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Abstract. Consider a sequence of n independent observations from
a population of increasing size αi, i = 1, 2, . . . and an absolutely
continuous initial distribution function. The distribution of the kth
record value is represented as a countable mixture, with mixing the
distribution of the kth record time and mixed the distribution of the
nth order statistic. Precisely, the distribution function and (power)
moments of the kth record value are expressed by series, with co-
efficients being the signless generalized Stirling numbers of the first
kind. Then, the probability density function and moments of the kth
record value in a geometrically increasing population are expressed by
q-series, with coefficients being the signless q-Stirling numbers of the
first kind. In the case of a uniform distribution for the initial popu-
lation, two equivalent q-series expressions of the jth (power) moment
of the kth record value are derived. Also, the distribution function
and the moments of the kth record value in a factorially increasing
population are deduced.

Key words and phrases: Generalized Stirling numbers of the first kind, mixture
distribution, noncentral Stirling numbers of the first kind, q-Stirling numbers of
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1 Introduction

The basic record model was introduced and studied in an innovative
paper by Chandler (1952). After that a large number of publications
devoted to record statistics and their applications have appeared.
The review papers of Glick (1978), Nevzorov (1988), Nagaraja (1988)
and the books of Ahsanullah (1995), Arnold et al (1998) and Nevzorov
(2001) include extensive lists of references.

Motivated by the increasing frequency of record breakings in the
Olympic games, Yang (1975) proposed a model in which the breakings
are attributed to the increase in the population size. In this model
the random variable Xi is the maximum of an increasing number αi

of independent and identically distributed random variables. Specif-
ically, Xi = max{Xi,1, Xi,2, . . . , Xi,αi}, where Xi,j , j = 1, 2, . . . , αi,
i = 1, 2, . . . , is a double sequence of independent and identically dis-
tributed random variables, with an absolutely continuous distribution
function F (x), and αi is the population size of the world at the ith
Olympic game, i = 1, 2, . . . . Then Xi, i = 1, 2, . . . , is a sequence of in-
dependent random variables with FXi(x) = [F (x)]αi , i = 1, 2, . . . . Let
Tk be the time (index) of the kth record, k = 1, 2, . . . . Then T1 = 1
(since by convention X1 is a record) and Tk = min{j : Xj > XTk−1

},
k = 2, 3, . . . . In the case αi = θλi−1, i = 1, 2, . . . , θ ≥ 1, λ > 1,
of a geometrically increasing population, Yang (1975) showed that
the limiting distribution of the inter-record times W1 = T1 = 1,
Wk = Tk − Tk−1, k = 2, 3, . . . , is geometric with failure probability
q = 1/λ. Further, Charalambides (2007a) obtained the distributions
of the number of records and the record and inter-record times in
terms of the signless (absolute) q-Stirling numbers of the first kind.
Arnold et al (1992) considered Yang’s model in the case θ = λ and,
in the case of a uniform distribution for the initial population, ob-
tained series expressions for the tail probability P (R2 > x) and the
expectation E(R2), where Rk = XTk

is the kth record value. Note
that, since they count only the nontrivial records, there is a shift by
one unit in the notation of the kth record value. Their statement
that the expression of E(R2) does not reduce to 3/4 as it should for
λ = 1 and that the computation of other expectations in this setting
is apparently difficult, kindled the curiosity of the present author.
A representation of the kth record value distribution as a countable
mixture facilitated the derivation of a simple expression for E(Rk),
which in the particular case λ = 1 and k = 2 reduces to 3/4.

Nevzorov (1987, 1988) considered a generalization of Yang’s model,
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by allowing αi, i = 1, 2, . . . to be any positive numbers (not necessarily
integers) and derived several asymptotic results. Also, Balakrishnan
and Nevzorov (1997) expressed the probability function of the num-
ber Nn of records up to time n and the probability function of the
time (index) Tk of the kth record in terms the signless generalized
Stirling numbers of the first kind.

