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Abstract. Small area estimates have received much attention from both private
and public sectors due to the growing demand for effective planning of health
services, apportioning of government funds and policy and decision making.
Surveys are generally designed to give representative estimates at national or
district level, but estimates of variables of interest are often also needed at lower
levels. These cannot be reliably obtained from the survey data as the sample
sizes at these levels are too small. Census data are often available, but only
give limited information with respect to the variables of interest. This problem
is addressed by using small area estimation techniques, which combine the
estimates from the survey and census data sets. The main purpose of this paper
is obtaining confidence intervals based on the empirical best linear unbiased
predictor (EBLUP) estimates. One of the criticism of the mean squared error
(MSE) estimators is that it is not area-specific since it does not involve the direct
estimator in its expression. However, most of the confidence intervals in the
literature are constructed based on those MSEs. In this paper, we propose area
specific confidence intervals for small area parameters under the Fay-Herriot
model using area specific MSEs. We extend these confidence intervals to the
difference between two small area means. The effectiveness of the proposed
methods are also investigated via simulation studies and compared with the
Cox (1975) and Prasad and Prasad and Rao (1990) methods. Our simulation
results show that the proposed methods have higher coverage probabilities.
Those methods are applied to the percentage of food expenditure measures in
Ethiopia using the 2010/11 Household Consumption Expenditure (HCE) survey
and the 2007 census data sets.
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1 Introduction

Small area statistics are needed for policy and decision making, local planning
and fund distribution. It is known that direct estimates from a survey are highly
unreliable as they have large standard errors, coefficients of variation and wide
confidence intervals. The main reason behind this is that a sample survey is
designed to provide reliable data for large areas such as national or regional
levels, rather than that of small areas (Datta and Ghosh , 2012; Rao , 2003).
Combining information from different surveys or from a census and a survey
may address the problem (Chatterjee et al. , 2008; Rao , 2003). This is a less
expensive tool for increasing sample sizes in order to improve the precision of
the estimates.

In the Fay-Herriot model it is assumed that the parameter of interest is
related to the vector of auxiliary variables through a linear regression model:
0;=x+v;,i=1,..,m. Lety; (i =1,..,m) denote the direct small area estimator
of 0, for area i from the survey; x;j=(x1;, ..., X4;)" is a kx1 vector of known covariates
for area i related to the target parameters and = (B1,...,fx)’ is a k X 1 vector
of regression coefficients. Using this, the Fay-Herriot model (Fay and Herriot ,
1979) is defined as

vi=xXp+uvi+e,i=1,.,m, (1.1)

where the area specific random effects v; are assumed to be independent and
identically distributed (iid) with E(v;) = 0, Var(v;) = A(> 0) and ¢; WN [0, ;].

Small area means or totals can be expressed as linear combinations of fixed
and random effects. The best known method for the prediction of mixed effects
is the best linear unbiased predictor (BLUP). It is a weighted combination of the
direct estimator y; and the regression synthetic estimator xl’ﬁ’ (Rao , 2003). The
BLUP for 0; for the Fay-Herriot model is given by

é? = (1 - )/i)]/i + yix’iﬁ. (1.2)

When the unknown parameters (8, A) are replaced by their suitable estimators
(ﬁ, A) obtained from different methods of estimation, for example, the method of
moments (PR) used by Prasad and Rao (1990), Maximum Likelihood (ML) and
Restricted Maximum Likelihood (REML) used by Datta and Lahiri (2000), the
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Fay and Herriot (1979) (FH) estimation method, we obtain the empirical best
linear unbiased predictor (EBLUP) of 0; which is given by

OFF = (L= pyi +pxif, i=1,..,m, (13)

where B = (X'V-1X)1x'V1y, p; = fj and V = diag(yy, ..., Y) + ALy,

Using the EBLUP estimate from a small area model, one can obtain confidence
interval (CI), which is the area of interest for this paper. Datta et al. (2002) and
Diao et al. (2013) among others have derived ClIs using Taylor series expansion
method. Hall and Maiti (2006), Chatterjee ef al. (2008) and Kubokawa and
Nagashima (2012) also addressed it using the parametric bootstrap method.
This shows that resampling methods and Taylor series methods are common
approaches for estimating MSEs and developing CIs when exact formulas are
not available.

