1. Abdul-Sathar, E. I., Rajesh, G., and Nair, K. R. M. (2010), Bivariate geometric vitality function and some characterization results. Calcutta Statistical Association Bulletin, 62(3-4), 207-228. [
DOI:10.1177/0008068320100305]
2. Asadi, M. and Zohrevand, Y. (2007). On the dynamic cumulative residual entropy. Journal of Statistical Planning and Inference, 137(6), 1931-1941. [
DOI:10.1016/j.jspi.2006.06.035]
3. Balakrishnan, N. and Lai, C. D. (2009). Continuous bivariate distributions. Springer Science & Business Media. [
DOI:10.1007/b101765_6]
4. Belzunce, F., Navarro, J., Ruiz, J. M., and Aguila, Y. D. (2004). Some results on residual entropy function. Metrika, 59(2), 147-161. [
DOI:10.1007/s001840300276]
5. Bismi, N. G. (2005). Bivarite burr distributions. PhD thesis, Cochin University of Science and Technology.
6. Di Crescenzo, A. and Longobardi, M. (2002). Entropy-based measure of uncertainty in past lifetime distributions. Journal of Applied Probability, 39(2), 434-440. [
DOI:10.1017/S002190020002266X]
7. Ebrahimi, N. (1996). How to measure uncertainty in the residual life time distribution. Sankhy a: The Indian Journal of Statistics, Series A, 48-56.
8. Ebrahimi, N., Kirmani, S., and Soofi, E. S. (2007). Multivariate dynamic information. Journal of Multivariate Analysis, 98(2), 328-349. [
DOI:10.1016/j.jmva.2005.08.004]
9. Kim, H. and Kvam, P. H. (2004). Reliability estimation based on system data with an unknown load share rule. Lifetime Data Analysis, 10(1), 83-94. [
DOI:10.1023/B:LIDA.0000019257.74138.b6]
10. Kundu, A. and Kundu, C. (2017). Bivariate extension of (dynamic) cumulative past entropy. Communications in Statistics-Theory and Methods, 46(9), 4163-4180. [
DOI:10.1080/03610926.2015.1080838]
11. Kundu, A. and Kundu, C. (2018). Bivariate extension of generalized cumulative past entropy. Communications in Statistics-Theory and Methods, 47(8), 1962-1977. [
DOI:10.1080/03610926.2017.1335412]
12. Nair, K. R. M. and Rajesh, G. (2000). Geometric vitality function and its applications to reliability. IAPQR TRANSACTIONS, 25(1), 1-8.
13. Nair, N. U. and Asha, G. (2008). Some characterizations based on bivariate reversed mean residual life. ProbStat Forum, 1, 1-14.
14. Nanda, A. K. and Paul, P. (2006). Some properties of past entropy and their applications. Metrika, 64(1), 47-61. [
DOI:10.1007/s00184-006-0030-6]
15. Rajesh, G., Abdul-Sathar, E. I., Nair, K. R. M., and Reshmi, K. V. (2014a). Bivariate extension of dynamic cumulative residual entropy. Statistical Methodology, 16, 72-82. [
DOI:10.1016/j.stamet.2013.07.006]
16. Rajesh, G., Abdul-Sathar, E. I., Reshmi, K. V., and Nair, K. R. M. (2014b). Bivariate generalized cumulative residual entropy. Sankhya A, 76(1), 101-122. [
DOI:10.1007/s13171-013-0031-2]
17. Rajesh, G., Sathar, A. E. I., and Nair, K. R. M. (2009). Bivariate extension of residual entropy and some characterization results. Journal of Indian Statistical Association, 47, 91-107.
18. Rao, M., Chen, Y., Vemuri, B. C., and Wang, F. (2004). Cumulative residual entropy: a new measure of information. IEEE transactions on Information Theory, 50(6), 1220-1228. [
DOI:10.1109/TIT.2004.828057]
19. Roy, D. (2002). Acharacterization of model approach for generating bivariate life distributions using reversed hazard rates. Journal of the Japan Statistical Society, 32(2), 239-245. [
DOI:10.14490/jjss.32.239]
20. Sathar, A. E. I., Nair, K. R. M., and Rajesh, G. (2009). Generalized bivariate residual entropy function and some characterization results. South African Statistics Journal, 44, 1-18.
21. Shaked, M. and Shanthikumar, J. G. (2007). Stochastic orders. Springer Science & Business Media. [
DOI:10.1007/978-0-387-34675-5]
22. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423. [
DOI:10.1002/j.1538-7305.1948.tb01338.x]
23. Sunoj, S. and Linu, M. (2012). Dynamic cumulative residual renyi's entropy. Statistics, 46(1), 41-56. [
DOI:10.1080/02331888.2010.494730]