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Abstract. This paper considers a first-order autoregressive model with skew-normal
innovations from a parametric point of view. We develop an essential theory for com-
puting the maximum likelihood estimation of model parameters via an Expectation-
Maximization (EM) algorithm. Also, a Bayesian method is proposed to estimate the
unknown parameters of the model. The efficiency and applicability of the proposed
model are assessed via a simulation study and a real-world example.
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1 Introduction

Autoregressive (AR) models are the most widely used class of time series models.
Traditionally, an AR model is analyzed based on the normality assumption of innova-
tions by considering them as a sequence of uncorrelated zero mean normal random
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variables (Pourahmadi , 2001) and (Shumway and Stofer, 2006). Whereas, in many ap-
plications the data violate normality and the conventional normal based theory could
not provide an adequate description for data (Tarami and Pourahmadi, 2003). Bondon
(2009) introduced a non-Gaussian AR model with epsilon skew-normal innovations
and provided the method of moments and maximum likelihood (ML) estimators of
the model parameters and their corresponding limiting distributions. Following Bon-
don (2009), Sharafi and Nematollahi (2016) considered the skew-normal distribution
introduced by Azzalini (1985) for the innovations. Also, the semiparametric analyzes
of the nonlinear AR(1) model with skew-symmetric innovations has been investigated
by Hajrajabi and Fallah (2017).

In this paper, we allow the AR model innovations to have the skew-normal distribu-
tion. This is different from the work of Sharafi and Nematollahi (2016) in the way that
we are interested in the parametric estimation of the parameters through the ML and
Bayes approaches, instead of nonparametric estimation via least squares (LS) method.
We provide closed iterative forms for the ML estimators of the parameter using an EM
type optimization methodology. We also develop a Gibbs algorithm for estimating the
parameters in the Bayesian paradigm.

The rest of the paper unfolds as follows. Section 2, briefly outlines some the-
oretical and preliminaries of the skew-normal distribution. Conditional maximum
likelihood (CML) estimation in the linear AR model using the EM algorithm are inves-
tigated in Section 3. Also, Bayesian estimation of the unknown parameters through
the Metropolis-Hastings and Gibbs schemes are derived in this section. A simulation
study is conducted to verify the accuracy of the proposed method in Section 4. An
application of the model in the daily return series of Mellat bank of Iran is explained
in Section 5. Finally, some conclusions are given in Section 6.

2 The Proposed Model

In this section, we develop an AR(1) model under the assumption of skew-normal
distribution for innovations.

A random variable Y follows a univariate skew-normal distribution with location
parameter µ, scale parameter w2 and skewness parameter α, Y ∼ SN(µ,w2, α), if its
density function is given by

fSN(y|µ,w2, α) =
2
w
ϕ(

y − µ
w

)Φ(α
y − µ

w
), µ, α ∈ ℜ,w ∈ ℜ+, (2.1)
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where ϕ(·) and Φ(·) denote the density and cumulative distribution function of the
standard normal distribution, respectively. Note that if α = 0 , the density of Y in
equation (2.1) reduces to the N(µ,w2) density. Some brief theoretical results about the
skew-normal distribution that is necessary in the next sections are presented in the
Appendix. Consider an autoregressive model of order one (denoted by AR(1)) for a
process yt as

yt = ϕyt−1 + at, t = 2, ..., n, (2.2)

where |ϕ| < 1 and at, as the innovation process, follows a skew-normal distribution,
SN(µ,w2, α).

The motivation for considering skew-normal distribution instead of normal arises
from the fact that the former distribution is useful for describing asymmetric and
heavy-tailed data. In what follows, we try to estimate the parameters of the model (2.2)
using both the CML and Bayes approaches.