In the present paper, Nevzorov’s generalization of Yang’s model
is considered and the distribution of the kth record value Rk is rep-
resented as a (countable) mixture distribution. This representation
is then used to deduce the distribution and moments of Rk. The
probability density function and the moments of the kth record value
Rk in a geometrically increasing population are expressed by q-series,
with coefficients being the signless (absolute) q-Stirling numbers of
the first kind. In the particular case of a uniform distribution for the
initial population, a simple expression for E(Rk) is deduced, which
for q → 1 reduces to 1 − (1/2)k, k = 1, 2, . . . , as it should. Fur-
ther, two equivalent q-series expressions of E(Rj

k), j = 2, 3, . . . , are
derived. Also, the distribution function and the moments of the kth
record value Rk in a factorially increasing population, considered by
Sibuya and Nishimura (1997), are deduced.

2 Distribution and moments of record values

2.1 Nevzorov’s model

Let Xi, i = 1, 2, . . . , be a sequence of independent random variables
with

FXi(x) = [F (x)]αi , x ∈ R, i = 1, 2, . . . ,

where αi, i = 1, 2, . . . , is a sequence of positive real numbers. Also,
let Xi:n, i = 1, 2, . . . , n, be the ith order statistic of the sequence Xi,
i = 1, 2, . . . , n. The distribution of the kth record value Rk = XTk:Tk

may be represented as a mixture distribution as follows. Clearly,

P (Rk ≤ x, Tk = n) = P (Tk = n)P (Rk ≤ x|Tk = n)
= P (Tk = n)P (Xn:n ≤ x|Tk = n),

for x ∈ R and n = k, k+1, . . . . Further, consider the record indicators
Ij , j = 1, 2, . . . , defined by Ij = 1, if Xj is a record, and Ij =
0, otherwise. Since Xn:n is independent of I1, I2, . . . , In [Nevzorov
(2001), p. 114] and {Tk = n} = {I1 + I2 + · · ·+ Ik−1 = n− 1, Ik = 1}
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for k ≤ n, it follows that Xn:n is independent of the event {Tk = n}
for k ≤ n and so P (Xn:n ≤ x|Tk = n) = P (Xn:n ≤ x). Consequently

P (Rk ≤ x, Tk = n) = P (Tk = n)P (Xn:n ≤ x),

for x ∈ R and n = k, k + 1, . . . , and

FRk
(x) =

∞∑
n=k

P (Tk = n)FXn:n(x), x ∈ R. (2.1)

Notice that the distribution of the kth record value Rk is a (countable)
mixture, with mixing the distribution of the kth record time Tk and
mixed the distribution of the nth order statistic Xn:n.

The probability function of Tk was obtained by Balakrishnan and
Nevzorov (1997) as

P (Tk = n) =
|s(n− 1, k − 1;a)|∏n

i=1(1 + ai−1)
, n = k, k + 1, . . . , (2.2)

where |s(n, k;a)| is the signless generalized Stirling numbers of the
first kind, which may be defined by [see e.g.Charalambides (2002)]

n∏
i=1

(t + ai−1) =
n∑

k=0

|s(n, k;a)|tk, n = 0, 1, . . . ,

with a = (a0, a1, a2, . . .), where

a0 = 0, ai =
si

αi+1
, si = α1 + α2 + · · ·+ αi, i = 1, 2, . . . .

It is noteworthy that, for any given vector a = (a0, a1, a2, . . .) with
positive components ai, i = 1, 2, . . . , it is possible to construct a
sequence αi, i = 1, 2, . . . , of positive numbers for which equation
(2.2) is satisfied. Specifically, α1 = 1, α2 = 1/a1,

αi =
(

1 +
1
a1

)(
1 +

1
a2

)
· · ·

(
1 +

1
ai−2

)
1

ai−1
, i = 2, 3, . . . .

Further, the probability that Xi is a record is given by

pi =
αi

si
=

αi

α1 + α2 + · · ·+ αi
, i = 1, 2, . . . .

