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Abstract. In this paper we study some monotone behavior of the
residual (past) entropy of order α. We prove that, under some relation
between the hazard rates (reversed hazard rates) of two distributions
functions F and G, when the residual (past) entropy of order α of
F is decreasing (increasing) then the residual (past) entropy of G
is decreasing (increasing). Using this, several conclusions regarding
monotone behavior of residual (past) entropy of order α of (n−k+1)-
out-of-n systems and record values are derived. Some results on the
residual (past) entropy of order α of equilibrium distributions are also
obtained.

1 Introduction

The entropy of order α (EO(α)) (also known as Rényi’s entropy
(Rényi (1961)) is a one parameter extension of Shannon entropy. It

Key words and phrases: Differential entropy, equilibrium distribution, infor-
mation theory, hazard rate, mean residual lifetime function, (n− k + 1)-out-of-n
systems, Shannon entropy.
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66 Mahmoudi and Asadi

has a wide range of applications in many fields from electrical en-
gineering, physics, chemistry and computer sciences to economics,
biology and medicine genetics. Let X be a non-negative absolutely
continuous random variable with density function f . The EO(α) of
X, which we denote by Hα(f), is defined as follows:

Hα(f) =
1

1− α
log

∫ ∞
0

fα(x)dx,

where α > 0, α 6= 1. It is well known that when α tends to 1,
Hα(f) tends to Shannon entropy (Shannon (1948)) which we denote
by H(f). That is

lim
α→1

Hα(f) = H(f) = −
∫ ∞
0

f(x) log f(x)dx.

Let the random variable X denote a duration such as the lifetime
of a system. Usually in reliability theory and survival analysis, when
the system is still alive at time t, one is interested in studying the
properties of the residual lifetime of the system. The residual lifetime
of the system, which we denote by Xt, is Xt = [X − t|X > t]. Under
the assumptions that the random variable X has distribution function
F and survival function F̄ = 1− F , the survival function of Xt is

F̄t(x) =

{
F̄ (x+t)

F̄ (t)
x > 0

1 otherwise,

Ebrahimi (1996) has proposed a time dependent Shannon entropy
which measures the information in the residual lifetime distribution
as follows.

H(f ; t) = −
∫ ∞

t

f(x)
F̄ (t)

log
f(x)
F̄ (t)

dx

= log F̄ (t)− 1
F̄ (t)

∫ ∞
t

log f(x)f(x)dx.

H(f ; t) has the properties of H(f) and clearly H(f ; 0) = H(f).
Several properties of this measure are derived by Ebrahimi (1996),
Ebrahimi and Kirmani (1996), Asadi and Ebrahimi (2000) and Belzunce
et al. (2004). If λF (t) = f(t)

F̄ (t)
denotes the hazard rate of X, then it

can be shown, using simple algebra, that H(f ; t) is connected to λF (t)
as follows

H(f ; t) = 1− E(log λF (X)|X > t). (1)
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On the Monotone Behavior of Time Dependent Entropy of Order α 67

Asadi et al. (2005) developed the concept of residual and past en-
tropies of order α by giving some time dependent Rényi’s entropy
for measuring the information in residual and past lifetime distribu-
tions(see also Nanda and Paul (2006a)). The residual EO(α) (REO(α)),
of the residual lifetime density is defined by

Hα(f ; t) =
1

1− α
log

∫ ∞
t

fα(x)
F̄α(t)

dx.

It is clear that Hα(f ; 0) = Hα(f). The REO(α) can be represented
in terms of hazard rate function λF (t) as follows.

Hα(f ; t) =
1

1− α
log E

[
(λF (Xα))α−1|Xα > t

]
− 1

1− α
log α,(2)

where Xα is a random variable with survival function F̄α(t).
There are situations in which one is interested in past life time of

a system. If again we assume that X denotes the lifetime of a system
and the system is assumed to fail sometime before t, the past lifetime
of the system is X[t] = [t − X|X < t]. The Shannon entropy of the
past lifetime distribution, which we denote by H(f ; [t]), is defined by

H(f ; [t]) = −
∫ t

0

f(x)
F (t)

log
f(x)
F (t)

dx.