Calibration and computational difficulties of bootstrap methods have been
discussed by Hall et al. (2000) and Nankervis (2005). In addition to this, the
coverage accuracy of Cls based on bootstrap method has been improved through
calibration (Chatterjee et al. , 2008). Chatterjee et al. (2008, page 7) state that
“however, it is not always clear what property of an interval, that is, length,
coverage, end points or some other characteristic, ought to be calibrated". “In
addition to the computational difficulties especially in the case of calibration,
these methods have other issues, for example, choosing between equal tail or
shortest interval quantile points, and so on" (Diao et al. (2013, page 498)).
There are also questions on the use of pivotal statistics and calibration (Chat-
terjee et al. , 2008). Considering this, it is found that calibration is both time
and computational effort consuming and the results often lack straightforward
interpretability (Chatterjee et al. , 2008). It is also not clear on how to construct
ClIs for the difference of two small area means using resampling approach (Diao
etal. ,2013).

However, CIs based on the Taylor series expansion method are easy to im-
plement in practice. This is because the model parameters need to be estimated
only once using standard software, and can then be used in the construction of
plug-in type Cls (Diao et al. , 2013).

One of the criticism of the MSE estimators are that they are not area-specific
in the sense that they do not explicitly depend on the direct estimator although
the area-specific auxiliary data is involved in the component of the uncertainty
due to estimation of the regression coefficient (Rao, 2003). Following Rao (2001),
we propose area specific MSE estimators and use them to construct Cls. It is
known that most of the ClIs in the literature are constructed by using the non
area specific MSEs. Having this in mind, the objective of this paper is to propose
area specific confidence intervals for a small area mean based on the EBLUP
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estimator in the Fay-Herriot model.

It should be noted that when the estimated variance of the random com-
ponent is negative, Prasad and Rao (1990) set it equal to zero. Those zero
estimates will cause problems in the computing procedure and also lead the
EBLUP estimator to run into difficulties (Chatterjee and Lahiri , 2002; Li , 2006).
In addition, the contribution of the MSE estimate, assuming all parameters are
known, becomes zero. This is one of the limitation of CIs based on EBLUP.

In summary, construction of CIs has received little attention when compared
to point estimation in the issue of small area estimation methodology. Construc-
tion of Cls has also been limited and restricted to individual small area means.
Furthermore, interval estimation for two or more population means is still an
area to which very little attention has been paid. Most recently, Diao et al. (2013)
proposed ClIs for a small area mean as well as for the difference of two small area
means. “We note that, since the small area estimators are not independent, this
extension from a single prediction CI to one for differences (or more generally,
linear combinations) of predictions is not immediate" (Diao et al. , 2013, page 4).
In this paper we proposed Cls for a small area mean and for the difference of
two small area means based on EBLUP for a coverage accuracy of order O(m=>/2)
under unequal sampling variances for the FH model.

This paper is organized as follows. In Section 2, we describe the MSE estima-
tion. In Section 3, we present the proposed confidence intervals. In Section 4, we
use the 2010/11 HCE survey and the 2007 census data sets to estimate percentage
of food expenditure measures. The final Section presents concluding remarks.

2 Mean Squared Error Estimation

The most common practical problem in small area estimation is measuring the
variability associated with the EBLUP. The MSE is generally used as a measure
of variability under the EBLUP estimator. Methods of approximating and esti-
mating MSE(@;.EB) that includes the uncertainty when estimating § and A have
been studied extensively in the literature, e.g., in Rao (2003); Chatterjee et al.
(2008); Datta and Ghosh (2012); Hall and Maiti (2006).

2.1 Estimation of MSE(éiEB)

The MSE estimator based on the PR moment estimator is given by

MSE(08) = g1:(A) + g2i(A) + 2g3i(A), 2.1)
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o R 2 ) 1
where g1;(A) = APi(A + )7, g2i(A) = (Ai’h)lef {Tiy(A+ ) %X} x;, and

g3i(A) = 207 (Wi + A)Pm 2 LIy (Yu + AP
Datta et al. (2005) obtained the MSE estimator based on the FH moment
estimator which is given by

— A ~ ~ ~ ~ ~ 2
MSE(0®) = g1i(A) + gai(A) +283i(A) - b4(A) {BiA)]”, 2.2)
A . A 1172
where gai(A) = 2my2(p; + AP L (u + A7
For the FH estimator A, we need the following expression for its bias to terms
of order O(m™1):

2 [m A+ )2 - {E A+ Wl}z]

bi(A) = — 3
(T (A +y)

Note that if E [MSE(0FP) — MSE(OF®)| = o(m™"), then MSE(OF®) is the second-
order unbiased estimator.