2.1 Conditional Maximum Likelihood Approach

Using Lemma 6.3 in the Appendix and defining the variables St ∼ TN(0,w2)I{St>0},
Ut ∼ N(0,w2) and Yt = ϕYt−1 + µ + δ(α)St +

√
1 − δ2(α)Ut, where δ(α) = α√

1+α2
and

TN(a, b) denotes the truncated N(a, b) distribution at (0,∞), the conditional distribution
of observations in the model (2.2) can be written as

Yt|Yt−1 ∼ SN(ϕYt−1 + µ,w2, α), t = 2, ..., n. (2.3)

Given data y = (y2, ..., yn), the conditional likelihood function of the model (2.3) is

L(µ, ϕ,w2, α|y) =
n∏

t=2

fSN(yt|yt−1,θ)

=

n∏
t=2

2
w
ϕ(

yt − µ − ϕyt−1

w
)Φ(α(

yt − µ − ϕyt−1)
w

)}

= (
2
w

)n−1(2π)−
n−1

2 exp{ −1
2w2

n∑
t=2

(yt − µ − ϕyt−1)2}

×
n∏

t=2

Φ(α(
yt − µ − ϕyt−1

w
)), (2.4)
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where θ = (ϕ, µ,w2, α) is the vector of unknown parameters. Due to the complexity of
the likelihood function (2.4), there are no closed-form expressions of the ML parameter
estimators.

Therefore, we provide an EM algorithm (Dempster et al. , 1977) and (Lin et al. , 2007)
to compute the numerical values of the ML estimates. Hence, it is necessary to formu-
late the problem in terms of a missing data problem. By considering s = (s2, ..., sn) and
y, respectively, as missing and incomplete data and using Lemma 6.3 in the Appendix,
the joint density of the Yt and St is given by

fYt,St(yt, st) =

√
1 + α2

πw2 exp{ −1
2w2 [(yt − ϕyt−1 − µ)2

+ (1 + α2)(st −
α√

1 + α2
(yt − ϕyt−1 − µ))2]}

=
1

πw2
√

1 − δ2(α)
exp{ −1

2w2(1 − δ2(α))
[(yt − ϕyt−1 − µ)2 − 2stδ(α)(yt − ϕyt−1 − µ)) + s2

t ]}.

Hence, the complete data likelihood and log-likelihood functions are obtained as

Lc(µ, ϕ,w2, α|y, s) =
n∏

t=2

fYt,St(yt, st)

= (πw2)−(n−1)(1 − δ2(α))−
n−1

2

× exp{ −1
2w2(1 − δ2(α))

[
n∑

t=2

[(yt − ϕyt−1 − µ)2

− 2stδ(α)(yt − ϕyt−1 − µ)) + s2
t ]]}. (2.5)

and

ℓc(µ, ϕ,w2, α|y, s) = −(n − 1) log(w2) − (n − 1)
2

log(1 − δ2(α))

− 1
2w2(1 − δ2(α))

[
n∑

t=2

(yt − ϕyt−1 − µ)2

− 2δ(α)
n∑

t=2

st(yt − ϕyt−1 − µ)) +
n∑

t=2

s2
t ],



Classical and Bayesian Estimation of the AR(1) Model with Skew-Symmetric Innovations 161

respectively. For executing the EM algorithm, using Lemma 6.4 in the Appendix, we
have

St|Yt = yt ∼ TN(µSt , σ
2
S)Ist>0,

where

µSt = δ(α)(yt − ϕyt−1 − µ),

σ2
S = w2(1 − δ2(α)). (2.6)

In the E-step of the EM algorithm, the conditional expectation of complete data log-
likelihood given the observed data and the current parameters is computed as below

E[ℓc(µ, ϕ,w2, α|y, s)|y] = −(n − 1) log(w2) − (n − 1)
2

log(1 − δ2(α))

− 1
2w2(1 − δ2(α))

[
n∑

t=2

(yt − ϕyt−1 − µ)2

− 2δ(α)
n∑

t=2

A1t(yt − ϕyt−1 − µ)) +
n∑

t=2

A2t], (2.7)

where A1t and A2t are computed, using Lemma 6.4 in the Appendix, as follow

A1t = E[St|Yt−1 = yt−1] = µSt +
ϕ(
µSt
σS

)

Φ(
µ̂St
σS

)
σS,

A2t = E[S2
t |Yt−1 = yt−1] = µ2

St
+ σ2

S +
ϕ(
µSt
σS

)

Φ(
µSt
σS

)
σSµSt ,

and µSt and σ2
S are given in equation (2.6). In the M-step, the algorithm finds values

in the parameter space that maximizes the conditional expectation in equation (2.7).
Given the values of parameters in iteration k, the updated estimates are obtained as
follow

µ̂(k+1) =
1

n − 1
[

n∑
t=2

(yt − ϕ̂(k)yt−1) − δ(α̂(k))
n∑

t=2

A(k)
1t ],

ϕ̂(k+1) =

∑n
t=2 yt−1(yt − µ̂(k+1)) −∑n

t=2 δ(α̂
(k))A(k)