Several properties of the past Shannon entropy are explored by Di
Crescenzo and Longobardi (2002). The past entropy of order α
(PEO(α)) of the past lifetime X[t] is also given by

Hα(f ; [t]) =
1

1− α
log

∫ t

0

fα(x)
Fα(t)

dx,

which is extensively studied by Nanda and Paul (2006b). The (PEO(α))
can be represented in terms of reversed hazard rate rF (t) = f(t)

F (t) as
follows:

Hα(f ; [t]) =
1

1− α
log E[rα−1

F (X∗)|X∗ < t]− 1
1− α

log α.

The aim of the present paper is to explore the monotone behavior
of Hα(f ; t) and Hα(f ; [t]). In Section 2, we prove a theorem showing
that under some relation between the hazard rates of two distribution
functions F and G, when the distribution function F has an increas-
ing Hα(f ; t) then the REO(α) of G, Hα(g; t), is also increasing. Us-
ing this, we obtain several results regarding the monotone behavior
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of REO(α) of (n − k + 1)-out-of-n systems and record values. It is
shown that when the components of a parallel system has an increas-
ing REO(α) then so is the REO(α) of the system. The monotonicity
of REO(α) in the proportional odds family is also investigated in this
section. In Section 3, we concentrate on PEO(α), Hα(f ; [t]). Ana-
log results, as given in Section 2, are obtained for the PEO(α)’s. In
this section the main result is proved based a relation between the
reversed hazard rates of two distributions. Using that some results
regarding (n−k+1)-out-of-n systems are derived. Finally in Section
3, we obtain some results on the REO(α) of equilibrium distributions.

2 The Residual Entropy of Order α

In this section we focus on the REO(α), α > 0, α 6= 1. The following
theorem is the key result to obtain the subsequent results of this
section.

Theorem 2.1. Let X and Y be two nonnegative absolutely contin-
uous random variables with density functions f and g, hazard rates
λF and λG, survival functions F̄ and Ḡ and REO(α)’s Hα(f ; t) and
Hα(g; t), respectively. Let also 0 ≤ θ(t) ≤ 1 be a nonnegative in-
creasing function such that λG(t) = θ(t)λF (t), t ≥ 0. Further, let
limt−→∞

Ḡ(t)
F̄ (t)

< ∞. Under these conditions if Hα(f ; t) is decreasing
then so is Hα(g; t).

Proof. First, we assume that α > 1. In this case, using equation (2),
the assumption that Hα(f ; t) is decreasing is equivalent to say that

∫∞
t αλα−1

F (x)f(x)F̄α−1(x)dx

F̄α(t)

is an increasing function of t. This, in turn, is equivalent to say that
for t > 0

∫∞
t αλα−1

F (x)f(x)F̄α−1(x)dx

F̄α(t)
≥ λα−1

F (t). (3)

On the other hand since θ(t) is assumed to be increasing, we have
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On the Monotone Behavior of Time Dependent Entropy of Order α 69

∫∞
t αθα−1(x)λα−1

F (x)f(x)F̄α−1(x)dx

F̄α(t)

≥ θα−1(t)
∫∞
t αλα−1

F (x)f(x)F̄α−1(x)dx

F̄α(t)

≥ (θ(t)λF (t))α−1 , (4)

where the last inequality is based on (3). Assuming that

m1(t) = E[(θ(X∗)λF (X∗))α−1|X∗ > t],

where X∗ is a random variable with survival function F̄α(t), t > 0,
(4) implies that m1 is an increasing function of t. We now show that

m2(t) = E[(θ(Y ∗)λF (Y ∗))α−1|Y ∗ > t]

is an increasing function of t, where Y ∗ is a random variable with
survival function Ḡα(t). Define β(t) as follows

β(t) = Ḡα(t)[m1(t)−m2(t)].

