1. Awad, A. M., Azzam, M. M., and Hamdan, M. A. (1981). Some inference results on Pr(X < Y) in the bivariate exponential model. Communications in Statistics - Theory and Methods, 10, 2515-2525. [
DOI:10.1080/03610928108828206]
2. Bandyopadhyay, U., Das, R., and Biswas, A. (2003). Fixed width confidence interval of P(X < Y) in partial sequential sampling scheme. Sequential Analysis, 22, 75-93. [
DOI:10.1081/SQA-120022084]
3. Bapat, S. R. (2018). Purely sequential fixed accuracy confidence intervals for P(X < Y) under bivariate exponential models. American Journal of Mathematical and Management Sciences, 37, 386-400. [
DOI:10.1080/01966324.2018.1465867]
4. Beg, M. A. (1980). On the estimation of Pr(Y < X) for the two-parameter exponential distribution. Metrika, 27, 29-34. [
DOI:10.1007/BF01893574]
5. Birnbaum, Z. W. (1956). On a use of the mann-whitney statistic. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Ed. J. Neyman. Berkeley: University of California, pp 13-17.
6. Birnbaum, Z.W. and McCarty, R. C. (1958).Adistribution-free upper confidence bound for P(Y < X), based on independent samples of X and Y. The Annals of Mathematical Statistics, 29, 558-562. [
DOI:10.1214/aoms/1177706631]
7. Chao, A. (1982). On comparing estimators of Pr(Y < X) in the exponential case. IEEE Transactions on Reliability, 31, 389-392. [
DOI:10.1109/TR.1982.5221387]
8. Chiodo, E. (2014). Model robustness analysis of a bayes stress-strength reliability estimation with limited data. In 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. New York: IEEE, pp 1140-1145. [
DOI:10.1109/SPEEDAM.2014.6872000]
9. Cramer, E. and Kamps, U. (1997). The umvue of P(X < Y) based on type-II censored samples from weinman multivariate exponential distributions. Metrika, 46, 93-93. [
DOI:10.1007/BF02717169]
10. Domma, F. and Giordano, S. (2013). A copula-based approach to account for dependence in stress-strength models. Statistical Papers, 54, 807-826. [
DOI:10.1007/s00362-012-0463-0]
11. Enis, P. and Geisser, S. (1971). Estimation of the probability that Y < X. Journal of the American Statistical Association, 66, 162-168. [
DOI:10.2307/2284867]
12. Ferguson, T. (1996). A course in large sample theory. New York: Chapman and Hall. [
DOI:10.1007/978-1-4899-4549-5]
13. Freund, J. E. (1961). A bivariate extension of the exponential distribution. Journal of the American Statistical Association, 56, 971-977. [
DOI:10.1080/01621459.1961.10482138]
14. Govindarajulu, Z. (1974). Fixed-width confidence intervals for P(X < Y). In Reliability and biometry: statistical analysis of lifelength, Eds. E. F. Proschan and R. J. Serfling. Philadelphia: SIAM, pp 747-757.
15. Govindarajulu, Z. (2004). Sequential Estimation. Singapore: World Scientific. Johnson, R. A. (1988). 3 stress-strength models for reliability. In Quality Control and Reliability, Eds. P.R. Krishnaiah and C.R. Rao. Amsterdam: Elsevier, pp 27-54. [
DOI:10.1016/S0169-7161(88)07005-1]
16. Kao, E. (1997). An Introduction to Stochastic Processes. Scituate :Duxbury.
17. Kelley, G. D., Kelley, J. A., and Schucany, W. R. (1976). E cient estimation of P(Y < X) in the exponential case. Technometrics, 18, 359-360. [
DOI:10.1080/00401706.1976.10489457]
18. Kotz, S., Lumel'skii, I., and Pensky, M. (2003). The Stress-strength Model and Its Generalizations: Theory and Applications. Singapore: World Scientific. [
DOI:10.1142/5015]
19. Kundu, D. and Gupta, R. D. (2006). Estimation of P(Y < X) for weibull distributions. IEEE Transactions on Reliability, 55, 270-280. [
DOI:10.1109/TR.2006.874918]
20. Lim, D. L., Isogai, E., and Uno, C. (2004). Two-sample fixed width confidence intervals for a function of exponential scale parameters. Far East Journal of Theoretical Statistics, 14, 215-227.
21. Mahmoudi, E., Khalifeh, A., and Nekoukhou, V. (2018). Minimum risk sequential point estimation of the stress-strength reliability parameter for exponential distribution. Sequential Analysis. doi: 10.1080/07474946.2019.1649347. [
DOI:10.1080/07474946.2019.1649347]
22. Marshall, A. W. and Olkin, I. (1967). A generalized bivariate exponential distribution. Journal of Applied Probability, 4, 291-302. [
DOI:10.2307/3212024]
23. Mirjalili, M., Torabi, H., Nadeb, H., and Bafekri. F., S. (2016). Stress-strength reliability of exponential distribution based on type-I progressively hybrid censored samples. Journal of Statistical Research of Iran, 13, 89-105. [
DOI:10.18869/acadpub.jsri.13.1.5]
24. Mukhopadhyay, N. and Zhuang, Y. (2016). On fixed-accuracy and bounded accuracy confidence interval estimation problems in fisher's "nile" example. Sequential Analysis, 35, 516-535. [
DOI:10.1080/07474946.2016.1238264]
25. Nadarajah, S. and Kotz, S. (2006). Reliability for some bivariate exponential distributions. Mathematical Problems in Engineering, 2006, 1-14. [
DOI:10.1155/MPE/2006/41652]
26. Patowary, A. N., Hazarika, J., and Sriwastav, G. L. (2013). Interference theory of reliability: a review. International Journal of System Assurance Engineering and Management, 4, 146-158. [
DOI:10.1007/s13198-013-0162-9]
27. Sathe, Y. and Shah, S. (1981). On estimating P(X > Y) for the exponential distribution. Communications in Statistics - Theory and Methods, 10, 39-47. [
DOI:10.1080/03610928108828018]
28. Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. The Annals of Mathematical Statistics, 16, 243-258. [
DOI:10.1214/aoms/1177731088]
29. Tong, H. (1974). A note on the estimation of Pr(Y < X) in the exponential case. Technometrics, 16, 625-625. [
DOI:10.1080/00401706.1974.10489247]
30. Xia, Z., Yu, J., Cheng, L., Liu, L., and Wang, W. (2009). Study on the breaking strength of jute fibres using modified weibull distribution. Composites Part A: Applied Science and Manufacturing, 40, 54-59. [
DOI:10.1016/j.compositesa.2008.10.001]