Volume 20, Issue 2 (12-2021)                   JIRSS 2021, 20(2): 65-78 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hossaini M, Rezaei Roknabadi A. Estimation of Subpopulation Parameters in One-stage Cluster Sampling Design. JIRSS. 2021; 20 (2) :65-78
URL: http://jirss.irstat.ir/article-1-653-en.html
Department of Statistics, Ferdowsi University of Mashhad. , rezaei@um.ac.ir
Abstract:   (107 Views)

Sometimes in order to estimate population parameters such as mean and total values, we extract a random sample by cluster sampling method, and after completing sampling, we are interested in using the same sample to estimate the desired parameters in a subset of the population, which is said subpopulation. In this paper, we try to estimate subpopulation parameters in different cases when one-stage cluster sampling design is used.

Full-Text [PDF 132 kb]   (159 Downloads)    
Type of Study: Original Paper | Subject: 62Dxx: Sampling theory, sample surveys
Received: 2020/02/17 | Accepted: 2021/10/21 | Published: 2022/04/12

1. Clark, R. G. (2009), Sampling of subpopulations in two stage surveys. Statistics in Medicine, 28(29), 3697-3717. [DOI:10.1002/sim.3723]
2. Cochran, W. G. (1977), Sampling Techniques}. 3rd ed. New York: Wiley.
3. Lohr, S. L. (2010), Sampling: Design and Analysis}. 2rd ed. Cengage Learning, pp, 469-486.
4. Rao, P. SR. S. (1988), Ratio and regression estimators.Handbook of Statistics, Vol. 6, Sampling. Amsterdam: Elsevier Science, pp, 449-468. [DOI:10.1016/S0169-7161(88)06020-1]
5. Royall, R. M. (1988), The prediction approach to sampling theory., Handbook of Statistics, Vol. 6 Sampling. Amsterdam: Elsevier Science Publishers, pp. 399-413. [DOI:10.1016/S0169-7161(88)06017-1]
6. Salehi. M., Chang. K. C. (2005), {Multiple inverse sampling in post-stratification with subpopulation sizes unknown: a solution for quota sampling. Statistical Planning and Inference, 131(2), 379-392. [DOI:10.1016/j.jspi.2004.02.002]
7. Salehi, M., and Seber, G. A. F. (2001), Unbiased estimators for restricted adaptive cluster sampling. Australian and New Zealand Journal of Statistics, 44(1), 63-74. [DOI:10.1111/1467-842X.00208]
8. Stephan, F. F. (1945), The expected value and variance of the reciprocal and other negative powers of a positive Bernoullian variate. Ann. Math. Statist.,16, 50-61. [DOI:10.1214/aoms/1177731170]
9. Thompson. S. K. (2012), Sampling Techniques. 3rd ed. New York: Wiley. [DOI:10.1002/9781118162934]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2015 All Rights Reserved | Journal of The Iranian Statistical Society