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Abstract. We introduce a goodness of fit test for exponentiality
based on record values. The critical points and powers for some
alternatives are obtained by simulation.

1 Introduction

Suppose a random variable X has cumulative distribution function
(cdf) F (x) and a continuous probability density function (pdf) f(x).
The entropy H(f) of the random variable X is defined in [10] to be

H(f) = −
∫ ∞

−∞
f(x) log f(x)dx. (1)

The Kullback-Leibler (K-L) information of f(x) against f0(x) is
defined in [7] to be

I(f ; f0) =
∫ ∞

−∞
f(x) log

f(x)
f0(x)

dx. (2)

Key words and phrases: Entropy, estimation, Kullback-Leibler information,
maximum likelihood estimator.
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Since I(f ; f0) has the property that I(f ; f0) ≥ 0, and the equality
holds only if f = f0, the estimate of the K-L information has also
been considered as a goodness of fit test statistic by some authors
including [2] and [5]. It has been shown in the aforementioned papers
that the test statistics based on the K-L information perform very
well for testing exponentiality [5] as compared, in terms of power,
with some leading test statistics. In this paper we consider using
K-L information for testing exponentiality based on record values.
Some nonparametric estimates of (1) have been proposed in [4], [1]
and [12]. In [12], entropy in (1) has been expressed in the form

H =
∫ 1

0
log

(
dF−1(p)

dp

)
dp. (3)

An estimate of (3) can be constructed by replacing the distribu-
tion function F by the empirical distribution Fn. The derivative of
F−1(i/n) is estimated by (xi+w:n − xi−w:n)n/(2w). The estimate of
H is then

H(w, n) =
1
n

n∑
i=1

log
( n

2w
(xi+w:n − xi−w:n)

)
, (4)

where the window size w is a positive integer, which is less than n/2,
and xi:n = x1:n for i < 1, and xi:n = xn:n for i > n.

Let Xi, i ≥ 1, be a sequence of iid continuous random variables.
An observation Xj will be called an upper record value if its value is
greater than that of all previous observations. Thus Xj is an upper
record value if Xj > Xi for all i < j. By convention, X1 is the
first upper record value. There is a similar definition for lower record
values by considering the observations that fall below all previous
observations.

The times at which upper record values appear are given by the
random variables Tj which are called record times and are defined
by T1 = 1 and, for j ≥ 2, Tj = Min{i : Xi > XTj−1}. The wait-
ing time between the ith upper record value and the (i + 1)th upper
record value is called the inter-record time (IRT), and is denoted by
∆i = Ti+1 − Ti, i = 1, 2, ... . Record times and inter-record times for
lower record values are defined analogously.

Let U1, U2, ..., Un be the first n upper record values from a dis-
tribution with the cdf F (x; θ) and the pdf f(x; θ), where θ is an
unknown parameter (possibly a vector). Then the pdf of the joint
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distribution of the first n upper record values is given by

q(u; θ) =
n−1∏
i=1

f(ui; θ)
F̄ (ui; θ)

f(un; θ), (5)

where F̄ (x) = 1 − F (x). Also the marginal density of Ui (the ith

upper record value, i ≥ 1) is given by

qi(ui; θ) =
[− log(F̄ (ui; θ))]i−1

(i− 1)!
f(ui; θ). (6)

The joint distribution of upper record values and their IRT’s has
density

q(u,∆; θ) =
n∏

i=1

f(ui; θ)[F (ui; θ)]∆i−1

and the joint density of Ui and ∆i is

qi(ui,∆i; θ) =
[− log(F̄ (ui; θ))]i−1

(i− 1)!
f(ui; θ)(F̄ (ui; θ))[F (ui; θ)]∆i−1.

See [3] for more details.
The most important use of record values arises in experiments in

which a specified characteristic’s measurements of a unit are made
sequentially and only values that exceed or fall below the current
extreme value are recorded. So the only available observations are
record values. Such situations often occur in industrial stress, life
time experiments, sporting matches, weather data recording and some
other experimental fields. The other important application is in life
testing problems in which full testing of an item is destructive and
costly. If the items are expensive, one can set up the experiment
so that only the “low life” units are destroyed. As an example, one
may consider the example of testing the breaking strength of wooden
beams cited in Glick (1978), in which beams are replaced as soon
as the pressure reaches the minimum previously observed breaking
pressure. In other words, only the lower record values are observed.

In all the situations mentioned above any statistical inference
must be done using record values. In this paper we study the good-
ness of fit test based on the K-L information using record values.