1t yt−1∑n
t=2 y2

t−1

,
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ŵ2(k+1) =
1

2(n − 1)(1 − δ2(α̂(k)))
[

n∑
t=2

A(k)
2t − 2δ(α̂(k))

n∑
t=2

A(k)
1t (yt − ϕ̂(k+1)yt−1 − µ̂(k+1))

+

n∑
t=2

(yt − ϕ̂(k+1)yt−1 − µ̂(k+1))2],

α̂(k+1) = arg max
α

n∑
t=2

log
[
Φ(α(

yt − µ̂(k+1) − ϕ̂(k+1)yt−1

ŵ(k+1)
))
]
.

As can be seen, computing α̂(k+1) requires a one-dimensional optimization, which can
be easily done by using any iterative algorithm such as Newton-Raphson. The values
of the moment estimates, given in Lemma 6.2 in the Appendix, can be used as initial
values for the EM algorithm.

2.2 Bayesian Approach

It is well known that the ML estimates are less accurate for small sample sizes. In
this situation, the Bayesian approach provides an interesting alternative methodology
for inference and modeling especially when prior information about the unknown pa-
rameters is available (Ibazizen and Fellag , 2003). The Bayesian approach incorporates
our prior knowledge about parameters, in terms of the prior distributions, and the
information obtained from observations via Bayes rule.

To estimate the unknown parameters θ = (ϕ, µ,w2, α) using Bayesian methodology,
it is necessary to assume θ is a random vector with some probability distribution.
Therefore, to complete the model setup, a prior distribution for the parameter vector
θ needs to be specified. Following Arellano-Valle and Azzalini (2006), Kastner (2016)
and De Oliveira (2012), we set the following prior distributions

µ ∼ N(λ0,
1
k0

),

ϕ ∼ U(−1, 1),

w−2 ∼ Gamma(a0, b0),

α|µα, σ2
α ∼ N(µα, σ2

α),

µα ∼ TN(−5, 5,m0, s2
0),

σ−2
α ∼ Gamma(c0, d0), (2.8)
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where TN(a, b, µ, σ2) denotes the truncated normal distribution with parameters µ and
σ2 within the range (a, b). As it can be seen, due to the importance of skewness parameter
α the proposed model, we considered a two-level hierarchical prior distribution for this
parameter to improve the robustness of the resulting Bayes estimators. As it is noted
by Robert (2001), it is rarely necessary to consider more than two conditional levels in
the hierarchical modeling and usually considering only two levels of hierarchy suffices
to achieve robust results, see Lindley and Smith (1972) and Good (1980) for more
information about hierarchical Bayes analysis. By considering the complete likelihood
of data in equation (2.5), the joint posterior distribution of parameters obtained as
follow

π(µ, ϕ,w2, α|y, s) = Lc(ϕ, µ,w2, α|y, s)π(µ, ϕ,w2, α)
∝ Lc(ϕ, µ,w2, α|y, s)π(µ)π(ϕ)π(w2)π(α|µα, σ2

α)π(µα)π(σ2
α)

∝ (πw2)−(n−1)(1 − δ2(α))−
n−1

2

× exp{ −1
2w2(1 − δ2(α))

[
n∑

t=2

[(yt − ϕyt−1 − µ)2

− 2stδ(α)(yt − ϕyt−1 − µ)) + s2
t ]]}

× exp{−k0

2
(µ − λ0)2} × (w−2)(a0−1) exp{−b0w−2}

× exp{− 1
2σ2
α

(α − µα)2} × (σ−2
α )(c0−1) exp{−d0σ

−2
α }

×
ϕ(µα−m0

s0
)

s0(ϕ( 5−m0
s0

) − ϕ(−5−m0
s0

))
. (2.9)

As clearly be seen, the complexity of the posterior distribution in the equation (2.9)
precludes analytical treating of the Bayes estimators of the parameters. Therefore, in
what follows, we provide a Gibbs algorithm to sample from joint posterior distribution
and provide desirable posterior inference about parameters. Using the joint posterior
distribution of the parameters given in equation (2.9) and considering the missing data
as the unknown parameters, we have

π(st|others) ∝ exp{ −1
2w2(1 − δ2(α))

