1. Afify, A. Z., Yousof, H. M. and Nadarajah, S. (2017), The beta transmuted-H family of distributions: properties and applications. Stasistics and its Inference, 10, 505-520. [
DOI:10.4310/SII.2017.v10.n3.a13]
2. Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M. and Hamedani G. G. (2017), The generalized odd generalized exponential family of distributions: properties, characterizations and applications. Journal of Data Science, 16, 443-446.
3. Alizadeh, M., Korkmaz, M. C., Almamy, J. A. and Ahmed, A. A. E. (2018), Another odd log-logistic logarithmic class of continuous distributions. Journal of Statisticians: Statistics and Actuarial Sciences, 11(2), 55-72.
4. Anderson, T. W. and Darling, D. A. (1952), Asymptotic theory of certain" goodness of fit" criteria based on stochastic processes. The annals of mathematical statistics, 193-212. [
DOI:10.1214/aoms/1177729437]
5. Alzaatreh, A., Lee, C. and Famoye, F. (2013), A new method for generating families of continuous distributions. Metron, 71, 63-79. [
DOI:10.1007/s40300-013-0007-y]
6. Alzaatreh, A., Famoye, F. and Lee, C. (2014), The gamma-normal distribution: Properties and applications. Computational Statistics and Data Analysis, 69, 67-80. [
DOI:10.1016/j.csda.2013.07.035]
7. Brito, E., Cordeiro, G. M., Yousof, H. M., Alizadeh, M. and Silva , G. O. (2017), Topp-Leone odd log-logistic family of distribution. Journal of Statistical Computation and Simulation, 87(15), 3040-3058. [
DOI:10.1080/00949655.2017.1351972]
8. Bourguignon, Silva M., R. B. and Cordeiro, G. M. (2014), The Weibull-G Family of Probability Distributions. Journal of Data Science, 12, 53-68.
9. Choi, K. and Bulgren,W. (1968), Anestimation procedure for mix- tures of distributions. Journal of the Royal Statistical Society. Series B (Methodological), 444-460. [
DOI:10.1111/j.2517-6161.1968.tb00743.x]
10. Cooray, K. (2006), Generalization of the Weibull distribution: the odd Weibull family. Statistical Modelling, 6, 265-277. [
DOI:10.1191/1471082X06st116oa]
11. Cooray, K. and Ananda, M. M. (2008), A generalization of the half-normal distribution with applications to lifetime data. Communications in Statistics-Theory and Methods, 37(9), 1323-1337. [
DOI:10.1080/03610920701826088]
12. Cordeiro, G. M., Ortega, E. M. M. and Nadarajah, S. (2010), The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1399-1429. [
DOI:10.1016/j.jfranklin.2010.06.010]
13. Cordeiro, G. M., Ortega, E. M. and da Cunha, D. C. C. (2013), The exponentiated generalized class of distributions. Journal of Data Science, 11, 1-27.
14. Dey. S., Mazucheli, J. and Nadarajah.S. (2017), Kumaraswamy distribution: different methods of estimation. Computational and Applied Mathematics, 1-18.
15. Eugene, N., Lee, C., and Famoye, F. (2002), Beta-normal distribution and its applications. Communications in Statistics - Theory and Methods, 31, 497-512. [
DOI:10.1081/STA-120003130]
16. Famoye, F., Lee, C. and Olumolade, O. (2005), The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-136.
17. Fonseca, M. B. and Franca, M. G. C. (2007), A influoencia da fertilidade do solo e caracterizaca da fixacao biologica de N2 para o crescimento de Dimorphandra wilsonii rizz. Master thesis, Universidade Federal de Minas Gerais.
18. Glänzell, W. (1990), Some consequences of a characterization theorem based on truncated moments. Statistics, 21(4), 613-618. [
DOI:10.1080/02331889008802273]
19. Gupta, R. D. and Kundu, D. (2001), Exponentiated exponential family: an alternative to gamma and Weibull. Biometrical Journal, 43, 117-130.
https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R [
DOI:10.1002/1521-4036(200102)43:13.0.CO;2-R]
20. Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998), Modeling failure time data by Lehmann alternatives.Communications in Statistics - Theory and Methods, 27, 887-904. [
DOI:10.1080/03610929808832134]
21. Hamedani, G. G. (2013), On certain generalized gamma convolution distributions II (No. 484). Technical Report.
22. Hamedani, G. G., Altun, E., Korkmaz, M. C., Yousof, H. M. and Butt, N. S. (2018), A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pakistan Journal of Statistics and Operation [
DOI:10.18187/pjsor.v14i3.2484]