Asadi and Ebrahimi (2000) showed that, under the same assumptions
of the present theorem, β(t) is an increasing function of t and that
β(t) < 0 for all t > 0. This, in turn, implies that for t > 0, m1(t) ≤
m2(t). From this and inequality (8) we get

m2(t) ≥ (θ(t)λF (t))α−1 t > 0.

Hence, it is concluded that m2(t) is an increasing function of t. That
is, E[λG(Y ∗)|Y ∗ > t] is increasing in t and thus Hα(g; t) is a decreas-
ing function of t.

Now assume that 0 < α < 1. In this case Hα(f ; t) is decreasing
in t if and only if

E[λα−1
F (X∗)|X∗ > t] ≤ λα−1

F (t).

Under the assumption that 0 < α < 1 (on noting that θα−1(t) is
decreasing in t), we obtain

m1(t) = E[(θ(X∗)λF (X∗))α−1] ≤ (θ(t)λF (t))α−1 . (5)

Defining β(t) as above and using the same arguments as used to prove
the case α > 1, we can show that β(t) > 0 and that β(t) is increasing
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70 Mahmoudi and Asadi

in t. Hence, we conclude that, m1(t) ≥ m2(t). Using inequality in
(5) we get that

m2(t) = E[(θ(Y ∗)λF (Y ∗))α−1] ≤ (θ(t)λF (t))α−1 .

That is E[λα−1
G (Y ∗)|Y ∗ > t] is decreasing and hence Hα(g; t) is de-

creasing. This completes the theorem.

Remark 2.1. Asadi and Ebrahimi (2000) have proved the same
result for the case where α → 1. That is, under the assumption of
Theorem 2.1 they showed that if the residual Shannon entropy of F is
decreasing in t then so is the residual Shannon entropy of G. One can
show that the result of Theorem 2.1 reduces to the result of Asadi
and Ebrahimi (2000) if we take the limit when α → 1 in all steps
of Theorem 2.1. Hence, using the result of Asadi and Ebrahimi and
the result of Theorem 2.1, we conclude, under the assumptions of the
theorem, if Hα(f ; t) is decreasing then Hα(g; t) is decreasing in t for
all α > 0.

In order to see an immediate consequence of Theorem 2.1 we
need to mention the concept of proportional hazards model. The
concept of proportional hazards model, which plays an important role
in reliability and survival analysis, is introduced by Cox (1972). Let
X and Y be two continuous random variables with survival functions
F̄ and Ḡ, respectively. The random variables X and Y are said to
have proportional hazards if there exists a constant c > 0 such that
for t > 0

Ḡ(t) =
(
F̄ (t)

)c
. (6)

In this case the hazard rates of X and Y are related as λG(t) = cλF (t).
Now the following corollary can easily be obtained from Theorem 2.1.

Corollary 2.1. Let X and Y have proportional hazards as (6) with
c ∈ (0, 1). If the REO(α) of X is decreasing in time then so is the
REO(α) of Y .

Order statistics play important role in many branches of applied
probability and statistics. In particular, in reliability theory the life-
time of a (n − k + 1)-out-of-n system is equivalent to the kth order
statistics in a sample of size n. Let X1, X2, ..., Xn be iid random
variables from a distribution function F with density function f . Let
also X1:n, X2:n, ..., Xn:n denote the order statistics corresponding to
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On the Monotone Behavior of Time Dependent Entropy of Order α 71

the sample. Then Xk:n represents the lifetime of a (n − k + 1)-out-
of-n system. Under the assumption that Fk:n, fk:n and λFk:n

denote
the distribution function, the density function and the hazard rate
function of Xk:n, respectively, it can be shown that

fk:n(x) =
n!

(k − 1)!(n− k)!
(F (x))k−1(F̄ (x))n−k

f(x),

Fk:n(x) =
n∑

i=k

(
n

i

)
(F (x))i(F̄ (x))n−i

,

and

λFk:n
(x) =

n!
(k − 1)!(n− k)!