[
n∑

t=2

[s2
t − 2stδ(α)(yt − ϕyt−1 − µ)]]},

π(µ|others) ∝ exp{ −1
2w2(1 − δ2(α))

[µ2[(n − 1) + kw2(1 − δ2(α))]

− 2µ[
n∑

t=2

(yt − ϕyt−1) − δ(α)
n∑

t=2

st + kλw2(1 − δ2(α))]},
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π(ϕ|others) ∝ exp{ −1
2w2(1 − δ2(α))

[
n∑

t=2

ϕ2y2
t−1 − 2ϕ

n∑
t=2

[yt−1(yt − µ) − δ(α)styt−1]]},

π(w−2|others) ∝ (w−2)a0+n−2 exp{−w−2[
−1

2w2(1 − δ2(α))

n∑
t=2

[(yt − ϕyt−1 − µ)2

− 2stδ(α)(yt − ϕyt−1 − µ)) + s2
t ] + b]},

π(µα|others) ∝ exp{− 1
2σ2
α

(α − µα)2}
ϕ(µα−m0

s0
)

s0(ϕ( 5−m0
s0

) − ϕ(−5−m0
s0

))
,

π(σ−2
α |others) ∝ exp{− 1

2σ2
α

(α − µα)2}(σ−2
α )(c0−1) exp{−d0σ

−2
α },

π(α|others) ∝ (1 − δ2(α))−
n−1

2 exp{ −1
2w2(1 − δ2(α))

[
n∑

t=2

[(yt − ϕyt−1 − µ)2

− 2stδ(α)(yt − ϕyt−1 − µ)) + s2
t ]]} exp{− 1

2σ2
α

(α − µα)2},

Therefore, the necessary full conditional distributions at the (k+1)-th iteration of the
Gibbs algorithm are given by

s(k+1)
t |others ∼ TN(δ(α(k))(yt − ϕ(k)yt−1 − µ(k)),w2(k)(1 − δ2(α(k))),
µ(k+1)|others ∼ N(M(k+1)

µ , S2(k+1)
µ ),

ϕ(k+1)|others ∼ N(M(k+1)
ϕ
, S2(k+1)
ϕ

),

w−2(k+1)|others ∼ Gamma((n − 1) + a0, γ
(k+1) + b),

σ−2(k+1)
α |others ∼ Gamma(c0 +

1
2
, d0 +

(α(k) − µ(k+1)
α )2

2
).

where

M(k+1)
µ =

∑n
t=2(yt − ϕ(k)yt−1) − δ(α(k))

∑n
t=2 s(k+1)

t + kλw2(k)(1 − δ2(α(k))

(n − 1) + kw2(k)(1 − δ2(α(k)))
,

S2(k+1)
µ = [

(n − 1)
w2(k)(1 − δ2(α(k))

+ k]−1,

γ(k+1) =
−1

2w2(k)(1 − δ2(α(k)))
[

n∑
t=2

[(yt − ϕ(k)yt−1 − µ(k+1))2

− 2s(k)
t δ(α

(k))(yt − ϕ(k)yt−1 − µ(k+1))) + s2(k+1)
t ]],
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M(k+1)
ϕ

=

∑n
t=2 yt−1(yt − µ(k+1)) − δ(α(k))s(k+1)

t yt−1∑n
t=2 y2

t−1

,

S2(k+1)
ϕ

= [

∑n
t=2 y2

t−1

w2(k)(1 − δ2(α(k)))
]−1.

Because of to the lack of distributional construction in full conditional posterior distri-
bution of parameters µα and α, the Metropolis-Hastings algorithm is used for sampling
of these distributions.

For µα we use the following schema: we draw µ(k+1)
α = µ(k)

α + N(0, τ1) where τ1
is a tuning parameter used to adjust the acceptance probability by an opening of
the window technique, i.e. by trying several tuning parameters and deciding for a
good compromise. Then, µ(k+1) is accepted as an observation from the corresponding
posterior distribution if u < ρ, where

ρ = min{1, exp(log(π(µ′α|others)) − log(π(µ(k)
α |others))}.

denotes the Metropolis ratio and u is an observation from the uniform distribution on
the interval (0, 1). The parameter α is updated in exactly the same manner.

