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Abstract. Let Mi and M
′
i be the maximum and minimum of the

ith sample from k independent sample with different sample sizes,
respectively. Suppose that the survival distribution function of the
ith sample is F̄i = F̄αi , where αi is known and positive constant.
It is shown that how various exact non-parametric inferential proce-
dures can be developed on the basis of Mi’s and M

′
i ’s for distribution

function F without any assumptions about it other than F is contin-
uous. These include outer and inner confidence intervals for quantile
intervals and upper and lower confidence limits for quantile differ-
ences. Three schemes have been investigated and in each case, the
associated confidence coefficients are obtained. A numerical example
is given in order to illustrate the proposed procedure.

1 Introduction

The population quantile ξp of order p (0 < p < 1) of cumulative
distribution function (cdf) F is defined by ξp = inf{x : F (x) ≥ p}.

Key words and phrases: Coverage probability, proportional hazard model,
Quantile difference, Quantile interval, tolerance interval.
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The order statistics play an important role in the inferences related
to the quantiles; interested readers may refer to the books of Ser-
fling (1980), Arnold et al. (1992) and David and Nagaraja (2003).
In recent years, several articles have been published on nonparamet-
ric confidence intervals for quantiles based on usual order statistics,
ranked set sampling and record statistics. See for example, Hutson
(1999), Zielinski and Zielinski (2005), Chen (2000), Ozturk and Desh-
pande (2006), Balakrishnan and Li (2006), Deshpande et al. (2006),
Gulati and Padgett (1994), Ahmadi and Arghami (2003), Ahmadi
and Balakrishnan (2004) and references therein.

For 0 < p < q < 1, let F (ξp) = p and F (ξq) = q, Wilks (1962) pro-
posed the random intervals (Xi:n, Xj:n), j > i, as the outer and inner
confidence intervals for the quantile intervals (ξp, ξq), where Xi:n and
Xj:n are the ith and j th smallest observations in a random sample of
size n from F (x). Krewski (1976) obtained upper and lower bounds
for the confidence coefficients of outer confidence intervals. Reiss and
Ruschendorf (1976) improved the results of Krewski (1976). Sathe
and Lingras (1981) obtained even sharper bounds by using proper-
ties of convex functions. Meyer (1987) found the analogous results
of Wilks (1962) for finite populations. Ahmadi and Balakrishnan
(2005) obtained the outer and inner confidence intervals for quantile
intervals in terms of record statistics.

There are many experiments in which only the lowest or highest
observations are recorded. Some experiments which have been done
in different periods of times, only maxima are applied, for example
scientific competitions and in the other experiments only minima are
exerted, like speed sports. Sometimes, both minima and maxima
are used, say the lowest and highest temperature during a weak or a
month. Therefore, it is worthwhile to use the extreme order statistics
in a multisampling plan to do inference about various characteristics
of the parent distribution, i.e., mean, standard deviation, quantiles
and so on. Constructing nonparametric outer and inner confidence
intervals for quantile intervals on the basis of extreme order statistics
from k independent random samples is the main aim of this paper.
With this in mind, let Xi,j (1 ≤ i ≤ k, 1 ≤ j ≤ ni) be independent
random variables. Moreover for a fixed i, Xi,j ’s, (1 ≤ j ≤ ni) are
identically distributed with cdf

Fi(x) = 1− [1− F (x)]αi = 1− [F̄ (x)]αi , αi > 0, (1)

where F (x) is an absolutely continuous distribution function. The
aforementioned identity is well-known in the literature as the pro-



Outer and Inner Confidence Intervals 3

portional hazard rate model (see for example Lawless, 2003). Let
Mi (1 ≤ i ≤ k) be the maximum of a random sample of size ni;
that is, Mi = max{Xi,1, Xi,2, . . . , Xi,ni} and M

′
i is the corresponding

minimum. Then Mi’s (1 ≤ i ≤ k) are independent random variables
with cdf

FMi(x) =
(
1− [F̄ (x)]αi

)ni , i = 1, 2, . . . , k, (2)

also, M
′
i ’s (1 ≤ i ≤ k) are independent random variables with cdf

F
M

′
i
(x) = 1− [F̄ (x)]niαi , i = 1, 2, . . . , k. (3)