λF (x)
(φ(x))k−1∑k−1

i=0

(n
i

)
(φ(x))i

, (7)

where φ(x) = F (x)
F̄ (x)

. For more details on order statistics, we refer to
David and Nagaraja (2003). An important special case of (n−k+1)-
out-of-n systems is parallel system which corresponds to the case of
k = n. Now we have the following corollary to Theorem 2.1 regarding
the parallel systems.

Corollary 2.2. If, Hα(f ; t), the REO(α) of the components of a
parallel system is decreasing in t then Hα(fn:n; t), the REO(α) of the
system is also decreasing in t.

Proof. It is easy to see from (7) that the hazard rate of the system
is λFn:n(t) = λF (t)θ(t) where

θ(t) =
n(F (t))n−1∑n−1

i=0 F (t)i

=
n∑n−1

i=0 F (t)i−n+1

Now, since F (t) is an increasing function of t, one can show that
θ(t) is increasing in t. Also it is not difficult to show that θ(t) ∈ (0, 1).
On the other hand it can be easily seen that limt−→∞

F̄n:n(t)
F̄ (t)

= n.
Therefore the assumptions of Theorem 2.1 hold and hence Hα(fn:n, t)
is a decreasing function of t.

Example 2.1. Let mF (t) denote the mean residual life function of
X. That is,

mF (t) = E(X − t|X > t).
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72 Mahmoudi and Asadi

Nanda and Paul (2006a) proved that if X has a decreasing MRL then
the REO(α) is a decreasing function of t. Some well known distribu-
tions with decreasing mean residual life are the Weibull distribution
and the Gamma distribution with shape parameter greater than 1.
Hence, as an application of Corollary 2.2, one can conclude that when
the components of a parallel system have Weibull distribution with
shape parameter greater than one (or Gamma distribution with shape
parameter greater than one) then the REO(α) of the components are
decreasing and hence, based on Corollary 2.2, the REO(α) of the
system is also decreasing.

Consider now two sets of iid components of sizes n1 and n2 which
are connected in systems with (n1−k1+1)-out-of-n1 and (n2−k2+1)-
out-of-n2 structures, respectively. We assume that the components
have a common distribution function F . If we denote the hazard
rates of the systems by λFk1:n1

and λFk2:n2
, respectively then it can

be shown that λFk2:n2
(x) = θ(x)λFk1:n1

(x), where

θ(x) =
c(k2, n2)
c(k1, n1)

φk2−k1

∑k1−1
i=0

(n1

i

)
φi∑k2−1

j=1

(n2

j

)
φj

,

in which c(k, n) = n!
(n−k)!(k−1)! and φ = φ(x) = F (x)/F̄ (x) is increas-

ing in x. It is not difficult to verify, in the following cases, that θ(x)
is increasing in x and its range is a subset of (0, 1) (see, Nagaraja
(1990)).

• n1 = n2 = n, k1 = k, k2 = k + 1

• n1 = n, n2 = n− 1, k1 = k2 = k

• n1 = n, n2 = n + 1, k1 = k, k2 = k + 1

Also it can be easily shown that other conditions of Theorem 2.1
hold. Hence, we have the following corollary to Theorem 2.1.

Corollary 2.3. Let Hα(fk:n; t) denote the REO(α) of a (n−k+1)-
out-of-n system which is decreasing in t. Then

(a) Hα(fk+1:n; t), the REO(α) of a (n − k)-out-of-n system, is also
decreasing.

(b) Hα(fk:n−1; t), the REO(α) of a (n− k)-out-of-(n− 1) system, is
also decreasing.
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(c) Hα(fk+1:n+1; t), the REO(α) of a (n−k+1)-out-of-(n+1) system,
is also decreasing.