23. Research, 14(3), 737-758.
24. Hashimoto, E. M, Ortega, E. M. M., Cordeiro, G. M. and Pascoa, M. A. R. (2015), The McDonald Extended Weibull Distribution. Journal of Statistical Theory and Practice, 9(3), 608-632. [
DOI:10.1080/15598608.2014.977980]
25. Korkmaz, M. C. and Genc, A. I. (2017), A new generalized two-sided class of distributions with an emphasis on two- sided generalized normal distribution. Communications in Statistics-Simulation and Computation, 46(2), 1441-1460. [
DOI:10.1080/03610918.2015.1005233]
26. Korkmaz, M. C., Yousof, H. M. and Hamedani, G. G. (2018a), The Exponential Lindley Odd Log-Logistic-G Family: Properties, Characterizations and Applications. Journal of Statistical Theory and Applications, 17(3), 554-571. [
DOI:10.2991/jsta.2018.17.3.10]
27. Korkmaz, M. C., Yousof H. M., Hamedani, G. G. and Ali M. M. (2018b), The Marshall-Olkin Generalized G Poisson Family Of Distributions. Pakistan Journal of Statistics, 34(3), 251-267.
28. Korkmaz, M. C., Alizadeh, M., Yousof, H. M. and Butt, N. S. (2018c), The generalized oddWeibull generated family of distributions: statistical properties and applications. Pakistan Journal of Statistics and Operation Research, 14(3), 541-556. [
DOI:10.18187/pjsor.v14i3.2598]
29. Korkmaz, M. C. (2019a), A new family of the continuous distributions: the extended Weibull-G family. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68(1), 248-270. [
DOI:10.31801/cfsuasmas.451602]
30. Korkmaz, M. C., Cordeiro, G. M., Yousof, H. M., Pescim, R. R., Afify, A. Z., and Nadarajah, S. (2019b), The Weibull Marshall-Olkin family: Regression model and application to censored data. Communications in Statistics-Theory and Methods Accepted, DOI:10.1080/03610926.2018.1490430. [
DOI:10.1080/03610926.2018.1490430]
31. Lindley, D. V. (1958), Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society, Series B, 20, 102-107. [
DOI:10.1111/j.2517-6161.1958.tb00278.x]
32. Marshall, A.W. and Olkin, I. (1997), A new methods for adding a parameter to a family of distributions with application to the Exponential andWeibull families. Biometrika, 84, 641-652. [
DOI:10.1093/biomet/84.3.641]
33. Mudholkar, G. S. and Srivastava, D. K. (1993), Exponentiated Weibull family for analysing bathtub failure rate data. IEEE Transactions on Reliability, 42, 299-302. [
DOI:10.1109/24.229504]
34. Nadarajah, S., Cordeiro, G. M., and Ortega, E. M. M., (2014), The Zografos-Balakrishnan-G Family of Distributions: Mathematical Properties and Applications. Communications in Statistics - Theory and Methods, 44, 186-215. [
DOI:10.1080/03610926.2012.740127]
35. Nofal, Z. M., Afify, A. Z., Yousof, H. M. and Cordeiro, G. M. (2017), The generalized transmuted-G family of distributions. Communications in Statistics - Theory and Methods, 46, 4119-4136. [
DOI:10.1080/03610926.2015.1078478]
36. Pogany, T. K., Saboor, A. and Provost, S., (2015), The Marshall Olkin Exponential Weibull Distribution. Hacettepe Journal of Mathematics and Statistics, 44(6), 1579-1594.
37. Silva, R. B., Bourguignon, M., Dias, C. R. B. and Cordeiro, G. M. (2013), The compound class of extendedWeibull power series distributions. Computational Statistics andData Analysis, 58, 352-367. [
DOI:10.1016/j.csda.2012.09.009]
38. Swain, J. J., Venkatraman, S., andWilson, J. R., (1988), Least- squares estimation of distribution functions in johnson's translation system. Journal of Statistical Computation and Simulation, 29, 271- 297. [
DOI:10.1080/00949658808811068]
39. Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. (2015), The transmuted exponentiated generalized-G family of distributions. Pakistan Journal of Statistics and Operation Research, 11, 441-464. [
DOI:10.18187/pjsor.v11i4.1164]
40. Yousof, H. M., Afify, A. Z., Hamedani, G. G. and Aryal, G. (2016), the Burr X generator of distributions for lifetime data. Journal of Statistical Theory and Applications, 16, 288-305. [
DOI:10.2991/jsta.2017.16.3.2]
41. Yousof, H. M., Majumder, M., Jahanshahi, S. M. A., Ali, M. M. and Hamedani, G. G. (2018), A new Weibull class of distributions: theory, characterizations, and applications. Journal of Statistical Research of Iran, 23, 13-31. [
DOI:10.29252/jsri.15.1.45]