not count-
ing those required to support hierarchy) are removed to improve the
model accuracy as there are many insignificant model terms. Be-
sides, the nonlinear effects are captured in the regression models by
moving up and down the ladder of power transformations and ap-
propriate transformation for each variable is selected using Box-Cox
plots to analytically calculate the best power law transformation (See
Montgomery, 2001 for details).

6.1 ANOVA for Control Limit k

The ANOVA Table 4 indicates that the three process parameters
(p, λ, d) and the three cost parameters (C1, a1, a2) have the largest
impact on the optimal value for the upper control limit k. The most
significant term is p, the number of variables. It is intuitive that as
the number of variables increases, the control limit k increases. The
impact of the variable cost of sampling a2 is the second most signifi-
cant term. A smaller variable sampling cost makes it economical to
increase the sample size. A larger sample size in turn makes it easier
to distinguish between in control and out of control states, and this
decreases the upper control limit. Finally, as λ increases, the process
remains less under control and therefore k decreases to quickly detect
out-of-control states .

The statistical measures ”Adj R-Squared” indicates that the de-
fined regression equation in Table 4 is significant for predicting the
k0.4. The ”Pred R-Squared” value of 0.89 is in a reasonable agreement
with the model ”Adj R-Squared” value of 0.89. Finally, the ”Adeq
Precision” measures the signal to noise ratio and a ratio greater than
4 is always desirable. The ratio of 48.27 indicates an adequate signal
and therefore a reasonable and accurate prediction can be made by
just considering main effects and two-way interactions
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6.2 ANOVA for warning line w

The final ANOVA table for the significant model terms (and those
required to support hierarchy) is given in Table 5. The most sig-
nificant term for determining w is p, the number of variables. It is
intuitive that as the number of variables increases, the warning limit
w increases. The larger mean shift d, the easier it is to discover and
hence fewer samples are needed and the warning limit w decreases.
The variable cost of sampling and the cost of producing nonconformi-
ties when the process is out of control form the largest interaction. In
fact when the value of C1 is high then the warning limit w is decreased
to increase the sampling frequency to detect the out of control state
as soon as possible regarding the matter of variable cost of sampling.

The regression model in Table 5 indicates that the parameter
(w+0.17)0.37 can be estimated accurately with the ”Pred R-Squared”
value of 0.64 which is in a reasonable agreement with the model ”Adj
R-Squared” value of 0.67. Also, the ”Adeq Precision” value of 22.60
indicates an adequate signal to noise ratio.

6.3 ANOVA for sample size n

The final ANOVA result for the significant model terms (and those
required to support hierarchy) is given in Table 6. The process pa-
rameters (p, λ, d, E) and the cost parameters (C0, C1, a1, a2) have the
significant impact on the optimal value for the sample size n with
d, E, λ and a2 having the greatest impact. The presented regression
model with high values of ”Pred R-Squared”, ”Adj R-Squared” and
the ”Adeq Precision” can accurately predict the power transforma-
tion n−0.01. The positive sign of the coefficient d indicates that a
smaller mean shift d requires one to use a larger sample size n which
is consistent with the principle of statistical hypothesis testing. E has
intuitive appeal for affecting n since it is the proportionality constant
between the sample size and the time associated with plotting each
point on the control chart. The parameter a2 also has intuitive appeal
since it is the variable cost associated with sampling. The ANOVA
table also indicates that the largest interaction effect is between a2

and C1.

6.4 ANOVA for large sampling interval h1

From the ANOVA Tables 7, the main effects a2 and C1 have the
greatest impact in predicting the sampling interval h1. It seems intu-
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itive that when the variable cost of sampling increases the sampling
intervals increase to decrease sampling frequencies. Also, a high value
of cost of producing defective products when the process is out of con-
trol causes a reduction in sampling intervals to detect out-of-control
states as quickly as possible. The largest interaction effect is between
a2 and a1. The value of parameter h2 is always set to the minimum
possible value, 0.1 in this paper.

The regression models presented in Tables 7 with high values of
”Pred R-Squared”, ”Adj R-Squared” and the ”Adeq Precision” can
be used to significantly predict the power transformations h−0.17

1 .