The next corollary gives an application of Theorem 2.1 associated
to record values. The record values appear in many branches of ap-
plied sciences. The upper record values can be defined as a model for
successive extremes in a sequence of iid random variables and hence
they may be helpful to model successively largest insurance claims in
non-life insurance, the highest water levels or highest temperatures
etc. For more details about records and applications, one may refer
to Ahsanullah (2004). Let X1, X2, ..., be a sequence of iid random
variables with a common absolutely continuous distribution function
(cdf) F , probability density function (pdf) f , and survival function
F = 1 − F . Suppose that Xi:n stands for the ith order statistic ob-
tained from the first n observations. The sequence of upper records
can be defined as

XU(n) = XUn:Un , n = 0, 1, ...,

where

U0 = 1,

Un = min
{
j : j > Un−1, Xj > XUn−1:Un−1

}
, n ≥ 1.

Records can be viewed as maximum of a sample whose size is de-
termined by the values of occurrence of the observations. It can
be shown that under mild conditions, the structure of record values
is the same as that of the occurrence times of some corresponding
non-homogeneous Poisson process of some minimal repair and of the
relevation transform (see Gupta and Kirmani, 1988).

The marginal pdf of XU(n) is

fU(n)(x) =
[−log F (x)]n

n!
f(x), x > 0, n ≥ 0,

and the survival function of XU(n), at value v > 0, is

F̄U(n)(v) =
n∑

j=0

[− log F̄ (v)]j

j!
F̄ (v).

Hence the hazard rate of XU(n) can be represented as

λUn(t) = θ(x)λF (t),
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where

θ(t) =
[ΛF (t)]n

n!∑n
k=0

1
k! [ΛF (t)]k

and ΛF (t) = − log F̄ (t). Since θ(t) is increasing in t with range (0, 1),
then for the case where limt→∞ β(t) = 0 in Theorem 2.1, we get the
following corollary.

Corollary 2.4. Let {Xn;n ≥ 1} be a sequence of iid random vari-
ables having the distribution function F , density function f , hazard
function λF and decreasing residual uncertainty H(f ;x). If fUn de-
notes the density function of nth upper record values then H(fUn ;x),
the residual uncertainty of fUn , is decreasing.

As an application of this corollary one can show that when the un-
derlying distribution is Weibull with shape parameter greater than
one, then all conditions of Theorem 2.1 (in particular the condition
limt→∞ β(t) = 0) hold. Hence upper record values (and epoch times
of the non-homogeneous Poisson process) generated by Weibull model
has decreasing residual lifetime entropy of order α.

Corollary 2.5. Proportional odds family (also known as tilt pa-
rameter family) is a well known family in the literature (see e.g.,
Kirmani and Gupta (2001) and Marshall and Olkin (2007)). Let
F (x) be a distribution function and assume that F (x|η) is defined in
terms of F as follows

F (x|η)
F̄ (x|η)

=
1
η

F (x)
F̄ (x)

, x > 0, η > 0,

where F̄ (x) and F̄ (x|η) denote the survival functions corresponding to
F and F (x|η), respectively. The parameter η is called a tilt parameter
and F (x|η) is said to be the proportional odds family. It is easily seen
that

F̄ (x|η) =
ηF̄ (x)

F (x) + ηF̄ (x)
.

If λ(x|η) and λ(x) denote the hazard rates of F (x|η) and F (x), re-
spectively, then we have

λ(x|η) = θ(x)λ(x)
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where
θ(x) =

1
F (x) + ηF̄ (x)

.

It is seen that for η > 1, θ(x) is an increasing function of x and
also θ(x) ∈ (0, 1). Hence based on Theorem 2.1 if REO(α) of F (x)
is decreasing in time, then REO(α) of F (x|η) is also a decreasing
function of time. It should be pointed out that for η ∈ (0, 1), using
the same argument, it can be concluded that when REO(α) of F (x|η)
is decreasing in time, then REO(α) of F (x) is also an decreasing
function of time.

3 The Past Entropy of Order α

In this section we deal with PEO(α). The following theorem is the
main result of the section.

Theorem 3.1. Let X and Y be two absolutely continuous non-
negative random variables with density functions f and g, reversed
hazard rates rF and rG, and PEO(α)’s Hα(f ; [t]) and Hα(g; [t]), re-
spectively. Let also 0 ≤ θ ≤ 1 be a nonnegative decreasing function
such that rG(t) = θ(x)rF (t), t ≥ 0. Further, let limt−→0

G(t)
F (t) < 0. If

Hα(f ; [t]) is increasing in t then so is Hα(g; [t]).

