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Abstract. We study the limiting behavior of weighted sums for
negatively associated (NA) random variables. We extend results in
Wu (1999) and a theorem in Chow and Lai (1973) for NA random
variables.

1 Introduction

Wu (1999) proved the equivalence of the almost sure and complete
convergence of a particular weighted sum of iid random variables. In
section 2 we extend this result to NA random variables. In section 3
we prove a theorem about almost sure convergence of the weighted
sum

n−
1
α

n∑
k=1

ankXk, 1 ≤ α ≤ 2,
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for negatively dependent random variables under the condition

lim sup
n→∞

n∑
k=1

a2
nk < ∞,

for double arrays {ank : n ≥ 1, 1 ≤ k ≤ n}. Basic definitions and
properties will be briefly listed in the remainder of this section for
later reference while obtaining the major results.

Definition 1.1. A sequence of random variables {Xn, n ≥ 1} is
said to be pairwise negatively quadratic dependent (NQD) if

P (Xi ≤ xi, Xj ≤ xj) ≤ P (Xi ≤ xi)P (Xj ≤ xj), (1.1)

for all xi, xj ∈ IR and for all i, j ≥ 1, i 6= j.

It is easy to show that definition (1.1) implies

P (Xi > xi, Xj > xj) ≤ P (Xi > xi)P (Xj > xj), (1.2)

for all xi, xj ∈ IR and for all i, j ≥ 1, i 6= j. Also we can show that
(1.2) implies that (1.1). Therefore (1.1) and (1.2) are equivalent.

Definition 1.2. A finite family of random variables {Xi, 1 ≤ i ≤ n}
is said to be negatively associated (NA) if for every pair of disjoint
subsets A and B of {1, 2, ..., n}

COV {f1(Xi, i ∈ A), f2(Xj , j ∈ B)} ≤ 0,

whenever f1 and f2 are coordinatewise increasing and such that the
covariance exists. An infinite family of random variables is NA if
every finite subfamily is NA.

This dependence structure was first introduced by Alam and Sax-
ena (1981) and carefully studied by Joag-Dov and Proschan (1983).
Joag-Dov and Proschan (1983) showed that negatively correlated nor-
mal random variables are NA, also permutation distribution are NA.
Readers can refer to Joag-Dov and Proschan (1983) for other inter-
esting results.

Remark 1.1. Every sequence of NA random variables is also pair-
wise NQD.
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Remark 1.2. Let {Xn, n ≥ 1} be a sequence of NA random vari-
ables. Then for any disjoint A, B and positive λj

,
s, Σk∈AλkXk and

Σl∈BλlXk are NQD.

Remark 1.3. Let {Xn, n ≥ 1} be a sequence of NA random
variables. Then the sequence of {−Xn, n ≥ 1} is also NA random
variables.

For a sequence of NA random variables and positive λj
,
s, we have

Proposition 1.1. Let {Xn, n ≥ 1} be a sequence of NA random
variables, then we have the following inequality

Eexp(Σk∈AλkXk) ≤
∏
k∈A

E exp(λkXk). (1.3)

Proof. See (P2), page 46 in Mari et al. (2001).

Definition 1.3. A random variable X is said to be a general-
ized Gaussian(GG) random variable if there exists a nonnegative real
number α, such that for each real number t,

EetX ≤ e
t2α2

2 . (1.4)

The minimum of the α
,
s satisfying (1.4) will be denoted by τ(X).

(cf. Chow, 1966.)

Definition 1.4. A sequence of random variables {Xn, n ≥ 1} is
said to converge completely to the random variable X if

∑∞
n=1 P (|Xn−

X| > ε) < ∞ for each ε > 0.
This definition is due to Hsu and Robbins(1947).

Throughout this note, let {Xn, n ≥ 1} be a sequence of NA iden-
tically distributed random variables with EX1 = 0.

2 Main result

Let

µn :=
1

log log n

n∑
j=2

Xn+2−j

j log j
,
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and it is assumed hereafter that n > n0 = [e20], with [.] denoting the
integer part as usual.

Wu (1999) proved the following theorem for iid random variables.
We extend it for NA identically distibuted random variables. The
constant C in the following may denote different quantities at differ-
ent appearances.

Theorem 2.1. We have µn → 0 a.s. if and only if µn → 0 com-
pletely.
Proof. We know that if µn → 0 completely, then the Borel-Canteli
lemma trivially implies that, µn → 0 a.s. The converse follows from
lemmas (2.2) and (2.3) below.

Lemma 2.1. We have
n∑

j=[ 1
2

log n]

log
(

1 + C
(

log n
j log j

)2
)

< C log n.

For proof see Wu (1999).

Lemma 2.2. If µn → 0 a.s. then

µn
(1) :=

1
log log n

n∑
j=[ 1

2
log n]

Xn+2−j

j log j
→ 0, completely,

and

1
log log n

[ 1
2

log[n log n]]∑
j=[ 1

2
log n]+1

Xn+2−j

j log j
→ 0, completely.

Proof. For θ ∈ [0, 1], we have |eθX − 1 − θX| ≤ θ2e|X|. So EeθX ≤
1 + θ2Ee|X| = 1 + Cθ2. Note that if n > n0 and n ≥ j ≥ [12 log n],
then (log n)/(j log j) < 1. Hence, for any ε > 0, by proposition (1.1)
and lemma (2.1). We have

∞∑
n=n0

P (µn
(1) > ε) ≤

∞∑
n=n0

n−ε log log nEn

∑n

j=[ 12 log n]

Xn+2−j
j log j

≤
∞∑

n=n0

n−ε log log n
n∏

j=[ 1
2

log n]

Ee
( log n

j log j
)Xn+2−j
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≤
∞∑

n=n0

n−ε log log n
n∏

j=[ 1
2

log n]

(
1 + C

(
log n
j log j

)2
)

≤
∞∑

n=n0

n−ε log log neC log n < ∞.