2.2 Area Specific MSE Estimation for EBLUP

In this paper, we proposed alternative area specific MSE estimators by extending
the Rao (2001) area specific estimators. Thus an area specific estimator of g3;(A)
is simply obtained by writing ¢3;(A) as

(A, yi) = V2 + A E(yi — XB)*V(A), (2.3)

where the middle expectation term can be estimated by (y; — xl’.ﬁ)z, as noted
by Rao (2001). The resulting estimator g} .(A) is area-specific since it involves
the direct estimator. It is less stable than the Prasad and Rao g3;/(A) even if
its instability will not affect the corresponding MSE estimator. As a result, the
coefficient of variation (CV) of 1\//15\}3*(@?3) should be comparable to the CV of

l\fS\E(éFB), at least for moderate to large m (Rao , 2003).

A

(a) An area specific estimator of g3;(A) according to Rao (2001) is given by

Y7 NPT
— (vi —XBV(A). (2.4)

Rao (2001) :  garaoi(A, yi) = W+ AY
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(b) We propose another area specific estimator of g3;(A) which is an extension
of Rao (2001)’s area specific g3raoi(A, ¥;) and is given by

y? (vi — X B)>?
@i+ A A+ — x| (X EZ7X)1x

where Var(y; — x B)=A+y;— X; (X’Z71X)1x;. This proposal standardizes
the residuals in order to make them scale free (Ananya , 2007).

IY: gyl y) = V(A), (2.5)

(c) We propose another ¢3jy1;(A) which includes area dependent auxiliary vari-
ables as
N1: gami(A) = g3i(A) — gsi(A), (2.6)

(A
where g¢s5i(A) = (f‘i(wi;z

but it includes the area specific auxiliary variables unlike the usual g3;(A).

V(A). Note that this estimator does not include Vi,

In this paper, we derive the theorems using Stein identity. Stein (1981)
showed that
3hi(y)]

E [hiy)(yi = xiB)| = (Wi + A)E [a—yl

where h;(y) is an absolutely continuous function. This identity is called Stein
identity (Datta et al. , 2011). The following regularity conditions are used for
deriving all the theorems.

2.7)

e Assumption 1: The quantities x;, A, 1; are bounded.

e Assumption 2: v; and e; are mutually independent with v; N [0,A] and
ind

e ~ N[O,lpi],i = 1,...,1’}’1

e Assumption 3: A = A(y) is an estimator of A which satisfies

(i) they are even functions of y, so that A(~y) = A(y),

(ii) they are translation invariant functions, so that Ay + Xd) = A(y) for
anyd € RV and forally.

e Assumption 4: maxi<i<m xlf X’X)"'x; = 0as m — oo, or
max j<i<m X;( X’ X)' xi = O(m™),
(Prasad and Rao , 1990) where x; is the i-th row of X. All conditions are
very often assumed in the small area estimation literature.
Theorem 2.1. Under the assumptions 1, 2, 3 and 4,
Elgspy1i(A) — g3pv1i(A)l = o(m™)

The proof of this theorem can be found in a Supplementary material.
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2.2.1 Area Specific MSE Estimation Based on the ML or REML Estimators

According to Rao (2003), the two alternative area specific estimators based on
the ML Estimators (Datta and Lahiri , 2000) are given by

MSE, (07) ~ gu(A) ~ bA(A)V&1(A) + g2i(A) + 285(A, i), (2.8)
and
MS\E;(Q?B) ~ g1i(A) = b4 (A)Vgii(A) + §2i(A) + g3i(A) + g5(A, i), (2.9)
—trl[ym (A ; _1X1'X'» “lrym A ; _inX{
Where bA(A) = ! “Zl:l(A-H’[) ) 1] [Zz_l(A'H/" ) z]} .