Proof. First note that the PEO(α) can be represented in terms of
the reversed hazard rate rF (t) as follows

Hα(f ; [t]) =
1

1− α
log E[rα−1

F (X∗)|X∗ < t]− 1
1− α

log α (8)

where X∗ is a random variable with distribution function Fα(t). As-
sume now that α > 1. Then, using (8), Hα(f ; [t]) is increasing in t if
and only if E[rα−1

F (X∗)|X∗ < t] is a decreasing function of t. Under
the assumptions of the theorem we can conclude that

k1(t) = E
[
(θ(X∗)rF (X∗))α−1 |X∗ < t

]
≥ (θ(t)rF (t))α−1 .

We show that

k2(t) = E
[
(θ(Y ∗)rF (Y ∗))α−1 |Y ∗ < t

]
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is a decreasing function of t where Y ∗ has distribution Gα(t). If we
define

γ(t) = Gα−1(t)[k1(t)− k2(t)]

and use the same arguments as used to prove Theorem 2.1, we con-
clude under the conditions of the theorem that γ(t) is deceasing in
t and that γ(t) is non-positive. This implies that k1(t) ≤ k2(t) and
hence

k2(t) ≥ (θ(t)rF (t))α−1

= (rG(t))α−1.

That is k2(t) is a decreasing function of t. Hence we get that E[rα−1
G (Y ∗)|

Y ∗ < t] is decreasing in t and therefore Hα(g; [t]) is increasing in t.
For 0 < α < 1 the result follows similarly. Hence we have the theo-
rem.

Remark 3.1. In Zohrevand and Asadi (2004) it is shown that the
result of Theorem 3.1 is also true for α = 1, i.e. for the past Shannon
entropy. Hence it can be concluded that under the assumptions of
Theorem 3.1 if PEO(α) of F is increasing then so is the PEO(α) of
G for all values of α > 0.

Corollary 3.1. Let X1, . . . , Xn denote the lifetimes of n inde-
pendent components which are connected in a series system. If the
PEO(α)’s of the components, Hα(f ; [t]), is increasing, then so is,
Hα(f1:n; [t]), the PEO(α) of the system.

Proof. One can easily see that the reversed hazard rate of Xi’s,
rF (t), and the reversed hazard rate of the system, rF1:n(t), have the
following relation.

rF1:n(t) = θ(t)rF (t),

where

θ(t) =
n(F̄ (t))n−1∑n−1

i=0 (F̄ (t))i
.

It is easy to verify, in this case, that θ(t) ∈ (0, 1) and that θ(t) is a
decreasing function of t. Hence from Theorem 3.1 we have the result.

Remark 3.2. The representation (8) shows that if the reversed
hazard rate rF (t) is a decreasing function of t then the PEO(α) of F
is an increasing function of t. Hence, as an application of Corollary
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3.1, assume that the components of a series system have exponen-
tial distribution with mean η. Then the reversed hazard rate of the
components is

rF (t) =
1/ηe−t/η

1− e−t/η
,

which is a decreasing function of t. Thus, the PEO(α) of the compo-
nents is increasing in t and hence, based on Corollary 3.1, the PEO(α)
of the system is increasing in t.

Consider again two sets of iid components of sizes n1 and n2 which
are connected in systems with (n1−k1+1)-out-of-n1 and (n2−k2+1)-
out-of-n2 structures, respectively. If we denote the reversed hazard
rates of the systems by rFk1:n1

and rFk2:n2
, respectively, then it can

be seen that
rFk2:n2

(x) = θ(x)rFk1:n1
(x),

where

θ(t) =
c(k2, n2)
c(k1, n1)

φk2−k1

∑n1
i=k1

(n1

i

)
φi∑n2

j=k2

(n2

j

)
φj

,

in which c(k, n) = n!
(n−k)!(k−1)! and φ = φ(x) = F (x)/F̄ (x) is increas-

ing in x. It is not difficult to prove that in the following cases θ(x) is
decreasing in x and its range is a subset of (0, 1).