7 Concluding remarks

In the present paper, the optimal design of the T 2 control chart with
VSI scheme is developed based on the cost model proposed by Loren-
zen and Vance (1986) and the expected total cost per hour is mini-
mized using GA. An illustrative example is provided and a sensitivity
analysis is then carried out to study the effect of model parameters on
the solution of the optimal design. The ANOVA results indicate that
the model parameters λ, d, T1, C1, E, a1 and a3 play a significant role
in designing the chart parameters. In addition, the variable cost of
sampling plays an important role in determining all the control char
parameters. This paper also provides regression equations in Table
4-7 which can be considered as the basis of an efficient and effective
Meta model for the OD of the VSI T 2 control chart from combinations
of model parameters. The high values of ”Pred R-Squared” and ”Adj
R-Squared” measures indicated that the regression equations provide
a good approximation and also provide a much richer interpretation
by considering nonlinear transformations. The provided regression
equations - easy computational methods - make it easier to determine
the optimal design of the VSI T2 chart and facilitate implementation
in industry. This approach provides practitioners with a solution they
can understand, and hence will be more willing to adopt.
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Figure and Tables

Figure 1. A quality Cycle

Table 1. Data adapted from General Motors

p = 2 m = 25 λ = 0.05 γ1 = 1 γ2 = 0
T0 = T1 = 0.0833 E = 0.0833 T2 = 0.75 C0 = 114.24 C1 = 949.2
a1 = 5 a2 = 4.22 a3 = 977.4 a′3 = 977.4 d = 1

Table 2. The optimal parameters of ESD of the FRS and
VSI schemes for different values of d

d VSI scheme Frs scheme %
k w n h1 h2 a AATS E(A) E(A)

0.50 10.86 2.00 22 2.40 0.10 0.005 2.49 368.94* 408.64 11%
0.75 10.86 2.64 13 1.89 0.10 0.005 1.54 297.31* 325.41 9%
1.00 13.09 2.93 9 1.57 0.10 0.002 1.21 264.68* 283.67 7%
1.25 11.50 3.28 6 1.37 0.10 0.5 0.97 245.00* 259.57 6%
1.5 12.59 3.83 5 1.26 0.10 0.004 0.83 232.94* 244.13 5%
2.00 13.95 3.84 3 1.10 0.10 0.003 0.72 218.09* 225.96 4%
2.50 16.32 5.87 3 1.10 0.10 0.001 0.62 210.45* 215.78 3%
3.0 17.95 5.26 2 1.10 0.10 0.001 0.64 205.24* 209.14 2%

Table 3. High and low levels for the model parameters

Factor γ1 γ2 T0 T1 T2 C0 C1 a1

Low 0 0 0.1 0.1 1 50 250 0.5
High 1 1 5 5 15 200 1000 5

Factor a2 a3 a′3 E λ p d

Low 0.1 25 50 0.1 0.01 2 0.5
High 10 1000 1000 1 0.05 10 2
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Table 4. ANOVA and Regression model for control limit k

Response: k0.4 − 2.37

Source Sum of DF Mean F Value Prob > F
Squares Square

Model 87.83 12.00 7.32 175.11 < 0.0001
Coefficients Parameters
8.07E-02 γ2 0.01 1.00 0.01 0.32 0.5742
-4.24E-02 a1 0.41 1.00 0.41 9.78 0.0020
-6.88E-02 a2 10.00 1.00 10.00 239.35 < 0.0001
-3.46E+00 λ 2.64 1.00 2.64 63.04 < 0.0001
-8.80E-03 d 1.23 1.00 1.23 29.31 < 0.0001
2.92E-03 T2 0.12 1.00 0.12 2.75 0.0984
2.86E-01 C1 2.96 1.00 2.96 70.70 < 0.0001
1.28E-01 p 67.61 1.00 67.61 1617.39 < 0.0001
-1.19E-02 γ2 × T2 0.44 1.00 0.44 10.60 0.0013
4.87E-03 a1 × a2 0.75 1.00 0.75 18.06 < 0.0001
-3.20E-01 a2 × λ 0.26 1.00 0.26 6.15 0.0138
2.00E-02 a2 × d 1.41 1.00 1.41 33.81 < 0.0001

Residual 10.16 243.00 0.04
Total 97.99 255.00 7.32 175.11 < 0.0001

Model Adequacy Measures
R-Squared 0.90 Pred R-Squared 0.89
Adj R-Squareed 0.89 Adeq Precision 48.27
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Table 5. ANOVA and Regression model for control limit w

