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Abstract. The problem of shrinkage testimation (test-estimation) for the Rayleigh
scale parameter θ based on censored samples under the reflected gamma loss function
is considered. We obtain a minimum risk estimator in a subclass and compute its
risk. A shrinkage testimator based on the acceptance or rejection of the null hypothesis
H0 : θ = θ0 is constructed, where θ0 is a point guess value of θ. The risk of the proposed
shrinkage testimator is computed numerically and compared with the minimum risk
estimator. A data set is analyzed for illustrative purposes.
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1 Introduction

In classical methods of statistics, the parameter of interest is estimated based on a
random sample using natural estimators such as maximum likelihood estimator (MLE)
provided that it exists. In a Bayesian perspective, a Bayes estimator is derived by
employing a flexible prior distribution for the parameter of interest. In some situations,
the experimenter has some prior information about the parameter in the form of a point
guess value. For example, a producer may know that the mean of life times of electronic
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components in an accelerated life test is close to 600 minutes. Therefore, he/she can
improve the natural estimator by shrinking it towards the guess value and construct
a linear shrinkage estimator in the hope that it will perform better than the natural
estimator.

When a point guess value θ0 of the parameter θ is available, Thompson (1968)
proposed the shrinkage estimator

θ̂s = kθ̂ + (1 − k)θ0, 0 ≤ k ≤ 1, (1.1)

where k is the shrinkage factor. The value of k near to zero (one) implies strong belief
in the guess value θ0 (sample values). Information in the guess value (non-sample
information) can be expressed in the form of a preliminary test H0 : θ = θ0 against
H0 : θ , θ0. Based on acceptance or rejection of the null hypothesis, we can construct
some shrinkage testimators (test-estimators) which have smaller risk than the natural
estimators in some interval around the guess value, see Ahmed (1992).

The problem of shrinkage testimation has received significant attention in recent
years. A few of the many works that have recently appeared in this area are as follow:
Singh et al. (2007) considered the shrinkage testimation for the Pareto scale-parameter
under the linear-exponential (LINEX) loss function. Prakash and Pandey (2007) and
Prakash and Singh (2008) provided some shrinkage testimators for the variance of
a normal distribution and the scale-parameter of the exponential distribution under
the LINEX loss, respectively. New works in this area are performed by Mirfarah and
Ahmadi (2014), Belaghi et al. (2015), Naghizadeh Qomi and Barmoodeh (2015) and
Kiapour and Naghizadeh (2016).

For estimating a scale-parameter, the common loss is the scale invariant squared
error loss (SISEL) which is symmetric. Some asymmetric loss functions such as entropy
and LINEX loss are motivated in response to the criticism of the SISEL. However, these
loss functions with their infinite maximum value are not appropriate in practice. In
some estimation problems, the use of unbounded loss function may be inappropriate.
For example, in estimating the mean life θ of the components of an aircraft, the amount
of loss for estimating θ by an estimator is essentially bounded. In the present paper,
we deal with the shrinkage testimation of a Rayleigh scale-parameter under Reflected
Gamma Loss (RGL) function. The RGL function is a simple transformation of the
gamma density and introduced by Spiring and Yeung (1998) and is defined by

L(∆) = k⋆
{
1 − ∆γe−γ(∆−1)

}
, ∆ =

θ̂
θ
, (1.2)

where k⋆ > 0 is the maximum loss, γ > 0 is a shape parameter and θ̂ is an estimator
of θ. This loss can be used when Ω = R+ where Ω is the parameter space. The
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Figure 1: Plot of the RGL function for k⋆ = 1 and selected values of γ = 1, 5, 10.
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RGL function is a bounded and asymmetric function of ∆, but not convex in ∆, and
is essentially a gamma density function flipped upside down, whence its name, see
Figure 1. Towhidi and Behboodian (1999,2002), Meghnatisi and Nematollahi (2009),
Kaminskaa and Porosinskia (2009) and Naghizadeh Qomi et al. (2015) have used the
RGL function (1.2) in some estimation problems. Clearly the value of k⋆ > 0 does not
have any influence on our results, therefore, without loss of generality, we shall take
k⋆ = 1 in the rest of the paper. The paper is organized as follows. we first present
the considered model and data. Then, we derive the MLE (θ̂) and the minimum
risk estimator within the class cθ̂ under the RGL function. We show that the MLE
(the estimator corresponding to c = 1 ) is the minimum risk estimator. In Section 3,
we propose a shrinkage testimator and compare it with the minimum risk estimator.
Moreover, we compare the performance of the three proposed shrinkage testimators. A
real data set is used for illustrative purposes in Section 4. We end up with a concluding
remark in Section 5.
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2 Model and Data

Let X have a one-parameter Rayleigh distribution with probability density function
(p.d.f.)

f (x;θ) =
x
θ

exp
{
− x2

2θ

}
, x > 0, (2.1)

and the corresponding comulative density function (c.d.f.) as

F(x;θ) = 1 − exp
{
− x2

2θ

}
, x > 0. (2.2)

We will use X ∼ Ray(θ) to mean that the random variable X is distributed according
to the Rayleigh distribution with parameter θ.