3 Simulation Study

In this section, we perform a simulation study to assess the efficiency of the ML and
Bayesian estimators in the model (2.2). For the first purpose, the values of the model
parameters are set to be µ = 1,w2 = 1 and ϕ = 0.2. To evaluate the effect of sample
size on the efficiency of the proposed methods, we consider different sample sizes
n = 50, 100, 500, 1000. Also, to assess the ability of the proposed model for modeling,
observations with both symmetric and asymmetric structures, we consider different
values for the skewness parameter as α ∈ {−3,−1, 0, 1, 3}.

For the Bayesian approach, we adopt the vague and non-informative priors with
considering hyperparameters (λ0 = 0, k0 = 100) for µ, (a0 = 0.01, b0 = 0.01) for w−2,
(m0 = 0, s2

0 = 100) for µα and (c0 = 0.01, d0 = 0.01) for σ−2
α , for more details, Ntzoufras

(2009). Taking these considerations into account, the values of the root mean square
error (RMSE) for the ML and Bayesian estimates of the model parameters are presented
in Table 1. The number of repetitions is fixed at be R = 1000 in order to take into account
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the uncertainty in a random number generating procedure. For example, the RMSE

of ϕ is calculated as RMSE =
√

1
R−1
∑R

t=2(ϕ̂i − ϕ)2, where ϕ̂i is an estimation of ϕ in
each repetition. Also, for checking the sensitivity of the method to different values of
ϕ = −0.8,−0.5, 0.5, 0.8, the values of µ = 2,w2 = .5 and α = 2 are fixed and the RMSE
for the ML and Bayes estimates of the model parameters are computed that are shown
in Table 2. The results from Tables 1 and 2, show that if the sample size is small, the
Bayesian estimates will be more precise than the ML estimates based on the RMSE
values.

Table 1: The values of the RMSE for the ML and Bayes estimators of the model parameters by
considering different values of n and α.

Parameter
α n Method ϕ µ w2 α
3 50 ML 0.0140 0.2286 0.4305 1.9012

Bayes 0.0027 0.1217 0.4153 1.9002
100 ML 0.0231 0.1073 0.2797 1.8827

Bayes 0.0031 0.1003 0.2682 1.8081
500 ML 0.0138 0.1085 0.2150 1.8070

Bayes 0.0139 0.1049 0.2183 1.8072
1000 ML 0.0127 0.1092 0.1395 1.8034

Bayes 0.0125 0.1061 0.1330 1.8031
0 50 ML 0.0734 0.5371 0.4405 1.8846

Bayes 0.0521 0.2990 0.3221 1.8707
100 ML 0.0631 0.1135 0.2372 1.8745

Bayes 0.0617 0.1117 0.2280 1.8633
500 ML 0.0583 0.1084 0.1840 1.8074

Bayes 0.0562 0.1093 0.1802 1.8021
1000 ML 0.0539 0.1062 0.1306 1.8053

Bayes 0.0542 0.1022 0.1302 1.8095
-3 50 ML 0.0471 0.2282 0.8331 1.7741

Bayes 0.0311 0.2021 0.3838 1.6103
100 ML 0.0172 0.1201 0.2172 1.6490

Bayes 0.0160 0.1027 0.2081 1.5652
500 ML 0.0146 0.1293 0.1183 1.0314

Bayes 0.0129 0.1213 0.1140 1.0283
1000 ML 0.0150 0.1078 0.1064 0.9058

Bayes 0.0157 0.1044 0.1029 1.0018
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Table 2: The values of the RMSE for the ML and Bayes estimators of the model parameters by
considering different values of n and ϕ.