Response: (w + 0.17)0.37 − 1.23

Source Sum of DF Mean F Value Prob > F
Squares Square

Model 97.77 26.00 3.76 31.92 < 0.0001
Coefficients Parameters
-2.32 E-01 γ1 0.46 1.00 0.46 3.91 0.0493
4.87E-01 γ2 2.34 1.00 2.34 19.89 < 0.0001
1.53E-02 T1 0.55 1.00 0.55 4.65 0.0321
-9.01E-02 a2 7.38 1.00 7.38 62.67 < 0.0001
3.38E-04 C0 1.06 1.00 1.06 9.03 0.0321
-2.16E-01 E 2.42 1.00 2.42 20.54 < 0.0001
-7.01E+00 λ 4.08 1.00 4.08 34.61 < 0.0001
3.65E-01 d 12.81 1.00 12.81 108.70 < 0.0001
3.97E-03 T2 0.35 1.00 0.35 2.98 0.085
-5.14E-04 C1 6.67 1.00 6.67 56.65 < 0.0001
1.08E-01 P 38.60 1.00 38.60 327.67 < 0.0001
-1.46E-04 a′3 0.05 1.00 0.05 0.39 0.5315
2.35E-04 γ1 × C1 0.50 1.00 0.50 4.23 0.0407
-1.26E-03 γ2 × C0 0.57 1.00 0.57 4.83 0.0290
-4.72E+00 γ2 × λ 0.57 1.00 0.57 4.83 0.0289
-1.85E-01 γ2 × d 1.23 1.00 1.23 10.48 0.0014
-1.85E-02 γ2 × T2 1.08 1.00 1.08 9.13 0.0028
-2.73E-04 T1 × C0 0.65 1.00 0.65 5.48 0.0201
2.61E-02 a2 × d 2.40 1.00 2.40 20.35 < 0.0001
8.55E-05 a2 × C1 6.44 1.00 6.44 54.67 < 0.0001
-5.04E-03 a2 × p 2.55 1.00 2.55 21.61 < 0.0001
1.97E-06 C0 × C1 0.78 1.00 0.78 6.65 0.0105
-1.84E-04 C0 × p 0.78 1.00 0.78 6.60 0.010
5.82E-03 λ× a′3 0.78 1.00 0.78 6.64 0.0106
-1.70E-04 d× C1 0.58 1.00 0.58 4.96 0.0268
6.03E-05 C1 × p 2.09 1.00 2.09 17.67 < 0.0001

Residual 26.98 229.00 0.12
Total 124.75 255.00

Model Adequacy Measures
R-Squared 0.78 Pred R-Squared 0.73
Adj R-Squared 0.76 Adeq Precision 24.37
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Table 6. ANOVA and Regression model for sample size n

Response: n−0.01 − 0.96

Source Sum of DF Mean F Value Prob > F
Squares Square

Model 2.27E-02 26.00 8.74E-04 11.57 < 0.0001
Coefficients Parameters
1.92E-04 T1 2.68E-05 1.00 2.68E-05 3.42 0.0656
-3.97E-04 a1 6.48E-05 1.00 6.48E-05 8.27 0.0044
9.74E-04 a2 1.45E-03 1.00 1.45E-03 185.56 < 0.00001
-7.47E-07 a3 1.67E-06 1.00 1.67E-06 0.21 0.6450
2.30E-05 C0 8.868E-05 1.00 8.86E-05 11.31 0.0009
1.18E-02 E 2.42E-03 1.00 2.42E-03 309.32 < 0.0001
1.68E-01 λ 1.64E-03 1.00 1.64E-03 208.62 < 0.0001
1.49E-02 d 1.34E-02 1.00 1.34E-02 1713.62 < 0.0001
-9.76E-07 C1 2.71E-04 1.00 2.71E-04 34.60 < 0.0001
-6.50E-04 p 5.72E-04 1.00 5.72E-04 72.96 < 0.0001
3.58E-07 T1 × a3 4.68E-05 1.00 4.68E-05 5.97 0.0153
-8.10E-03 T1 × λ 4.03E-05 1.00 4.03E-05 5.14 0.0243
3.43E-05 a2 × a1 3.74E-05 1.00 3.74E-05 4.77 0.0299
1.56E-06 a2 × C0 8.56E-05 1.00 8.56E-05 10.92 0.0011
-3.76E-04 a2 × E 1.79E-04 1.00 1.79E-04 22.90 < 0.0001
5.76E-03 a2 × λ 8.33E-05 1.00 8.33E-05 10.62 0.0013
-2.83E-04 a2 × d 2.83E-04 1.00 2.83E-04 36.06 < 0.0001
-8.01E-07 a2 × C1 5.66E-04 1.00 5.66E-04 72.20 < 0.0001
1.78E-05 a2 × p 3.16E-05 1.00 3.16E-05 4.04 < 0.0457
-9.74E-06 C0 × d 7.68E-05 1.00 7.68E-05 9.80 0.0020
-1.74E-08 C0 × C1 6.15E-05 1.00 6.15E-05 7.85 0.0055
5.21E-02 E × λ 5.62E-05 1.00 5.62E-05 7.17 0.0079
-3.71E-03 E × d 4.02E-04 1.00 4.02E-04 51.29 < 0.0001
-9.28E-02 λ× d 4.96E-04 1.00 4.96E-04 63.22 < 0.0001
6.22E-03 λ× p 6.34E-05 1.00 6.34E-05 8.09 0.0048
3.56E-06 d× C1 2.57E-04 1.00 2.57E-04 32.82 < 0.0001