No previous work seems to have been done on quantile estimation
of F in (1). In Section 2, we will attempt to construct nonparamet-
ric confidence intervals for quantile intervals of F based on Mi’s and
M

′
i ’s. Various cases have been studied and in each case, the exact

nonparametric confidence intervals are obtained and the exact ex-
pressions for the confidence coefficients of these confidence intervals
are derived. Such intervals are exact and distribution-free in that the
corresponding coverage probabilities are known exactly without any
assumptions about the distribution F other than F is continuous.
An example to illustrate the proposed procedure is given in Section
3. At the end, some conclusions and discussions are presented.

2 Outer confidence intervals for quantile in-
tervals

Let p and q be any given real numbers satisfying 0 < p < q < 1, and
let (ξp, ξq) be the interval {x| p ≤ F (x) ≤ q}. The interval (L,U) is
called an outer confidence interval if containing an interval of parent
quantiles. Now, we show that how extreme order statistics from k
independent random samples come into the picture here in the form
of L and U . Toward this end, we consider three schemes.

2.1 Outer confidence intervals based on minima and
maxima

Let us arrange Mi’s and M
′
i ’s (1 ≤ i ≤ k) in ascending order and

denote the jth order statistic of the set {M ′
1,M1, . . . ,M

′
k,Mk} by

Vj:2k. In order to construct confidence interval for (ξp, ξq) in terms of
Vi:2k’s, first we obtain the joint cdf of Vi:2k and V2k:2k, which is stated
in the following.
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Theorem 2.1.1. Let M
′
r and Mr be corresponding minimum and

maximum of the rth random sample from distribution Fr (r = 1, . . . , k),
respectively and Vi:2k be the ith order statistic of the set

{M ′
1,M1, . . . ,M

′
k,Mk}.

Then, the joint cdf of (Vi:2k, V2k:2k), 1 ≤ i ≤ 2k − 1, is as follows

P (Vi:2k ≤ x, V2k:2k ≤ y)

=
2k∑
r=i

min(r,k)∑
j=[ r+1

2
]

∑
Ar−j,j,k

{ r−j∏
s=1

[Fts(x)]nts

j∏
s=r−j+1

{
[Fts(y)]nts

− [Fts(x)]nts − [Fts(y)− Fts(x)]nts
} k∏

s=j+1

[Fts(y)− Fts(x)]nts}, (4)

where [u] stands for the integer part of u and Ai1,i2,k extends over all
permutations of (t1, . . . , tk) from {1, . . . , k} such that t1 < · · · < ti1,
ti1+1 < · · · < ti2 and ti2+1 < · · · < tk.

Proof. For k = 1 the following identity is obvious

P
(
V1:2 ≤ x, V2:2 ≤ y

)
= [F1(y)]n1 − [F1(y)− F1(x)]n1 ,

which is also confirmed by (4), so we prove (4) for k ≥ 2. We can
write

P
(
Vi:2k ≤ x, V2k:2k ≤ y

)
= P (at least i of Mj or M

′
j , j = 1, . . . , k are at most x

and at least 2k of them are at most y)

=
2k∑
r=i

ηk(r, x, y),

where

ηk(r, x, y) = P (exactly r of Mj or M
′
j , j = 1, . . . , k are at most x

and exactly 2k of them are at most y).

It may be noted that under the assumptions, there are 2k statistics
as M

′
1 < M1, M

′
2 < M2, . . . ,M

′
k < Mk which are extracted from k
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independent random samples. Let k = 2, then we derive an exact
expression for η2(r, x, y), r = 1, . . . , 4. We get

η2(1, x, y) =
∑

A0,1,2

P (M
′
t1 ≤ x, x < Mt1 ≤ y)P (x < M

′
t2 ,Mt2 ≤ y),

η2(2, x, y) =
∑

A1,0,2

P (Mt1 ≤ x)P (x < M
′
t2 ,Mt2 ≤ y)

+
2∏

j=1

P (M
′
j ≤ x, x < Mj ≤ y),

η2(3, x, y) =
∑

A1,2,2

P (Mt1 ≤ x)P (M
′
t2 ≤ x, x < Mt2 ≤ y),

η2(4, x, y) =
2∏

j=1

P (Mj ≤ x).