Parameter
ϕ Sample size Method ϕ µ w2 α

-0.8 50 ML 0.0583 0.3198 0.7141 1.8246
Bayes 0.0404 0.2863 0.7064 1.7814

100 ML 0.0560 0.3146 0.7017 1.8217
Bayes 0.0488 0.29950 0.6880 1.7721

500 ML 0.0548 0.3086 0.6912 1.7824
Bayes 0.0503 0.2910 0.6871 1.7715

1000 ML 0.0524 0.3068 0.6551 1.7818
Bayes 0.0599 0.3086 0.6543 1.7062

-0.5 50 ML 0.0471 0.1280 0.3598 1.8472
Bayes 0.0359 0.1219 0.3419 1.8114

100 ML 0.0410 0.1271 0.3363 1.8390
Bayes 0.0405 0.1242 0.3280 1.8021

500 ML 0.0405 0.1560 0.3301 1.8061
Bayes 0.0407 0.1543 0.3362 1.8055

1000 ML 0.0400 0.1541 0.3205 1.7930
Bayes 0.0406 0.1554 0.3243 1.7933

0.5 50 ML 0.0492 0.1580 0.3998 1.6031
Bayes 0.0475 0.1419 0.3598 1.5714

100 ML 0.0417 0.1572 0.3663 1.5823
Bayes 0.0412 0.1402 0.3628 1.4792

500 ML 0.0395 0.1560 0.3310 1.5088
Bayes 0.0392 0.1563 0.3412 1.5038

1000 ML 0.0346 0.1541 0.3305 1.4739
Bayes 0.0339 0.1524 0.3343 1.4710

0.8 50 ML 0.0899 0.4580 0.3725 1.0849
Bayes 0.0698 0.4419 0.3561 1.0489

100 ML 0.0867 0.4312 0.2963 1.0492
Bayes 0.0710 0.4172 0.2628 1.0481

500 ML 0.0860 0.2561 0.2314 1.0094
Bayes 0.0854 0.2563 0.2302 1.0002

1000 ML 0.0809 0.241 0.2155 1.0021
Bayes 0.0900 0.2473 0.2143 1.0063

We also provide the estimator of the model parameters with normal innovations
(Shumway and Stofer, 2006) as the usual traditional model to compare and evaluate
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the robustness of the proposed model versus violation of innovations from normality.
The root mean square error of prediction defined by

RMSEP =

√√
1

n − 1

n∑
t=2

(yt − ŷt)2,

is also computed in order to assess the predictive power of the proposed model and the
results are presented in Table 3. To ensure the convergence of the generated Markov
chains to their corresponding stationary distributions, some convergence diagnostics
have been used.

Table 3: The RMSEP values of the model under the normal and skew-normal innovations.

Distribution of innovations
Sample size α Method Skew-normal Normal

-3 ML 2.7482 2.9034
Bayes 1.2116 1.7436

-1 ML 1.4046 1.8759
Bayes 0.9084 1.3282

10 0 ML 1.8508 1.8728
Bayes 1.4285 1.4035

1 ML 1.4984 2.5550
Bayes 1.1148 1.9538

3 ML 0.9181 1.6658
Bayes 0.9950 1.3715

-3 ML 1.4370 2.4772
Bayes 1.3020 1.8031

-1 ML 1.2218 1.9230
Bayes 1.1154 1.6717

50 0 ML 1.4790 1.4960
Bayes 1.3044 1.3180

1 ML 1.7360 2.5348
Bayes 1.6331 2.3502

-3 ML 1.1762 2.6414
Bayes 1.1279 2.6051

-1 ML 2.0075 2.7316
Bayes 2.1902 2.7050

100 0 ML 1.2920 1.2541
Bayes 1.2001 1.2084

1 ML 1.1090 1.8540
Bayes 1.1496 1.8900

3 ML 0.8475 2.8364
Bayes 0.9816 2.8210
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As can be seen from Table 3, the values of the RMSEP for the normal and the
skew-normal model are almost the same for α = 0 that indicate for this value, the skew-
normal distribution reduces to the normal distribution. For positive and negative
values of the skewness parameter, which respectively correspond to the right-skewed
and left-skewed data, the skew-normal model provides more efficiency based on the
RMSEP than the normal model because it truly takes into account the skewed structure
of data.

4 A Real Example

In this section, we report some empirical results based on the analysis of the daily
returns of Mellat bank stock of Iran from January 1, 2011 to January 14, 2015 for 894
observations. The data set has been downloaded from Tehran securities exchange
technology management company site (www.tsetmc.com). The return series is shown
in Figure 1 (a). We see that the daily returns of the Mellat bank stock are weakly
stationary.
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Figure 1: (a) Time plot of the daily returns of Mellat bank stock of Iran from January 1, 2011 to
January 14, 2015: (b) The ACF of the return (c) The PACF of the return.
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The sample autocorrelation function (ACF) and partial autocorrelation function (PACF)
of the returns series, presented in panels (b) and (c) of Figure 1, indicate that an AR(1)
model can be suggested for data.

The ML and Bayesian estimates of parameters and the RMSE and Akaike informa-
tion criterion (AIC) for the proposed model (Akaike , 1973) are presented in Table 4.
Although the descriptive statistics of return, given in Table 3, show that the data has a
negative skewness.