We introduce a piece-wise linear MLE of cdf based on record
values in Section 2. In Section 3 we derive the joint entropy of record
values and its estimator, which is used to define our test statistic in
section 4. Section 5 contains the critical values and powers against
some alternatives obtained by simulation.
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2 Maximum likelihood estimation of distribu-
tion function based on inter-record times

In this section we use the constrained non-parametric maximum like-
lihood estimation method, proposed by Yousefzadeh and Arghami,
2007, to estimate the cdf based on upper record values and their
inter-record times. The case of lower record values is similar.

Let f(ui) = wi and F (ui) =
i∑

j=1
wj i = 1, . . . , k. We maximize

the likelihood function subject to
k∑

i=1
wi = 1. For this purpose, we

write the lagrangian as

L =
k∑

i=1

log wi + (∆i − 1) log
i∑

j=1

wj

− λ(
k∑

i=1

wi − 1),

Solving the equations derived from the above leads us to

w1 = ∆1w2, wk =
1

k−1∑
i=1

∆i + 1
,

and

wi−1 =

i−1∑
t=1

∆t

i−2∑
t=1

∆t + 1
wi, i = 1, . . . , k.

So a maximum likelihood estimate for F (ui) is pi =
∑i

j=1 wj , i =
1, . . . , k.

Inter-record times will not be used in the procedure that we pro-
pose in section 4.

3 Joint entropy of upper record values and
Kullback-Leibler information

The joint entropy of U1, U2, . . . , Uk ( the first k upper record values),
defined in the literature [9], is

H1···k = −
∫ ∞

−∞
· · ·

∫ u2

−∞
q(u; θ) log q(u; θ) du1 · · · duk, (7)
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where q(u; θ) is the joint pdf of all k upper record values, which is
defined in (5). The following theorem states that the above multiple
integral can be simplified to a single integral.

Theorem 3.1.

H1...k = k − k(k + 1)
2

−
k∑

i=1

∫ ∞

−∞
f(x)

[− log F̄ (x)]i−1

(i− 1)!
log f(x)dx (8)

Proof. By the decomposition property of the entropy measure in [8],
we have

H1···k = H1 + H2|1 + · · ·+ Hr|r−1 + · · ·+ Hk|k−1.

In [11], another expression of (1) is presented in terms of the
hazard function, h(x) = f(x)

F̄ (x)
, as

H1 = 1−
∫ ∞

−∞
f(x) log h(x)dx. (9)

From (9) the conditional entropy of Ur given Ur−1 = ur−1 is

Hr|r−1(ur−1) = −
∫ ∞

ur−1

f(x)
F̄ (ur−1)

log
[

f(x)
F̄ (ur−1)

]
dx

= 1−
[
F̄ (ur−1)

]−1
∫ ∞

ur−1

f(x) log h(x) dx,

Hence

Hr|r−1 = E
(
Hr|r−1(Ur−1)

)
=

∫ ∞

−∞
Hr|r−1(y)f(y)

[− log F̄ (y)]r−2

(r − 2)!
dy

= 1−
∫ ∞

−∞
fUr(x) log h(x)dx

= 1−
∫ ∞

−∞
fUr(x) log f(x)dx− r.

The required result then follows. �
Using (3) we can write (8) as,

H1...k =
k(1− k)

2
+

k∑
i=1

∫ 1

0

[− log(1− p)]i−1

(i− 1)!
log

(
dF−1(p)

dp

)
dp.
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For the null density function f0(x; θ), the K-L information for the
first k upper record values is given by

I1···k(f : f0) =
∫ ∞

−∞
· · ·

∫ u2

−∞
q(u; θ) log

q(u; θ)
q0(u; θ)

dx1 · · · dxk.

So
I1···k(f : f0) = −H1...k − E(log q0(u; θ)),

For f0(x) = λe−λx, we have

I1···k(f : f0) = −H1...k − k log λ + λE(Uk).

4 Non-parametric information estimate and
scale invariant test statistic

In order to obtain a test statistic for testing exponentiality, first we
have to derive a nonparametric estimate of the joint entropy of upper
record values. This is done by estimating the integral in Theorem 1,
which gives the estimator

Ĥ1...k =
k(1− k)

2
+

k−1∑
j=1

(pj+1 − pj)
(

gj + gj+1

2

)
,

where

gj = log
(

Uj+1 − Uj−1

pj+1 − pj−1

) k∑
i=1

[− log(1− pj)]i−1

(i− 1)!
, j = 1, . . . , k − 1

and
p0 = 0, U0 = U1, Uk+1 = Uk.