By a careful scrutiny of the details for other values of k and a sim-
plification of computations, for k ≥ 2 one can deduce

ηk(r, x, y) =
min(r,k)∑
j=[ r+1

2
]

∑
Ar−j,j,k

{ r−j∏
s=1

P
(
Mts ≤ x

)

×
j∏

s=r−j+1

P
(
M

′
ts ≤ x, x < Mts ≤ y

)
×

k∏
s=j+1

P
(
M

′
ts > x, Mts ≤ y

)}
. (5)

It is not difficult to verify that

P (M
′
ts ≤ x, x < Mts ≤ y) = [Fts(y)]nts−[Fts(x)]nts−[Fts(y)−Fts(x)]nts

(6)
and

P (M
′
ts > x, Mts ≤ y) = [Fts(y)− Fts(x)]nts . (7)

By substituting Eqs. (6) and (7) in (5), the proof is complete. 2

From Theorem 2.1.1, we immediately have the following result.
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Corollary 2.1.2 The marginal cdf of Vi:2k is given by

P (Vi:2k ≤ x) =
2k∑
r=i

min(r,k)∑
j=[ r+1

2
]

∑
Ar−j,j,k

{ r−j∏
s=1

[Fts(x)]nts

j∏
s=r−j+1

{
1− [Fts(x)]nts

−[1− Fts(x)]nts
} k∏

s=j+1

[1− Fts(x)]nts

}
. (8)

The problem is to determine the coverage probability of the event
(Vi:2k ≤ ξp ≤ ξq ≤ Vj:2k), for j > i and q > p. We consider two cases:

Case I. j = 2k

Notice that for q > p,

γ(i, 2k; p, q) = P
(
Vi:2k ≤ ξp ≤ ξq ≤ V2k:2k

)
= P

(
Vi:2k ≤ ξp

)
− P

(
Vi:2k ≤ ξp, V2k:2k ≤ ξq

)
= α(i; p)− β(i, 2k; p, q), (9)

where from (1) and (8),

α(i; p) = P
(
Vi:2k ≤ ξp

)
=

2k∑
r=i

min(r,k)∑
j=[ r+1

2
]

∑
Ar−j,j,k

r−j∏
s=1

[1− (1− p)αts ]nts

×
j∏

s=r−j+1

{
1− (1− p)αtsnts −

[
1− (1− p)αts

]nts
}

×(1− p)
∑k

s=j+1 αtsnts . (10)
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Also, by Theorem 2.1.1 we have,

β(i, 2k; p, q) = P
(
Vi:2k ≤ ξp, V2k:2k ≤ ξq

)
=

2k∑
r=i

min(r,k)∑
j=[ r+1

2
]

∑
Ar−j,j,k

{ r−j∏
s=1

[1− (1− p)αts ]nts

×
j∏

s=r−j+1

{
[1− (1− q)αts ]nts

−[1− (1− p)αts ]nts − [(1− p)αts − (1− q)αts ]nts
}

×
k∏

s=j+1

[(1− p)αts − (1− q)αts ]nts

}
. (11)

Thus, from Eqs. (9) – (11) we have a confidence interval (Vi:2k, V2k:2k),
1 ≤ i ≤ 2k − 1, for quantile interval (ξp, ξq), q > p, whose confidence
coefficient is free of F .

Remark 1. It can be shown that in the special case that αi = 1
and ni = n (i = 1, . . . , k),

max
i,j

γ(i, j; p, q) = 1− (1− p)nk − qnk + (q − p)nk.