Also, the distribution function of Xn:n is readily deduced as

FXn:n(x) =
n∏

i=1

[F (x)]αi = [F (x)]sn , x ∈ R. (2.3)
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Then, introducing expressions (2.2) and (2.3) into (2.1) it follows that

FRk
(x) =

∞∑
n=k

|s(n− 1, k − 1;a)|∏n
i=1(1 + ai−1)

[F (x)]sn , x ∈ R (2.4)

and so

E(Rj
k) =

∞∑
n=k

|s(n− 1, k − 1;a)|∏n
i=1(1 + ai−1)

E(Xj
n:n), j = 1, 2, . . . , (2.5)

with

E(Xj
n:n) = sn

∫ ∞

−∞
xj [F (x)]sn−1f(x)dx

= sn

∫ 1

0
[F−1(u)]jusn−1du, j = 1, 2, . . . .

For a general sequence αi, i = 1, 2, . . . (or equivalently ai, i =
1, 2, . . .), expressions (2.4) and (2.5) can not be reduced any further.
The particular case of the sequence αi = 1, i = 1, 2, . . . , which corre-
sponds to the case of independent and identically distributed random
variables Xi, i = 1, 2, . . . , with a common absolutely continuous dis-
tribution function F (x), x ∈ R, is an exception. In this case, the
signless generalized Stirling numbers of the first kind reduce to the
usual Stirling numbers of the first kind and from expression (2.4), on
using their exponential generating function, the well known proba-
bility density function of Rk is deduced.

Illustrating the applications of expressions (2.4) and (2.5), the
case of geometrically increasing population, discussed by Arnold et
al (1992) and the case of factorially increasing population, considered
by Sibuya and Nishimura (1997), are examined.

2.2 Geometrically increasing population

Arnold et al (1992) considered a geometrically increasing population
with

αi = λi = q−i, i = 2, 3, . . . , 0 < q < 1.

Clearly

sn =
n∑

i=1

q−i = q−n[n]q, n = 1, 2, . . . ,

where [n]q = (1− qn)/(1− q) is the q-number.
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The probability mass function of the kth record time Tk is then
deduced as [Charalambides (2007a)]

P (Tk = n) =
|sq(n− 1, k − 1)|

[n]q!
, n = k, k + 1, . . . ,

where [n]q! = [1]q[2]q · · · [n]q is the q-factorial of n and |sq(n, k)| is the
signless q-Stirling number of the first kind. These numbers may be
defined by

[t]n,q = q−(n
2)

n∑
k=0

sq(n, k)[t]kq , n = 0, 1, . . . ,

where [t]n,q = [t]q[t− 1]q · · · [t− n + 1]q is the q-factorial of t of order
n.

Therefore, the distribution and the probability density functions
of Rk are deduced from (2.4) as

FRk
(x) =

∞∑
n=k

|sq(n− 1, k − 1)|
[n]q!

[F (x)]q
−n[n]q , x ∈ R

and

fRk
(x) = f(x)

∞∑
n=k

q−n|sq(n− 1, k − 1)|
[n− 1]q!

[F (x)]q
−n[n]q−1, x ∈ R.(2.6)

Note that, on using the limiting expressions limq→1[n]q = n, limq→1[n−
1]q! = (n− 1)! and limq→1 |sq(n− 1, k − 1)| = |s(n− 1, k − 1), where
|s(n − 1, k − 1)| is the signless Stirling numbers of the first kind, it
follows that

lim
q→1

fRk
(x) = f(x)

∞∑
n=k

|s(n− 1, k − 1)|
(n− 1)!

[F (x)]n−1, x ∈ R.

Since
∞∑

n=k

|s(n− 1, k − 1)| un−1

(n− 1)!
=

[− log(1− u)]k−1

(k − 1)!