• n1 = n2 = n, k1 = k, k2 = k − 1

• n1 = n, n2 = n + 1, k1 = k2 = k

• n1 = n, n2 = n + 1, k1 = k, k2 = k + 1

The discussion above leads to the following corollary.

Corollary 3.2. Let Hα(fk:n; t) denote the PEO(α) of a (n−k+1)-
out-of-n system which is increasing in t. Then

(a) Hα(fk−1:n; t), the PEO(α) of a (n− k + 2)-out-of-n system, is
also increasing.

(b) Hα(fk:n+1; t), the PEO(α)’s of a (n−k+2)-out-of-n−1 system,
is also increasing .

(c) Hα(fk+1:n+1; t) system, the PEO(α)’s of a (n − k + 1)-out-of-
n + 1, is also increasing.
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4 Equilibrium Distributions

Let a renewal process be generated by random variables Xi ≥ 0,
i = 1, 2, ... in which Xi’s have a common distribution F with a finite
mean µ. The Xi’s may, for example, be the lifetimes of a device which
is replaced upon failure. The process is observed at some given time
t. For a device operating at time t assume that Y denotes its residual
(excess) lifetime . It can be shown that when the process is stationary
or when t → ∞, Y has an asymptotic distribution, which is known
as the equilibrium distribution,

P (Y ≤ t) =
∫ t
0 F̄ (x)dx

µ
,

with density function

f∗(t) =
F̄ (t)
µ

where F̄ denotes the survival function. The REO(α) corresponding
to f∗ is therefore

Hα(f∗; t) =
1

1− α
log

∫∞
t F̄α(x)dx(∫∞
t F̄ (x)dx

)α .

The following theorem gives a lower bound for Hα(f∗; t) in terms of
mF (t), the MRL of the parent distribution F .

Theorem 4.1. For all values of t > 0 and α > 0, we have

Hα(f∗; t) ≥ log mF (t), (9)

where mF (t) denotes the MRL function of F .

Proof. First assume that α > 1. Note that since F̄ (t) is a decreasing
function of t, we have

Hα(f∗; t) =
1

1− α
log

∫∞
t F̄α(x)dx(∫∞
t F̄ (x)dx

)α
≥ 1

1− α
log

F̄α−1(t)
∫∞
t F̄ (x)dx(∫∞

t F̄ (x)dx
)α

=
1

1− α
log

1
mα−1

F (t)
= log mF (t)
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In the case of 0 < α < 1 the result follows similarly. Now we show
that the result is also true for α = 1, i.e, the result is true for residual
Shannon entropy. This is so because the residual Shannon entropy,
in this case, can be written as

H(f∗; t) = −
∫ ∞

t

F̄ (x)∫∞
t F̄ (x)dx

log
F̄ (x)∫∞

t F̄ (x)dx
dx

= −
∫∞
t F̄ (x) log F̄ (x)dx∫∞

t F̄ (x)dx
+ log

∫ ∞
t

F̄ (x)dx

≥ − log F̄ (t) + log
∫ ∞

t
F̄ (x)dx

= log mF (t)

That is, for all α > 0, the REO(α) of the equilibrium distribution is
bounded from below by log mF (t). This completes the proof of the
theorem.

Classification of distributions with respect to ageing properties is
a popular subject in reliability theory. Two classes of distributions
which arise in the study of replacement and maintenance policies are
the class of decreasing (increasing) MRL and the class of new better
(worse) than used in expectation (NBUE) (NWUE) distributions.
Let X be the lifetime of a system with a continuous distribution
function F and the MRL function mF .

• F is said to be a decreasing (increasing) MRL distribution, if
mF (t) is a decreasing (increasing) function of t, t > 0.

• F is said to be a NBUE (NWUE) distribution if

mF (t) ≤ (≥)m(0) = µ t ≥ 0.