Case II. j < 2k

In this case it is very intractable to calculate the exact expression for
the confidence coefficient of (Vi:2k, Vj:2k) for j > i (i, j = 1, . . . , 2k−1)
as an outer confidence interval for (ξp, ξq), because the calculation of
the joint cdf of (Vi:2k, Vj:2k) is too complicated, so we find confidence
level instead of confidence coefficient. From (11), we have

β(i, j; p, q) = P
(
Vi:2k ≤ ξp, Vj:2k ≤ ξq

)
= P

(
Vi:2k ≤ ξp, V2k:2k ≤ ξq

)
+P

(
Vi:2k ≤ ξp, Vj:2k ≤ ξq < V2k:2k

)
≤ P

(
Vi:2k ≤ ξp, V2k:2k ≤ ξq

)
+ P

(
Vj:2k ≤ ξq < V2k:2k

)
= β(i, 2k; p, q) + α(j, q)− α(2k, q).

Thus, from (9) the upper and lower bounds for γ(i, j; p, q) = P
(
Vi:2k ≤

ξp ≤ ξq ≤ Vj:2k

)
are as follows

γ(i, 2k; p, q) + α(2k, q)− α(j, q) ≤ γ(i, j; p, q) ≤ γ(i, 2k; p, q), (12)
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where α(·, ·) is defined in (10).
If p, q, αr’s, nr’s and the desired confidence level γ are specified,

we can choose i and j so that γ(i, j; p, q) achieve to γ. Note that the
choice of i and j is not unique, the one that minimizes the expected
length of the confidence interval appears reasonable. Because of the
fact that E(Vj:2k − Vi:2k) is a step function of j − i, one can choose
i and j as close together as possible to accomplish a specified confi-
dence coefficient. It is obvious that for fixed i, the expected length
of (Vi:2k, Vj:2k) is minimized by minimizing j.

2.2 Outer confidence intervals based on maxima

Denote the rth order statistic of the set {M1,M2, . . . ,Mk} by Mr:k.
In this subsection, we obtain the outer confidence intervals for (ξp, ξq),
q > p, in terms of Mr:k’s. First, we present the expressions for the
probability of the events {Mi:k ≤ ξp} and

{
Mi:k ≤ ξp,Mj:k ≤ ξq, j >

i, q > p
}
, respectively. From David and Nagaraja (2003, p. 96), we

have

αmax(i; p) = P
(
Mi:k ≤ ξp

)
=

k∑
r=i

∑
Γr,k

r∏
s=1

FMts
(ξp)

k∏
s=r+1

F̄Mts
(ξp)

=
k∑

r=i

∑
Γr,k

r∏
s=1

[1− (1− p)αts ]nts

×
k∏

s=r+1

{
1−

[
1− (1− p)αts

]nts
}
, (13)

where the summation index Γr,k extends over all permutations (t1, . . . ,
tk) of {1, . . . , k} for which t1 < · · · < tr and tr+1 < · · · < tk. Also,
from David and Nagaraja (2003, p.113, Exe. 5.2.3), we find

βmax(i, j; p, q) = P
(
Mi:k ≤ ξp,Mj:k ≤ ξq

)
=

∑
Sr1,r2,r3

1
r1!r2!r3!

∑
∆k

{ r1∏
s=1

FMts
(ξp)

×
r1+r2∏

s=r1+1

[FMts
(ξq)− FMts

(ξp)]
k∏

s=r1+r2+1

F̄Mts
(ξq)

}
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=
∑

Sr1,r2,r3

1
r1!r2!r3!

∑
∆k

{ r1∏
s=1

[1− (1− p)αts ]nts

×
r1+r2∏

s=r1+1

{
[1− (1− q)αts ]nts − [1− (1− p)αts ]nts

}
×

k∏
s=r1+r2+1

{
1− [1− (1− q)αts ]nts

}}
, (14)

where the summation index Sr1,r2,r3 extends over all values of (r1, r2,
r3) such that r1 ≥ i, r1 + r2 ≥ j, r1 + r2 + r3 = k and the summation
index ∆k extends over all permutations (t1, . . . , tk) of {1, . . . , k}.

So, from (13) and (14), one can readily obtain the confidence
coefficient of the outer confidence interval (Mi:k,Mj:k), j > i, for
(ξp, ξq), q > p,

γmax(i, j; p, q) = P
(
Mi:k ≤ ξp ≤ ξq ≤ Mj:k

)
= αmax(i; p)− βmax(i, j; p, q). (15)

Remark 2. In the special case αi = 1 and ni = n (i = 1, . . . , k),
we have

max
i,j

γmax(i, j; p, q) = 1− (1− pn)k − qnk + (qn − pn)k.