The second step is to derive a non-parametric estimator for the mean
of the population. Since

λ =
[∫ 1

0
F−1(p) dp

]−1

,

we have

λ̂ =

[
k∑

i=1

(pi+1 − pi)
(

Ui + Ui+1

2

)]−1

. (10)
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The non-parametric estimator of the joint K-L information of upper
record values is then

Î1...k = −Ĥ1...k − k log λ̂ + λ̂Uk. (11)

But this statistic is not invariant under the scale group of trans-
formations since

ÎcX
1...k = ÎX

1...k − Îk log c + k log c,

where

Îk =
k∑

j=1

(pj+1 − pj)
(

Ψj + Ψj+1

2

)
and

Ψj =
k∑

i=1

[− log(1− pj)]i−1

(i− 1)!
, j = 1, . . . , k − 1, Ψ0 = 0.

To get around this problem we replace k in (11) with its equal quan-
tity

Ik =
∫ 1

0

k∑
i=1

[− log(1− p)]i−1

(i− 1)!
dp.

Indeed we have

I1...k = −H1...k − Ik log λ + λE(Uk).

So
Î1...k = −Ĥ1...k − Îk log λ̂ + λ̂Uk. (12)

Since we have
ĤcX

1...k = ĤX
1...k + Îk log c

and consequently
ÎcX
1...k = ÎX

1...k,

(12) is scale invariant. Therefore

TU =
k(k − 1)

2
−

k∑
j=1

(pj+1 − pj)
(

gj + gj+1

2

)
− Îk log λ̂ + λ̂Uk

is a scale invariant test statistic for testing exponentiality.
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The same procedure can be used to derive the test statistic based
on lower records. In that case we have

E(log f0(L1, . . . , Lk)) = −k log λ+λ
k∑

i=1

E(Li)+
k−1∑
i=1

E(log(1−e−λLi)).

So a scale invariant test statistic in the case of lower record values is

TL =
k(k − 1)

2
−

k∑
j=1

(pj+1 − pj)
(

gj + gj+1

2

)

= −Îk log λ̂ + λ̂
k∑

i=1

Li +
k−1∑
i=1

log(1− e−λ̂Li),

where λ̂ is as in (10) with Ui replaced by Li and the corresponding
ps,

gj = log
(

Lj+1 − Lj−1

pj+1 − pj−1

) k∑
i=1

(− log(pj))
i−1

(i− 1)!
, j = 1, . . . , k − 1

and

Ψj =
k∑

i=1

(− log(pj))
i−1

(i− 1)!
, j = 1, . . . , k − 1, Ψ0 = 0.

5 Critical values and powers of the test

The two test statistics derived in the previous sections are too com-
plicated to allow deriving their exact distributions under the null hy-
pothesis analytically. The critical values of the tests are obtained by
a simulation using 10,000 samples and are tabulated for α = 0.05, 0.1
and k = 3, 4, 5 in tables 1 and 3. Since the record values for larger
values of k are rare, we limited k to 5, the usual number of record
values in the application, in our simulation study. Another reason
for not considering values of k in excess of 5 is that the values of cor-
responding test statistics become unbounded due to rounding errors.
The powers of the test for α = 0.1 and different alternatives are also
tabulated in tables 2 and 4.
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Table 1. Critical values for different values of k and α

(upper record values)

α
k 0.05 0.1
3 6.19 5.48
4 8.12 7.38
5 11.00 10.18

Table 2. Powers of the test (upper record values)
Alternative Distribution

k χ2(3) χ2(5) N(5, 1) Γ(shape = 3) Γ(shape=5)
3 0.11 0.12 0.44 0.11 0.14
4 0.12 0.14 0.62 0.15 0.22
5 0.13 0.16 0.64 0.18 0.24

Alternative Distribution
k Weibull(shape=3) LN(0, 2) β(1, 2) β(2, 1)
3 0.21 0.32 0.12 0.38
4 0.35 0.42 0.14 0.65
5 0.37 0.52 0.17 0.82

Table 3. Critical values for different values of k and α

(lower record values)

α
k 0.05 0.1
3 8.75 6.66
4 8.94 7.32
5 12.77 9.23

Table 4. Powers of the test (lower record values)

Alternative Distribution
k χ2(3) χ2(5) N(5, 1) Γ(shape = 3)
3 0.12 0.19 0.54 0.20
4 0.18 0.26 0.80 0.33
5 0.20 0.33 0.82 0.38

Alternative Distribution
k Γ(shape=5) Weibull(shape=3) β(1, 2) β(2, 1)
3 0.28 0.29 0.11 0.32
4 0.51 0.48 0.13 0.38
5 0.54 0.51 0.15 0.39
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