[see e.g. Charalambides (2002), p. 283], it reduces to

lim
q→1

fRk
(x) = f(x)

[− log(1− F (x))]k−1

(k − 1)!
, x ∈ R,
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as it should. Further, the jth moment of Rk is readily deduced from
(2.6) as

E(Rj
k) =

∞∑
n=k

|sq(n− 1, k − 1)|
[n]q!

E(Xj
n:n), x ∈ R, j = 1, 2, . . . , (2.7)

with

E(Xj
n:n) = q−n[n]q

∫ ∞

−∞
xj [F (x)]q

−n[n]q−1f(x)dx

= q−n[n]q
∫ 1

0
[F−1(u)]juq−n[n]q−1du, j = 1, 2, . . . .

Example 2.2.1. Suppose that the initial population is uniformly
distributed in the interval [0, 1],

F (x) =


0, −∞ < x < 0
x, 0 ≤ x < 1
1, 1 ≤ x < ∞.

The probability density function of Rk is deduced from (2.6) as

fRk
(x) =

∞∑
n=k

q−n|sq(n− 1, k − 1)|
[n− 1]q!

xq−n[n]q−1, 0 ≤ x ≤ 1.

Also, from (2.7) and since

E(Xj
n:n) =

q−n[n]q
q−n[n]q + j

, j = 1, 2, . . . ,

the jth moment of Rk is expressed as

E(Rj
k) =

∞∑
n=k

|sq(n− 1, k − 1)|
[n− 1]q!([n]q + jqn)

, j = 1, 2, . . . .

Further, using the expansion

1
[n]q + jqn

=
1

[n]q
− jqn

[n]q[n + 1]q
+

∞∑
i=2

(−1)ici,j
qni

[n + i]i+1,q
,

with

ci,j =
i−1∏
r=0

(j − [r]q), i = 1, 2, . . . , j = 1, 2, . . . , (2.8)
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this q-series may be written, alternatively, as

E(Rj
k) =

∞∑
n=k

|sq(n− 1, k − 1)|
[n]q!

− j
∞∑

n=k

qn|sq(n− 1, k − 1)|
[n + 1]q!

+
∞∑
i=2

(−1)ici,j

∞∑
n=k

|sq(n− 1, k − 1)|
[n + i]q!

, j = 1, 2, . . . .

Then, since [Charalambides (2007a)]

∞∑
n=k

qn(m−1)|sq(n− 1, k − 1)|
[n + m− 1]n,q

=
qk(m−1)

[m]kq
, m = 1, 2, . . . , k = 2, 3, . . . ,

it reduces to

E(Rj
k) = 1− jqk

[2]kq
+

∞∑
i=2

(−1)i ci,j

[i]q!
· qki

[i + 1]kq
, j = 1, 2, . . . . (2.9)

Note that, on using the limiting expressions limq→1[i]q! = i! and
limq→1 ci,j = (j)i, it follows that

lim
q→1

E(Rj
k) =

j∑
i=0

(−1)i

(
j

i

)
1

(i + 1)k
, j = 1, 2, . . . ,

as it should. The expected value of Rk is readily deduced from (2.9)
as

E(Rk) = 1− qk

[2]kq
, k = 2, 3, . . . .

A bound of the jth moment E(Rj
k), j = 2, 3, . . . , is furnished by the

corresponding moment E(R[j]q
k ). Specifically, replacing j by [j]q in

(2.8) and (2.9) it follows that

ci,[j]q = q(
i
2)[j]i,q, i = 1, 2, . . . , j = 1, 2, . . . ,

and so

E(R[j]q
k ) =

j∑
i=0

(−1)iq(
i
2)

[
j

i

]
q

qki

[i + 1]kq
, j = 2, 3, . . . .