2.3 Outer confidence intervals based on minima

It is obvious that the minima contain more information than maxima
about the left tail of the distributions. So, for constructing confidence
intervals for (ξp, ξq), whenever p < q < 0.5, based on only minima
or maxima, it is better to use minima instead of maxima. Let M

′
r:k

denote the rth order statistic of the set {M ′
1,M

′
2, . . . ,M

′
k}. Similar

to the previous subsection, the confidence coefficient of (M
′
i:k ≤ ξp ≤

ξq ≤ M
′
j:k

)
can be obtained as follows.

γmin(i, j; p, q) = αmin(i; p)− βmin(i, j; p, q), (16)
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where

αmin(i; p) = P
(
M

′
i:k ≤ ξp

)
=

k∑
r=i

∑
Γr,k

r∏
s=1

F
M

′
ts

(ξp)
k∏

s=r+1

F̄
M

′
ts

(ξp)

=
k∑

r=i

∑
Γr,k

r∏
s=1

[1− (1− p)αtsnts ](1− p)
∑k

s=r+1 αtsnts

and

βmin(i, j; p, q) = P
(
M

′
i:k ≤ ξp,M

′
j:k ≤ ξq

)
=

∑
Sr1,r2,r3

1
r1!r2!r3!

∑
∆k

{ r1∏
s=1

[1− (1− p)αtsnts ]

×
r1+r2∏

s=r1+1

[
(1− p)αtsnts − (1− q)αtsnts

]
×(1− q)

∑k
s=r1+r2+1 αtsnts

}
.

Thus, we have a confidence interval (M
′
i:k,M

′
j:k), j > i (i, j = 1, . . . , k),

for quantile interval (ξp, ξq), q > p, whose confidence coefficient is free
of F .

Remark 3. For the special case αi = 1 and ni = n (i = 1, . . . , k),
we get

max
i,j

γmin(i, j; p, q) = 1−(1−p)nk−
(
1−(1−q)n

)k+
(
(1−p)n−(1−q)n

)k
.

3 Numerical computations

To illustrate the results of this paper, we assume F (x) = 1 − e−x

and k = 5. For given ni’s and αi’s (i = 1, . . . , 5), presented in Table
1, a random sample of size ni from F̄i(x) = e−αix (see Eq. (1)) is
generated. Minimum and maximum of each sample are extracted and
the results summarized in Table 1.



Outer and Inner Confidence Intervals 11

Table 1. Summary description of the generated data for given ni’s and
αi’s.

sample 1 sample 2 sample 3 sample 4 sample 5
ni 17 20 25 30 37
αi 0.561 0.815 1.112 1.459 2.053
M

′
i 0.006 0.114 0.004 0.022 0.012

Mi 9.133 4.631 3.719 1.513 2.096

From Eq. (12) and using the data in Table 1, we obtain the values
of lower bounds of γ(i, j; p, q) for given p and q and some choices of i
and j. The results are tabulated in Table 2 and help us to choose the
appropriate outer confidence interval for given pth and qth quantile
interval.

Table 2. Values of lower bounds of γ(i, j; p, q) using (12) and Table 1.

p = 0.1 p = 0.25 p = 0.5 p = 0.75
i j q = 0.25 q = 0.5 q = 0.75 q = 0.9 q = 0.5 q = 0.75 q = 0.9 q = 0.75 q = 0.9 q = 0.9
1 6 0.999 0.999 0.876 0.152 0.999 0.875 0.152 0.876 0.152 0.152

7 0.999 0.999 0.998 0.654 0.999 0.998 0.654 0.998 0.654 0.654
8 0.999 0.999 0.999 0.955 0.999 0.999 0.955 0.999 0.955 0.955
10 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

2 6 0.999 0.999 0.876 0.152 0.999 0.876 0.152 0.876 0.152 0.152
7 0.999 0.999 0.998 0.654 0.999 0.998 0.654 0.998 0.654 0.654
8 0.999 0.999 0.999 0.955 0.999 0.999 0.955 0.999 0.955 0.955
10 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