The linear and increasing failure rate of the Rayleigh distribution is

r(t;θ) =
f (t;θ)

1 − F(t;θ)
=

t
θ
, (2.3)

which makes it an appropriate distribution for modeling lifetimes of components.
Several types of electro-vacuum devices have this feature, see Polovko (1968).

Assume that n randomly selected devices are placed on a life test simultaneously
and the test will be finished immediately after r components have failed. Here, r is a
specified integer between 1 and n and is chosen before the data are collected. Therefore,
r is fixed and the length of the experiment is a random variable. Let X1:n, · · · ,Xr:n denote
the type-II right censored observations from the Rayleigh model given in (2.1). Then,
we have the following well-known results due to Arnold et al. (2008):

(i) The joint p.d.f. of X = (X1:n, · · · ,Xr:n) is given by

fX1:n,··· ,Xr:n(x1, · · · , xr) =
n!
∏r

i=1 xi:n

(n − r)!θr exp

−
∑r

i=1 x2
i:n + (n − r)x2

r:n

2θ

 . (2.4)

(ii) The MLE of θ, denoted by θ̂, is

θ̂ =

∑r
i=1 X2

i:n + (n − r)X2
r:n

2r
. (2.5)
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(iii) The spacings Zi = (n − i + 1)(X2
i:n − X2

i−1:n)/θ for i = 1, ..., r (X0:n ≡ 0) constitute a
random sample of χ2

2, a chi-square distribution with 2 degrees of freedom, and
then 2rθ̂/θ ∼ χ2

2r.

Remark 1. Since the RGL function is bounded, by a result in Basu (1955), the uniformly
minimum risk unbiased estimator of any unknown parameter does not exist under the
RGL function.

In the following Lemma, we derive the minimum risk estimator within the class cθ̂
under RGL.

Lemma 2.1. Let X1:n, · · · ,Xr:n denote the type-II right censored observations from the Rayleigh
model. Then, θ̂ is the minimum risk estimator within the class cθ̂ under RGL with the risk

R(θ, θ̂) = 1 − rreγΓ(r + γ)
Γ(r)(r + γ)r+γ . (2.6)

Proof. The risk of cθ̂ under the RGL function is

R(θ, cθ̂) = 1 − E
[(cθ̂
θ

)γ
e−γ( cθ̂

θ −1)
]

= 1 −
(ce

r

)γ
E
[
Wγe−

cγW
r
]
= 1 −

(ce
r

)γ ∫ ∞
0

wγe−
cγw

r
wr−1e−w

Γ(r)
dw

= 1 − cγ

(r + cγ)r+γA(r, γ), (2.7)

where A(r, γ) = rreγΓ(r + γ)/Γ(r) and W = rθ̂
θ has a Gamma(r, 1) distribution. The first

derivative of R(θ, cθ̂) with respect to c is given by

∂R(θ, cθ̂)
∂c

= A(r, γ)
rγ(c − 1)cγ−1

(r + cγ)r+γ+1
.

Then, the risk function has a unique minimum at c = 1 and is strictly decreasing
for c < 1 and strictly increasing for c > 1. There are unique points c1 < 1 < c2 such that
R(θ, cθ̂) is a convex function in (c1, c2) and concave in (−∞, c1) and (c2,∞). Then, the
minimum risk estimator within the class cθ̂ is θ̂, which is the MLE of θ. □
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3 Shrinkage Testimators

When a point guess value θ0 of θ is available, a preliminary test H0 : θ = θ0 against the
alternative H1 : θ , θ0 may be performed to check that θ0 is in the vicinity of θ or not.
A Likelihood Ratio Test (LRT) statistic is U = 2rθ̂/θ ∼ χ2

2r that has a rejection region
of the form 2rθ̂/θ0 > q2 or 2rθ̂/θ0 < q1, where q1 and q2 are the values of the lower
and upper 100α2 % points of the chi-square distribution with 2r degrees of freedom, i.e.
Pθ0(U < q1) = Pθ0(U > q2) = α/2.