Since [j]q < j, j = 2, 3, . . . , for 0 < q < 1,

E(Rj
k) < E(R[j]q

k ), j = 2, 3, . . . .
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In particular,

E(R2
k) < E(R[2]q

k ) = 1− [2]q
qk

[2]kq
+

q3k

[3]kq

and so

Var(Rk) < 1− [2]q
qk

[2]kq
+

q3k

[3]kq
−

(
1− qk

[2]kq

)2

,

that is

Var(Rk) < (2− [2]q)
qk

[2]q
+

(
q3k

[3]kq
− q2k

[2]2k
q

)
.

Note that this bound for q → 1 converges to (1/3)k − (1/2)k, which
is the variance of Rk in the case Xi, i = 1, 2, . . . , is a sequence of
independent and identically distributed random variables, with an
absolutely continuous distribution function.

2.3 Factorially increasing population

Sibuya and Nishimura (1997) aiming to provide some flexibility in
choosing the record breaking rate proposed a model with

pi =
θ

θ + λ + i− 1
, i = 1, 2, . . . , 0 < θ < ∞, 0 ≤ λ < ∞.

Note that p1 < 1, for λ > 0, by contrast with the case p1 = 1
of Nevzorov’s model. The assumption p1 < 1 is equivalent to the
following modification of Nevzorov’s record probabilities:

pi =
αi

α0 + si
=

αi

α0 + α1 + · · ·+ αi
, i = 1, 2, . . . .

with αi > 0, i = 0, 1, . . . . Then, from αi = (α0+α1+· · ·+αi−1)pi/(1−
pi), i = 1, 2, . . . , and taking the arbitrary constant α0 = λ/θ, it
follows inductively that

αi =
(θ + λ + i− 2)i−1

(λ + i− 1)i−1
, i = 1, 2, . . . , 0 < θ < ∞, 0 ≤ λ < ∞,

where (t)i = t(t− 1) · · · (t− i + 1) denotes the factorial of t of order
i. This expression, as indicated, holds true and in the particular
case λ = 0. In this case α0 = 0 and p1 = 1 and the corresponding
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expression of the sequence αi > 0, i = 1, 2, . . . , is obtained inductively
by using the relation αi = (α1+α2+· · ·+αi−1)pi/(1−pi), i = 2, 3, . . . ,
and setting α1 = 1.

The sequence of positive numbers αi, i = 1, 2, . . . , for θ > 1, is
strictly increasing. Also, in the particular case θ = 1 and λ = 0,
α0 = 0 and αi = 1, i = 1, 2, . . . , which is the case of independent and
identically distributed random variables Xi, i = 1, 2, . . . . Further, the
sequence αi, i = 1, 2, . . . , satisfies the first order recurrence relation

(λ + i)αi+1 = (θ + λ + i− 1)αi, i = 1, 2, . . . ,

with α1 = 1. Writing it as

(λ + i)αi+1 − (λ + i− 1)αi = θαi, i = 1, 2, . . . ,

with α1 = 1, and summing for i = 1, 2, . . . , j, it follows that

sj =
j∑

i=1

αi =
(λ + j)αj+1

θ
− λ

θ
, j = 1, 2, . . . .

Therefore

α0 + sj =
j∑

i=0

αi =
(θ + λ + j − 1)j

θ(λ + j − 1)j−1
, j = 1, 2, . . .

and

a0 =
α0

α1
=

λ

θ
, aj =

α0 + sj

αj+1
=

λ + j

θ
, j = 1, 2, . . . .

The probability function of Tk is then deduced as [Sibuya and Nishimura
(1997)]

P (Tk = n) =
|s(n− 1, k − 1;λ)|θk

(θ + λ + n− 1)n
, n = k, k + 1, . . . , (2.10)

where |s(n− 1, k− 1;λ)| is the noncentral signless Stirling number of
the first kind, which may be defined by [Charalambides (2002)]

(t + λ + n− 1)n =
n∑

k=0

|s(n, k;λ)|tk, n = 0, 1, . . . .