Residual 1.79E-03 229.00 7.84E-06
Total 2.45E-02 255.00

Model Adequacy Measures
R-Squared 0.93 Pred R-Squared 0.91
Adj R-Squared 0.92 Adeq Precision 43.09
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Table 7. ANOVA and Regression model for short sampling
interval h1

Response: h−0.17
1 − 0.93

Source Sum of DF Mean F Value Prob > F
Squares Square

Model 8.53E+00 36.00 2.37E-01 145.51 < 0.0001
Coefficients Parameters
1.13E-02 γ1 1.95E-02 1.00 1.95E-02 11.99 0.0006
1.19E-02 γ2 7.47E-02 1.00 7.47E-02 45.90 < 0.0001
8.30E-03 T1 7.50E-04 1.00 7.50E-04 0.46 0.4979
-1.47E-02 a1 3.21E-01 1.00 3.21E-01 196.90 < 0.0001
-2.88E-02 a2 3.70E+00 1.00 3.70E+00 2273.34 < 0.0001
-7.06E-04 C0 1.47E-01 1.00 1.47E-01 90.18 < 0.0001
-4.90E-02 E 5.90E-03 1.00 5.90E-03 3.63 0.0582
2.61E+00 λ 4.09E-01 1.00 4.09E-04 251.41 < 0.0001
5.59E-02 d 1.13E+00 1.00 1.13E+00 693.56 < 0.0001
7.69E-04 T2 2.63E-04 1.00 2.63E-04 0.16 0.6884
1.44E-04 C1 1.69E+00 1.00 1.69E+00 1040.06 < 0.0001
-2.69E-03 p 1.14E-01 1.00 1.14E-01 70.20 < 0.0001
-6.51E-03 γ1 × T1 1.63E-02 1.00 1.63E-02 10.00 0.0018
2.16E-03 γ1 × a2 7.32E-03 1.00 7.32E-03 4.50 0.0351
-7.69E-01 γ1 × λ 1.51E-02 1.00 1.51E-02 9.30 0.0026
2.68E-03 γ2 × a2 1.13E-02 1.00 1.13E-02 6.94 0.0090
-1.21E+00 γ2 × λ 3.76E-02 1.00 3.67E-02 23.08 < 0.0001
-2.90E-03 γ2 × T2 2.65E-02 1.00 2.65E-02 16.25 < 0.0001
-1.91E-01 T1 × λ 2.25E-02 1.00 2.25E-02 13.84 0.0003
2.75E-03 a1 × a2 2.40E-01 1.00 2.40E-01 147.18 < 0.0001
-7.84E-03 a1 × d 4.48E-02 1.00 4.48E-02 27.52 < 0.0001
-8.12E-06 a1 × C1 1.20E-02 1.00 1.20E-02 7.38 0.0071
2.66E-05 a2 × C0 2.49E-02 1.00 2.49E-02 15.30 0.0001
2.62E-03 a2 × E 8.73E-03 1.00 8.73E-03 5.36 0.0215
-7.38E-02 a2 × λ 1.37E-02 1.00 1.37E-02 8.39 0.0042
-1.28E-05 a2 × C1 1.45E-01 1.00 1.45E-01 89.06 < 0.0001
-1.14E-04 C0 × d 1.05E-02 1.00 1.05E-02 6.48 0.0116
6.33E-07 C0 × C1 8.11E-02 1.00 8.11E-02 49.82 < 0.0001
3.14E-03 E × T2 2.50E-02 1.00 2.50E-02 15.38 0.0001
5.49E-01 λ× d 1.74E-02 1.00 1.74E-02 10.67 0.0013
1.52E-03 λ× C1 3.34E-02 1.00 3.34E-02 20.49 < 0.0001
-6.65E-02 λ× p 7.24E-03 1.00 7.24E-02 4.45 0.0361
6.40E-05 d× C1 8.29E-02 1.00 8.29E-02 50.93 < 0.0001
2.00E-03 d× p 9.21E-03 1.00 9.21E-03 5.65 0.0183
-1.90E-06 T2 × C1 6.38E-03 1.00 6.38E-03 3.92 0.0491
-4.96E-06 C1 × p 1.41E-02 1.00 1.41E-02 8.69 0.0036