3.1 Form of Shrinkage Testimator and It’s Risk

We can construct a shrinkage testimator based on the acceptance or rejection of H0.
The proposed shrinkage testimator, say θ̂st, is kθ̂ + (1 − k)θ0, if H0 is accepted, or θ̂,
otherwise. If H0 is accepted at the significance level α, then we have

Pr
(
q1 ≤

2rθ̂
θ0
≤ q2

)
= 1 − α.

Therefore, the proposed shrinkage testimator can be written as

θ̂st =

{
kθ̂ + (1 − k)θ0 r1 ≤ Yr ≤ r2

θ̂ Yr < r1 or Yr > r2,
(3.1)

where Yr = rθ̂, r1 = q1θ0/2 and r2 = q2θ0/2. The risk function of the shrinkage
testimator θ̂st under the RGL is computed as

R(θ, θ̂st) = 1 − E
[(
θ̂st

θ

)γ
e−γ( θ̂st

θ −1)
]

= 1 − E
{(kθ̂ + (1 − k)θ0

θ

)γ
e−γ(

kθ̂+(1−k)θ0
θ −1)I(B)

}
− E

{(
θ̂
θ

)γ
e−γ( θ̂θ−1)I(Bc)

}
,

where B = {Yr : r1 ≤ Yr ≤ r2}, Bc is the complement of B, I(B) and I(Bc) = 1− I(B) denote
the indicator functions of B and Bc, respectively. Using W = Yr

θ ∼ Gamma(r, 1) and, after
some simple computations, we get

R(θ, θ̂st) =
∫ w2

w1

(w
r

)γ
e−γ( w

r −1)g(w)dw − rreγΓ(r + γ)
Γ(r)(r + γ)r+γ



Improved estimation in Rayleigh type-II censored data... 57

−
∫ w2

w1

[kw
r
+ (1 − k)δ0

]γ
e−γ( kw

r +(1−k)δ0−1)g(w)dw + 1, (3.2)

where δ0 =
θ0
θ , w1 = q1δ0/2, w2 = q2δ0/2 and g(w) is the density of W. The risk function

of θ̂st given in (3.2) can be computed numerically using the statistical package R version
3.1.2.

3.2 Performance of Shrinkage Testimators

For comparison purposes, the relative efficiency (R.E.) between the shrinkage testimator
θ̂st and θ̂ is defined as

RE(θ̂st, θ̂) =
R(θ, θ̂)

R(θ, θ̂st)
, (3.3)

and have been plotted in Figures 2-5 for various values of r, α, k, γ and δ0.

• Figures 2-3 show the plots of the R.E. between θ̂st and θ̂ for selected values of
α = 0.01, 0.05, γ = 1, 5, r = 5, 10, 20 and k = 0.2(0.2)0.8 with respect to δ0 = θ0/θ. A
horizontal line in 1 has been inserted for a better comparison. From these figures,
we observe that the shrinkage testimators perform better than θ̂, when δ0 is close
to 1. Also, for fixed r, α and γ when δ0 is near to 1, the testimators with small k
are more efficient than other testimators.

• The values of R.E. between θ̂st and θ̂ for selected values of α = 0.01, 0.05, γ = 1, 5,
r = 5(5)20 and δ0 = 1 with respect to k have been plotted in Figure 4. This figure
shows that the R.E. is decreasing in k and the shrinkage testimators with small k
and r work well for fixed α and γ.

• Keeping γ = 1, the values of R.E. between θ̂st and θ̂ are plotted in Figure 5 for
selected values of r = 5, 10, 20 and α = 0.01, 0.05, 0.1 with respect to k when δ0 = 1.
We see from Figure 5 that the testimators constructed with lower values of α, i.e.
α = 0.01, are better than other testimators for fixed r and γ.

For a comparison between shrinkage testimators with respect to γ, we plotted the
risks of these testimators in Figure 6. Keeping α = 0.01, we see that a testimator with
lower γ, i.e. γ = 1, has small risks for fixed r.
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Figure 2: Plots of R.E. between θ̂st and θ̂ for α = 0.01, γ = 1 and selected values of
r = 5, 10, 20 and k = 0.2(0.2)0.8 with respect to δ0.
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Figure 3: Plots of R.E. between θ̂st and θ̂ for α = 0.05, γ = 5 and selected values of
r = 5, 10, 20 and k = 0.2(0.2)0.8 with respect to δ0.
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Figure 4: Plots of R.E. between θ̂st and θ̂ for selected values of α = 0.01, 0.05, γ = 1, 5,
r = 5(5)20 and δ0 = 1 with respect to k.
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Figure 5: Plots of R.E. between θ̂st and θ̂ for γ = 1, δ0 = 1 and selected values of
r = 5, 15, 20 and α = 0.01, 0.05, 0.1 with respect to k.
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Figure 6: Plots for the values of risks of θ̂st for α = 0.01, δ0 = 1 and selected values of
r = 5, 15, 20 and γ = 1, 5, 10 with respect to k.
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Figure 7: Plots of R.E. between θ̂sti, i = 1, 2, 3 and θ̂ for α = 0.01, γ = 1 and selected
values of r = 5, 15, 20 with respect to δ0.
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3.3 Selection of k