For the details of these concepts and some other concepts of ageing
properties, we refer the reader to Barlow and Proschan (1981).

Based on the lower bound for Hα(f∗; t) and under the assumption
that F is NWUE with mean µ we get

Hα(f∗; t) ≥ log µ

Example 4.1. The mixture of distributions arises in many branches
of statistics and applied probability. Let X be distributed as the
mixture of two exponential distributions with mean λ1 and λ2, re-
spectively. Then the survival function of X is given by

F̄ (x) = pe−x/λ1 + (1− p)e−x/λ2 ,
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where p ∈ (0, 1). It can be shown that this distribution has a de-
creasing hazard rate which, in turn, implies that F belongs to the
class of NWUE distributions, (see, Barlow and Proschan (1975, p.
101)). Thus, based on above result and noting that the mean of X is
pλ1 +(1− p)λ2, we can conclude that the REO(α) of the equilibrium
distribution corresponding to X is bounded below as follows

Hα(f∗; t) ≥ log(pλ1 + (1− p)λ2).

The following theorem gives some results on REO(α) of the equilib-
rium distributions in the class of decreasing (increasing) MRL distri-
butions.

Theorem 4.2. If the distribution function F belongs to the class
of decreasing (increasing) MRL distributions then

(a) For all α > 0 and all t > 0 Hα(f∗; t) is decreasing (increasing)
in t.

(b) For all t > 0

Hα(f∗; t) ≤ (≥)

{
log mF (t)− 1

1−α log α, α 6= 1
log mF (t) + 1 α = 1,

(c) The equality in part (b) holds if and only if the distribution is
exponential.

Proof.

(a) To prove the result first assume that α 6= 1. Note, in this case,
that Hα(f∗; t) can be represented as

Hα(f∗; t) =
1

1− α
E(m1−α

F (Y ∗)|Y ∗ ≥ t)− 1
1− α

log α, (10)

where Y ∗ is a random variable with density function

g∗(t) =
αF̄ (t)(

∫∞
t F̄ (x)dx)α−1

µ
.

This implies that if mF (t) is a decreasing (increasing) function
of t then Hα(f∗; t) is also a decreasing (increasing) function of
t. Now assume that α → 1. In this case, using the relation
between the residual Shannon entropy and the hazard rate of
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F given in (1) and the fact that the hazard rate of equilibrium
distribution is the reciprocal of the MRL function of F we have

Hα(f∗; t) = E(log mF (Y )|Y > t) + 1, (11)

where Y has the equilibrium distribution F̄ (t)
µ . This implies that

for a distribution function with decreasing (increasing) MRL
the REO(α), Hα(f∗; t) is a decreasing (increasing) function of
t for all values of α > 0. This completes part (a).

(b) Again first consider the case of α 6= 1. Under the assumption
that F is decreasing (increasing) MRL we have from (10)

Hα(f∗; t) ≤ (≥) log mF (t)− 1
1− α

log α. (12)

For the case of α → 1 the result follows from (11).

(c) The ‘if’ part of the theorem is easy to prove. To prove the
‘only if’ part assume that we have the equality in (12). This is
equivalent to say that for t > 0,∫ ∞

t
F̄α(x)dx =

mF (t)
α

F̄α(t).

Differentiation of both sides of this equation in terms of t im-
plies that m

′
F (t) = 0. That is the underlying distribution F is

exponential. This completes part (c) and hence the theorem.

Remark 4.1. For the class of decreasing (increasing) MRL distri-
butions the following upper(lower) bound which does not depend on
t holds.

Hα(f∗; t) ≤ (≥) log µ− 1
1− α

log α.

The result follows from the fact that the class of decreasing (increas-
ing) MRL distributions is a subclass of NBUE (NWUE) distributions.

Remark 4.2. Based on the upper bound for REO(α) in the class
of decreasing MRL distributions in Theorem 4.2 and the lower bound
in (9) one can conclude that

0 ≤ Hα(f∗; t)− log mF (t) ≤ 1
α− 1

log α.
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