Residual 3.57E-01 219.00 1.21E-02
Total 8.89E+00 255.00

Model Adequacy Measures
R-Squared 0.96 Pred R-Squared 0.95
Adj R-Squared 0.95 Adeq Precision 56.13



The Optimal Design of the VSI T 2 Control Chart 19

Table 8. ANOVA and Regression model for long sampling
interval h

Response: `n(h2) + 1.60

Source Sum of DF Mean F Value Prob > F
Squares Square

Model 722.41 36.00 20.07 98.13 < 0.0001
Coefficients Parameters
-2.91E-01 γ1 7.81 1.00 7.81 38.17 < 0.0001
-1.61E-01 γ2 31.15 1.00 31.15 152.31 < 0.0001
3.90E-02 T0 0.09 1.00 0.09 0.46 0.4978
-7.53E-02 T1 2.59 1.00 2.59 12.65 0.0005
2.54E-01 a1 27.90 1.00 27.90 136.43 < 0.0001
3.76E-01 a2 317.96 1.00 317.96 1554.93 < 0.0001
1.27E-04 a3 0.99 1.00 0.99 4.82 0.0292
9.00E-03 C0 14.22 1.00 14.22 69.52 < 0.0001
-4.73E-01 E 2.29 1.00 2.29 11.19 0.0010
-1.29E+01 λ 0.12 1.00 0.12 0.57 0.4503
-1.89E-01 d 33.76 1.00 33.76 165.12 < 0.0001
-1.78E-03 T2 3.68 1.00 3.68 18.01 < 0.0001
-1.96E-03 C1 175.41 1.00 175.41 857.82 < 0.0001
3.61E-02 p 2.05 1.00 2.05 10.02 0.0018
1.37E-01 γ1 × T1 7.22 1.00 7.22 35.31 < 0.0001
-2.53E-02 γ1 × a2 1.00 1.00 1.00 4.89 0.0280
7.10E+00 γ1 × λ 1.29 1.00 1.29 6.31 0.0127
1.64E-01 γ1 × d 0.97 1.00 0.97 4.73 0.0308
-6.27E-02 γ2 × a1 1.27 1.00 1.27 6.23 0.0133
8.45E+00 γ2 × λ 1.83 1.00 1.83 8.93 0.0031
2.53E-01 γ2 × d 2.30 1.00 2.30 11.23 0.0009
5.78E-02 γ2 × T2 10.47 1.00 10.47 51.22 < 0.0001
-3.90E-03 T0 × T2 1.14 1.00 1.14 5.59 0.0189
1.59E+00 T1 × λ 1.56 1.00 1.56 7.63 0.0062
-2.49E-02 a1 × a2 19.74 1.00 19.74 96.51 < 0.0001
4.01E-02 a1 × d 1.17 1.00 1.17 5.73 0.0175
-1.82E-04 a2 × C0 1.17 1.00 1.17 5.73 0.0176
5.21E-02 a2 × E 3.44 1.00 3.44 16.84 < 0.0001
-9.23E-02 a2 × d 30.06 1.00 30.06 16.84 < 0.0001
-1.75E-03 a2 × T2 0.94 1.00 0.94 4.59 0.0333
5.46E-05 a2 × C1 2.63 1.00 2.63 12.87 0.0004
3.36E-03 a2 × p 1.13 1.00 1.13 5.53 0.0195
-1.10E-04 C0 × T2 0.85 1.00 0.85 4.17 0.0424
-6.49E-06 C0 × C1 8.52 1.00 8.52 41.69 < 0.0001
-2.46E-02 d× p 1.39 1.00 1.39 6.80 0.0097
3.60E-05 T2 × C1 2.29 1.00 2.29 11.20 0.0010

Residual 44.78 219.00 2.20
Total 767.19 255.00

Model Adequacy Measures
R-Squared 0.94 Pred R-Squared 0.92
Adj R-Squared 0.93 Adeq Precision 44.66