3 6 0.996 0.996 0.871 0.148 0.999 0.876 0.152 0.876 0.152 0.152
7 0.996 0.996 0.994 0.650 0.999 0.998 0.654 0.998 0.654 0.654
8 0.996 0.996 0.996 0.951 0.999 0.999 0.955 0.999 0.955 0.955
10 0.996 0.996 0.996 0.996 0.999 0.999 0.999 0.999 0.999 0.999

4 6 0.908 0.908 0.783 0.060 0.999 0.875 0.152 0.876 0.152 0.152
7 0.908 0.908 0.906 0.562 0.999 0.997 0.654 0.998 0.654 0.654
8 0.908 0.908 0.908 0.863 0.999 0.999 0.954 0.999 0.955 0.955
10 0.908 0.908 0.908 0.908 0.999 0.999 0.999 0.999 0.999 0.999

5 6 0.487 0.487 0.363 0.000 0.927 0.802 0.079 0.874 0.151 0.152
7 0.487 0.487 0.487 0.141 0.927 0.925 0.581 0.997 0.653 0.654
8 0.487 0.487 0.487 0.442 0.927 0.927 0.882 0.999 0.953 0.955
10 0.487 0.487 0.487 0.487 0.927 0.927 0.927 0.999 0.999 0.999

Considering the shortest interval length as an optimality criterion,
from Tables 1 and 2, the outer confidence intervals with confidence
level 95% for (ξp, ξq) are readily obtained and these results are pre-
sented in Table 3 for some choices of p and q. Note that for j = 10,
the values of γ(i, 10; p, q) in Table 2 are exact confidence coefficients
of outer confidence intervals (Vi:10, V10:10) for (ξp, ξq).
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Table 3. The outer CIs for (ξp, ξq) with confidence level 95%.

p q (i, j) (Vi:10, Vj:10) γ

0.1 0.25 (3, 6) (0.012, 1.513) 0.996
0.50 (3, 6) (0.012, 1.513) 0.996
0.75 (3, 7) (0.012, 2.096) 0.994
0.90 (3, 8) (0.012, 3.719) 0.951

0.25 0.50 (4, 6) (0.022, 1.513) 0.999
0.75 (4, 7) (0.022, 2.096) 0.997
0.90 (4, 8) (0.022, 3.719) 0.954

0.5 0.75 (5, 7) (0.114, 2.096) 0.997
0.90 (5, 8) (0.114, 3.719) 0.953

0.75 0.90 (5, 8) (0.114, 3.719) 0.954

As pointed in Section 2, the choice of i and j is not unique. For
example, from Tables 1 and 2, it is observed that each of (0.012, 2.096)
and (0.022, 2.096) can be considered as an outer confidence interval
with confidence level 95% for (ξ0.25, ξ0.75), whereas by considering the
shortest interval length criterion, the second one is accepted.

In order to compare three schemes proposed in Section 2, in gen-
eral it is too intractable to distinguish among them, theoretically.
But, intuitively, the confidence coefficients of the confidence intervals
on the basis of the minima and maxima jointly are greater than others
(It is confirmed by Table 4). Here, we give a numerical comparison.

Using the data in Table 1 and Eqs. (9), (15) and (16), one can
obtain the values of γ(i, 2k; p, q), γmax(i, j; p, q) and γmin(i, j; p, q) for
given p and q and some choices of i, j and k. Their maximum values
are tabulated in Table 4.

Table 4. Values of γmax(1, 5; p, q), γmin(1, 5; p, q) and γ(1, 10; p, q).

p q γmax(1, 5; p, q) γmin(1, 5; p, q) γ(1, 10; p, q)
0.1 0.25 0.000 0.073 0.999

0.50 0.000 0.001 0.999
0.75 0.000 0.000 0.999
0.9 0.000 0.000 0.999

0.25 0.50 0.001 0.001 0.999
0.75 0.001 0.000 0.999
0.90 0.001 0.000 0.999

0.5 0.75 0.034 0.000 0.999
0.90 0.034 0.000 0.999

0.75 0.90 0.230 0.000 0.999
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4 Concluding Remarks