A choice of shrinkage factor k is to choose the parameter k in a data-driven fashion by
explicitly minimizing the risk of the shrinkage estimator θ̂s given in (1.1). The risk of
the shrinkage estimator θ̂s under the RGL function is given by

R(θ, θ̂s) = 1 − E
[(
θ̂s

θ

)γ
e−γ( θ̂s

θ −1)
]

= 1 − E
[(kθ̂ + (1 − k)θ0

θ

)γ
e−γ(

kθ̂+(1−k)θ0
θ −1)

]
= 1 −

∫ ∞
0

[kw
r
+ (1 − k)δ0

]γ
e−γ( kw

r +(1−k)δ0−1)g(w)dw, (3.4)

where δ0 and g(w) were defined in the previous subsection. The minimizing value of
k ∈ [0, 1] is given by

k1 =


0 k ≤ 0
k 0 ≤ k ≤ 1
1 k ≥ 1,

(3.5)

which is obtained numerically. We call the shrinkage testimator θ̂st1 for the correspond-
ing shrinkage factor k1.

When the null H0 : θ = θ0 is accepted, we can select two shrinkage factors. The first
is based on Waikar et al. (1984). The inequality q1 ≤ 2Yr/θ0 ≤ q2 implies that

0 ≤ k2 =
1

q2 − q1

(2Yr

θ0
− q1

)
≤ 1.
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Then, the shrinkage factor k2 constructs the shrinkage testimator θ̂st2.
The second is based on Prakash and Singh (2008). Under H0, we have E(Yr) = rθ0

and, from the inequality q1 ≤ 2Yr/θ0 ≤ q2, we get q1 ≤ 2r ≤ q2 which implies that
q1/(2r) ≤ 1. If we want small values of the shrinkage factor, we can take q1/(2r) ≈ 1.
Hence,

2r
q2 − q1

(Yr/θ0

r
− q1

2r

)
≈ 2r

q2 − q1

( Yr

rθ0
− 1
)
.

Therefore, the shrinkage factor k3 for constructing the shrinkage testimator θ̂st3 is
given by

k3 =
2n

q2 − q1

∣∣∣∣∣ Yn

nθ0
− 1
∣∣∣∣∣,

where the absolute value is for avoiding from negative values.
Figure 7 presents the R.E. between the shrinkage testimators θ̂sti, i = 1, 2, 3 and θ̂

for selected values of r = 5, 10, 20, α = 0.01 and γ = 1 with respect to δ0 (more figures
are provided, but not presented here). It is observed that all testimators perform better
than θ̂ for δ0 closer to 1. Moreover, the testimator θ̂st1 is more efficient than other
testimators for the values of δ0 near to one.

4 A real data set

The following data set are the failure times (in minutes) for a sample of fifteen electronic
components in an accelerated life test:

1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.

These data are from Lawless (2003). Mirmostafaee et al. (2016) checked the
adequacy of the fitness of the Rayleigh distribution with θ = 580.5973 using the
Kolmogorov-Smirnov (K-S) test with the test statistic D = 0.2341 and a correspond-
ing p − value = 0.3837. Hence, we cannot claim that the Rayleigh distribution is an
inadequate distribution for modeling these data.

Assume that we have failed to observe the last seven ordered data so that r = 8
and n = 15. The MLE of θ is θ̂ = 312.7356. If we consider γ = 1, 5, then the risk of
θ̂ is 0.0581 and 0.2186, respectively. When the point guess values are θ0 = 150(50)500
for true value θ. Then, using θ̂ for estimating θ, the corresponding ML estimates of
δ0, i.e. δ̂0 = θ0/θ̂, are 0.47, 0.63, 0.79, 0.95, 1.11, 1.27, 1.43. Table 1 presents the risks of
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Table 1: The values of risk of shrinkage testimator θ̂st for α = 0.05, γ = 1, 5 and selected
values of k = 0.1(0.3)0.9.

k
(θ0)δ0 γ 0.1 0.3 0.5 0.7 0.9

(150)0.47 1 0.0933 0.0825 0.0735 0.0663 0.0605
5 0.3357 0.3070 0.2787 0.2522 0.2289