Similarly we can obtain
∑∞

n=n0
P (µn

(1) < −ε) < ∞. The first
statement now follows if we combine the two inequalities together.
The same technique yields the second statement.

Lemma 2.3. If

µn
(2) :=

1
log log n

[( 1
2
) log n]∑
j=2

Xn+2−j

j log j
→ 0, a.s.

then
µn

(2) → 0, completely.

Proof. For any ε > 0, we have

0 = P (lim sup
n→∞

|µn
(2)| > ε) ≥ P (lim sup

m→∞
|µn(m)

(2)| > ε), (1.5)

where n(m) = [m log m], m ∈ N . Since

n(m + 1) + 2− (1/2) log n(m + 1) > n(m),

for m > 3, by remark (1.2), the random variables µn(m)
(2), m ≥ 3 are

pairwise NQD. By (1.5), µn(m)
(2) → 0 a.s. therefore (µn(m)

(2))+ →
0 a.s. and (µn(m)

(2))− → 0 a.s. (where X+ = max(0, X) and
X− = max(0,−X)). It is easy to verify that {(µn(m)

(2))+}m≥3 and
{(µn(m)

(2))−}m≥3 are pairwise NQD.
Defining the following events,

Am = [(µn(m)
(2))+ > ε/3], Bm = [(µn(m)

(2))− > ε/3],

m > 3, we have

P (Ak∩Al) ≤ P (Ak)P (Al), P (Bk∩Bl) ≤ P (Bk)P (Bl), for k 6= l.

By Lemma 1 in Matula (1992), if
∑∞

m=1 P (Am) diverges, then

P (An i.o. ) = 1
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contrary to the almost sure convergence of (µn(m)
(2))+ to zero. There-

fore
∑∞

m=1 P (Am) < ∞.
The same argument for (µn(m)

(2))− yields
∑∞

m=1 P (Bm) < ∞. Thus,

∞∑
n=n0

P (|µn(m)
(2)| > ε) ≤

∞∑
n=n0

P ((µn(m)
(2))+ > ε/3)

+
∞∑

n=n0

P ((µn(m)
(2))− > ε/3) < ∞.

Now by the second statement of lemma (2.2) it follows that µ
(2)
n → 0

completely.

The result below extends a corollary in Wu (1999) to NA random
variables.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of NA identically
distributed random variables with EX1 = 0, if µn → 0 a.e. Then

max
2≤j≤n

(
Sj

log log n

)
→ 0, completely.

Proof. It is easy to see that ES2
n ≤ EX2

1

∑n
j=2

1
(j log j)2

≤ C < ∞.

Now we apply Kolmogorov-type inequality (cf. Matula, 1999.) by
taking η = (log log n)ε, for ε > 0,

∞∑
n=n0

P ( max
2≤j≤n

|Sj | > η) ≤ C
∞∑

n=n0

η−2
n∑

j=2

1
(j log j)2

< ∞,

and to get the result.

3 Almost sure convergence for NAGG ran-
dom variables

In this section we impose a GG condition on the NA random vari-
ables and get a result for a weighted sum.

Lemma 3.1. Let {Xn, n ≥ 1} be a sequence of negatively associated
generalized Gaussian (NAGG) random variables with EXn = 0 for
all n. Assume there exists α ∈ IR such that for all n, τ(Xn) ≤ α. Let
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{an} be a sequence of nonnegative real numbers satisfying
∑∞

n=1 a2
n =

A < ∞, and Y =
∑∞

n=1 anXn, then for any c > 0,

P (Y ≥ cα) ≤ exp
(
− c2

2A

)
.

Proof. For all t > 0 and n ≥ 1, EetXn ≤ e
t2α2

2 . By Fatou’s lemma
and proposition (1.1) we have

P (Y ≥ cα) ≤ e−cαtEetY

≤ e−cαt. lim inf
n→∞

Eet
∑n

k=1
akXk

≤ e−cαt. lim inf
n→∞

n∏
k=1

EetakXk

≤ e−cαt. lim inf
n→∞

n∏
k=1

e
t2α2ak

2

2

= e−cαt.e
t2α2A2

2 ,

setting t = c
αA , we obtain the desired inequality.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of NAGG random
variables with EXn = 0 and suppose there exists α ∈ IR such that for
all n, τ(Xn) ≤ α, then for 1 ≤ α ≤ 2, and for every nonnegative
array {ank : n ≥ 1, 1 ≤ k ≤ n} of real numbers such that

lim sup
n→∞

n∑
k=1

a2
nk < ∞,

then we have

n−
1
α

n∑
k=1

ankXk → 0, completely. (3.1)

Proof. Suppose ank is a double array of nonnegative real numbers
such that

lim sup
n→∞

An = A < ∞,

where An =
∑n

k=1 a2
nk. Define Tn = n−

1
α

∑n
k=1 ankXk, from lemma

(3.1) for every ε > 0

P (Tn ≥ ε) ≤ exp
(
− ε2

2Anα2 n
2
α

)
,
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therefore
∑∞

n=1 P (Tn ≥ ε) < ∞. Replacing Xn by −Xn, we obtain
(3.1) since ε is arbitrary.
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