It is interesting to note that in the particular case θ = 1 and λ = r−1
a nonnegative integer, Lk,r = Tk +r−1 is the time of the kth r-record
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of the first type, while in the particular case θ = r a positive integer
and λ = 0, Tk,r = Tk + r − 1 is the time of the kth r-record of the
second type [cf. Charalambides (2007b)].

The distribution function and moments of Rk , on using (2.10),
are deduced from (2.4) and (2.5) as

FRk
(x) =

∞∑
n=k

|s(n− 1, k − 1;λ)|θk

(θ + λ + n− 1)n
[F (x)]sn , x ∈ R (2.11)

and

E(Rj
k) =

∞∑
n=k

|s(n− 1, k − 1;λ)|θk

(θ + λ + n− 1)n
E(Xj

n:n), j = 1, 2, . . . , (2.12)

with

E(Xj
n:n) = sn

∫ ∞

−∞
xj [F (x)]sn−1f(x)dx

= sn

∫ 1

0
[F−1(u)]jusn−1du, j = 1, 2, . . . ,

where

sn =
(θ + λ + n− 1)n − (λ + n− 1)n

θ(λ + n− 1)n−1
, n = 1, 2, . . . .

Example 2.3.1. As in Example 2.2.1, suppose that the initial pop-
ulation is uniformly distributed in the interval [0, 1]. Then distribu-
tion function of Rk, by (2.11), is

FRk
(x) =

∞∑
n=k

|s(n− 1, k − 1;λ)|θk

(θ + λ + n− 1)n
xsn , x ∈ R.

Also, from (2.12) and since

E(Xj
n:n) =

(θ + λ + n− 1)n − (λ + n− 1)n

(θ + λ + n− 1)n + (jθ − λ)(λ + n− 1)n−1
, j = 1, 2, . . . ,

the jth moment of Rk is expressed as

E(Rj
k) = θk

∞∑
n=k

|s(n− 1, k − 1;λ)|
(θ + λ + n− 1)n

× (θ + λ + n− 1)n − (λ + n− 1)n

(θ + λ + n− 1)n + (jθ − λ)(λ + n− 1)n−1
,
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for j = 1, 2, . . . . At first glance, the evaluation of this series is dif-
ficult if not impossible. As an example in deriving bounds of these
moments, consider the particular case λ = 0. Then

E(Rj
k) = θk

∞∑
n=k

|s(n− 1, k − 1)|
(θ + n− 1)n + (n− 1)!jθ

,

for j = 1, 2, . . . . Since (θ+n−1)n ≤ n! for 0 < θ ≤ 1 and (θ+n−1)n ≥
n! for 1 ≤ θ < ∞, it follows that

E(Rj
k) ≥ θkµ′j(k), for 0 < θ ≤ 1, j = 1, 2, . . . ,

and
E(Rj

k) ≤ θkµ′j(k), for 1 ≤ θ < ∞, j = 1, 2, . . . ,

where

µ′j(k) =
∞∑

n=k

|s(n− 1, k − 1)|
(n− 1)!(n + j)

, j = 1, 2, . . . .

Further, using the expression

1
n + j

=
j∑

i=0

(−1)i (j)i

(n + i)i+1
,

this series may be written, alternatively, as

E(Rj
k) =

j∑
i=0

(−1)i(j)i

∞∑
n=k

|s(n− 1, k − 1)|
(n− 1)!(n + i)i+1

=
j∑

i=0

(−1)i

(
j

i

) ∞∑
n=k

|s(n− 1, k − 1)|
(i + n)n

, j = 1, 2, . . . .

Then, since [see Charalambides (2002), p. 300]
∞∑

n=k

|s(n− 1, k − 1)|
(i + n)n

=
1

(i + 1)k
, i = 1, 2, . . . , k = 1, 2, . . . ,

it reduces to

µ′j(k) =
j∑

i=0

(−1)i

(
j

i

)
1

(i + 1)k
, j = 1, 2, . . . .

Note that this is the jth moment of kth record value in the case
of independent and identically distributed random variables Xi, i =
1, 2, . . . .
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