(200)0.63 1 0.0763 0.06705 0.0611 0.0580 0.0576
5 0.3141 0.2755 0.2465 0.2280 0.2195

(250)0.79 1 0.0382 0.0369 0.0392 0.0447 0.0530
5 0.1531 0.1455 0.1528 0.1727 0.2017

(300)0.95 1 0.0163 0.0197 0.0265 0.0366 0.0502
5 0.0484 0.0649 0.0964 0.1398 0.1912

(350)1.11 1 0.0206 0.0219 0.0269 0.0359 0.0495
5 0.0692 0.0749 0.0970 0.1354 0.1882

(400)1.27 1 0.0442 0.0386 0.0372 0.0408 0.0506
5 0.1776 0.1497 0.1396 0.1524 0.1906

(450)1.43 1 0.0777 0.0632 0.037 0.0492 0.053
5 0.3167 0.2547 0.2071 0.1849 0.1979

the shrinkage testimator θ̂st for α = 0.05, γ = 1, 5 and selected values of k = 0.1(0.3)0.9.
From Table 1, the following points can be observed:

• When θ0 = 150 (a lower point guess) and γ = 1, the MLE performs well with
respect to the shrinkage testimator. However, in this case, a shrinkage testimator
with k = 0.9 is well with respect to the other shrinkage testimators. A similar
pattern is observed when γ = 5 and θ0 = 150, 200.

• For the initial guess values near to the θ̂, i.e. δ0 = 250, 250, 300, 350, 400, the
shrinkage testimators are better than θ̂.

• Selecting γ = 1, we see that the shrinkage testimators work better than those
testimators when γ = 5. When θ0 is significantly close, as in θ0 = 300, the
shrinkage testimator with k = 0.1 is recommended for fixed values of γ. Also, a
shrinkage testimator with k = 0.1 and γ = 1 is preferable.

Now, consider the estimation of θ when the guess value is θ0 = 300. The MLE of
δ0 is δ̂0 =

θ0

θ̂
= 0.95. The value of the shrinkage factor k1 founded by minimizing the

risk of the shrinkage estimator θ̂s given in (1.1) is k1 = 0.0188. The LRT statistic for
testing the null hypothesis H0 : θ = 300 is χ2 = 16.67. If we consider α = 0.05, then
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the values of the lower and upper 25% points of a chi-square distribution with 2r = 16
degrees of freedom are q1 = 6.91 and q2 = 28.85, respectively. This implies that the null
hypothesis is accepted at the level 0.05. From Table 1, we observe that the shrinkage
testimator with k = 0.1, say θ̂0.1

st , has good performance. The estimates of θ̂, θ̂0.1
st and θ̂st1

(the shrinkage testimator corresponding to k1 in (3.5)) and their risks are summarized
in Table 2 for γ = 1, 5. We observe from Table 2 that the shrinkage testimators θ̂st1 and
θ̂0.1

st are better than θ̂ and, overally, the shrinkage testimator θ̂0.1
st is recommended.

Table 2: The estimates of θ̂, θ̂0.1
st and θ̂st1 and their risks (in parenthesis) for γ = 1, 5 in

our example.
γ θ̂ θ̂0.1

st θ̂st1
1 312.7356(0.0581) 301.2736(0.0163) 300.2394(0.0165)
5 312.7356(0.2186) 301.2736(0.0484) 300.2394(0.0493)

5 Concluding remarks

In this paper, the problem of the shrinkage testimation for the scale-parameter of a
Rayleigh distribution based on censored data under the RGL function is considered.
The minimum risk estimator is derived and its risk is computed. A shrinkage testi-
mator based on the closeness of the guess value and the true value is constructed. A
comparison between these estimators and the minimum risk estimator are performed
via calculation of relative efficiency of them. A lower level of significance, i.e. α = 0.01,
is recommended for various values of r. In particular, when γ = 1, the shrinkage
testimators at α = 0.01 are well.

The results given in the preceding sections for the Rayleigh distribution can also
be extended to other distributions. Suppose that the type-II right censored component
failure times Y = (Y1:n, · · · ,Yr:n) are available, where Y is the failure time of a component
with c.d.f. FY(y;θ) where θ is unknown.

• If Y is an exponential random variable with the p.d.f.

f (y;θ) = θ−1 exp
{−y/θ

}
, y > 0, θ > 0,

then, X =
√

2Y ∼ Ray(θ).

• If Y is a Weibull random variable with the p.d.f.

f (y; ν, θ) = νθ−1yν−1 exp{−yν/θ}, y > 0, θ > 0,
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where ν > 0 is known, then X =
√

2Yν ∼ Ray(θ).
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