We also fit the model with normal innovations in order to assess the effect of ignoring
the skewness in modeling the process. It is seen from the results that the skew-normal
model has a better fit to the data than the normal models based on the RMSEP and AIC
criteria.

Table 4: The descriptive statistics of the return series.

n Min Max Mean Variance Skewness
894 -41.7300 4.4760 0.0117 6.3361 -7.1341

Table 5: The ML and Bayesian estimation of the model parameters, the RMSEP and AIC of the
model with normal and skew-normal innovations.

Parameter Criterion
method Innovations ϕ µ w2 α RMSEP AIC

Normal 0.1085 0.0103 6.2615 - 3.6297 4178.3666
ML

Skew-normal 0.1046 0.0076 8.4595 -1.8140 3.3139 3965.0531
Normal 0.2210 0.0098 6.9017 - 3.5020 4088.2619

Bayes
Skew-normal 0.2019 0.0015 9.0074 -2.0080 3.4044 3704.5025

Time plot of the daily return series (dotted line) and estimation of it (dashed line)
are presented in the upper panel of Figure 2. We analyze the residual of the model for
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Figure 2: (a) Time plot of the daily return series (dotted line) and its estimation of it (dashed
line) (b) The ACF of residuals.

checking goodness of fit by using the ACF plot of them, that are presented in the bottom
panel of Figure 2. Based on this figure, there are no significant serial correlations, thus,
the model appears to be adequate in describing the daily return series of Mellat bank.

5 Conclusion

In this paper, we considered an autoregressive model with the skew-normal innova-
tions and developed a parametric schema for fitting the model both from the frequentist
and Bayesian point of view. The proposed model allows a flexible treatment of asym-
metry in the conditional distribution of the observations. The ML and Bayes estimates
of the unknown parameters obtained via EM type optimization and MCMC meth-
ods, respectively. The result of a simulation study and the empirical application are
indications of a good performance of the proposed methodology.
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6 Appendix

In this appendix some brief theoretical results about the skew-normal distribution are
presented.

Lemma 6.1. If Y ∼ SN(µ,w2, α), then

(i) E(Y) = µ +
√

2
wδ(α),

(ii) Var(Y) = {1 − 2
πδ

2(α)}w2,

where δ(α) = α√
1+α2

.

Lemma 6.2. If Y ∼ SN(µ,w2, α); then the following moment estimators can be obtained from
the work of Arnold et al. (1993)

(i) µ̂ = m1 − c1( m3
d1

)
1
3 ,

(ii) ŵ2 = m2 + c2
1( m3

d1
)

2
3 ,

(iii) δ̂(α) = {c2
1 +m2( d1

m3
)

2
3 }− 1

2 ,

where c1 =
√

2
π , d1 = ( 4

π − 1)c1, m1 =
∑n

i=1 Yi
n , m2 =

∑n
i=1(Yi−m1)2

n−1 and m3 =
∑n

i=1(Yi−m1)3

n−1 .

The following lemma provides an stochastic representation for the skew-normal
distribution as a mixture of a truncated normal (TN) and a normal distribution.

Lemma 6.3. According to Azzalini (1986) and Henze (1986), if S ∼ TN(0,w2)I{T>0},
U ∼ N(0,w2) such that T and U be independent, then

Y = µ + δ(α)S +
√

1 − δ2(α)U,

distributed as SN(µ,w2, α). Also, the joint density of Y and S is given by

fY,S(y, s) =

√
1 + α2

πw2

× exp{ −1
2w2 [(y − µ)2 + (1 + α2)(s − α√

1 + α2
(y − µ))2]}.
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Lemma 6.4. If S ∼ TN(0,w2)I{S>0}, U ∼ N(0,w2) and Y is defined as Y = µ + δ(α)S +√
1 − δ2(α)U, then

S|Y = y ∼ TN(µS, σ
2
S)Ia1=0<s<a2=∞,

Also, we have

E(S|Y = y) = µS +
ϕ(µS
σS

)

Φ(µS
σS

)
σS,

E(S2|Y = y) = µ2
S + σ

2
S +
ϕ(µS
σS

)

Φ(µS
σS

)
σSµS,

where

µS = δ(α)(y − µ),
σ2

S = w2(1 − δ2(α)).