In this paper, we developed the nonparametric inferential procedures
based on extreme order statistics from k independent random sam-
ples, where the observations of the ith sample coming from F̄i = (F̄ )αi

such that αi is known and positive constant. We obtained outer con-
fidence intervals for quantile intervals of F in three cases. These
intervals are all exact and distribution-free in that the corresponding
coverage probabilities are known exactly without any assumptions
about the distribution F other than that F is continuous. The pro-
posed procedure can be used for constructing inner confidence inter-
vals for quantile intervals as well as upper and lower confidence limits
for quantile differences:

• It may be noted that an outer confidence interval (Vi:2k, Vj:2k) for
the quantile interval (ξp, ξq) may also be viewed as a distribution-
free tolerance interval which specifies, with probability at least
γ(i, j; p, q), that no more than a proportion p of the population
F is below the lower limit Vi:2k, and simultaneously, no more
than a proportion (1−q) of the population F is above the upper
limit Vj:2k.

• Let p and q be any given real numbers satisfying 0 < p < q < 1,
and let

(
ξp, ξq

)
be the interval {x| p < F (x) < q}. Sometimes,

we may also be interested in the inner confidence intervals for
the quantile intervals. In this case it is desired to determine the
distribution-free coverage probability of the event

(
ξp ≤ L

′
<

U
′ ≤ ξq

)
. Then,

(
L
′
, U

′)
may be called an inner confidence

interval for the quantile interval (ξp, ξq). Notice that

P (ξp < L
′
< U

′
< ξq) = 1− P (L

′
< ξp ∪ U

′
> ξq)

= P (L
′
< ξp < ξq < U

′
)

+P (U
′
< ξq)− P (L

′
< ξp).

Therefore by using the results obtained in Section 2, the cov-
erage probabilities of the inner confidence intervals for quantile
intervals can be obtained in the different cases, while the statis-
tics Vi:2k, Mi:k or M

′
i:k are used in place of L

′
and U

′
.

• Another subject that is important in this field is to determine the
confidence limits for the quantile differences, ξq − ξp. Suppose
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that 1 ≤ i < j < r < s ≤ 2k, then we have

P
(
Vr:2k − Vj:2k ≤ ξq − ξp

)
≥ P

(
Vr:2k ≤ ξq, Vj:2k ≥ ξp

)
= P

(
ξp < Vj:2k < Vr:2k < ξq

)
and

P
(
Vs:2k − Vi:2k ≥ ξq − ξp

)
≥ P

(
Vs:2k ≥ ξq, Vi:2k ≤ ξp

)
= P

(
Vi:2k ≤ ξp < ξq ≤ Vs:2k

)
.

Therefore, we get

P
(
Vr:2k − Vj:2k ≤ ξq − ξp ≤ Vs:2k − Vi:2k

)
= P

(
Vr:2k − Vj:2k ≤ ξq − ξp, Vs:2k − Vi:2k ≥ ξq − ξp

)
= P

(
Vr:2k − Vj:2k ≤ ξq − ξp

)
−P

(
Vs:2k − Vi:2k ≤ ξq − ξp

)
= P

(
Vr:2k − Vj:2k ≤ ξq − ξp

)
+P

(
Vs:2k − Vi:2k ≥ ξq − ξp

)
− 1

≥ P
(
ξp < Vj:2k < Vr:2k < ξq

)
+P

(
Vi:2k ≤ ξp < ξq ≤ Vs:2k

)
− 1.

The similar relation may be obtained in terms of just Mi:k’s or
M

′
i:k’s.

• Let Yi,j (1 ≤ i ≤ k, 1 ≤ j ≤ ni) be independent random variables.
Moreover for a fixed i, Yi,j ’s, (1 ≤ j ≤ ni) are identically dis-
tributed with cdf Gi(x) = [G(x)]βi , where G(x) is an absolutely
continuous distribution function and βi is known and positive
constant. The aforementioned identity is well-known in the life-
time experiments literature as the proportional reversed hazard
model (see for example Lawless, 2003). In this case the results
of this paper hold with obvious modifications for the quantiles
of G.
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