L (A+yy)2
Similarly, the two alternative area specific estimators based on the REML
Estimators (Datta and Lahiri , 2000) are given by

MSE; (8™%) ~ g1i(A) + gai(A) + 2854, v), (2.10)
and L A A ) A
MSE,(0F) ~ ¢1/(A) + 2:(A) + g3i(A) + g3(A, vi). (2.11)

2.2.2 Area Specific MSE Estimation Based on the Method of Moments
The two alternative area specific estimators based on the FH Estimator (Datta et
al. ,2005) are given by
% A A ~ ~ ~ ~ 2
MSE; (0F%) ~ g1i(A) + gui(A) + 2854, y) - b A (B(A}, (212
and
% A ~ ~ ~ ~ ~ ~ 2
MSE,(0F®) ~ g1i(A) + gai(A) + gsi(A) + gy(A, yi) — ba(A) {B(A] . (213)

Note that g;.(/i, i) can be an area specific estimator of g3z-(fl). See Rao (2003)
for the detailed discussion about the extension of the MSE estimation to an area
specific MSE estimation.

3 AreaSpecific Confidence Intervals under the Fay-Herriot
Model

3.1 Area Specific Confidence Intervals for a Small Area Mean

In this paper, we develop a closed form area specific confidence intervals for
0; based on éFB under unequal sampling error variances and that coverage
probability is correct to O(m~%/2). We derive the theorem similarly to Diao et al.
(2013) using Taylor series expansion.
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Theorem 3.1. For any real z > 0,

AEB IKram AEBY | — 200G -3/
P[G,e@i +2z X \/MSE(6; )] =20(z) -1 1 n+ O(m™2),

2 ~
where n = (2> + 1)%V(A) will give an EBLUP CI that matches the nominal CP
to the order of O(m™3/>).

Note that the proof of this theorem can be found in the Supplementary
material.
These Cls based on the EBLUP can be written as

OB + £, \[MSE(0F®), (3.1)

where £}, = z4/,(1 + h(A)), h(A) = (22 Nt 1)WV(A)

With this in mind, the recent CIs by Diao et al. (2013) is given by

Diao et al. (2013) :  OFP + #, \|[MSE(OF®), (3.2)

3
Zapy t2aly gaip

ST Ar IP and h? = g1;+ &2 for the PR and REML estimators.

Both (3.1) and (3.2) are constructed by using the non area specific MSEs which
are given by (2.1) and (2.2). In addition, Theorem 3.1 is based on the usual non
area specific g3i/(A). However, the following corollaries are obtained by using the
proposed area specific MSEs which are given by (2.8-2.13). Once Theorem 3.1
is proved, Corollary 3.1, Corollary 3.2 and Corollary 3.3 can be easily obtained
through replacing the usual g3;(A) by area specific g3i(A, y;)’s given by (2.4), (2.5)
and (2.6), respectively. The corresponding area specific Cls are also given in (3.7),
(3.8) and (3.9), respectively.

Corollary 3.1. The CP of ISEBR2°(A) based on the Rao (2001) is written as

P[O; € ICEBROAY] = 2d(2) — 1 — @nm +O0(m3), (3.3)

where t, = z,), +

2 . .

where NRao = (2% + 1) e (Xi e (yi — xl’.ﬁ)ZV(A).
Corollary 3.2. The CP of I°*BIY(A) based on JY is written as
¢( z)

PlO; € ISFBY(A)] = 20(z) — 1 — ny + O(m™7),

Y2 yl XI?
where nyy = (2% + 1)A2(A+1p B A VT X T V(A)
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Corollary 3.3. The CP of [CEBIYY(A) based on Y1 is written as

P[O; € P (A)] = 20(z) — 1 - 29 )TUY1+O( —hy,

where nyy1 = (2% + 1)A2(A+1p 5 (A + 1 — X;(X’E_lx)_lxi) V(A).
3.1.1 Comparison of Confidence Intervals for a Small Area Mean: Simulation
Study

We consider the simulation set-up by Datta et al. (2005) with minor modifica-
tions. The sampling error, e;, are generated from N(0, ¢;) for 1; specified by the
following three different variance patterns: pattern (I)0.7,0.6,0.5,0.4, 0.3, pattern
(I)2, 0.6, 0.5, 0.4, 0.2 and pattern (III) 4, 0.6, 0.5, 0.4, 0.1. The random effects v; are
generated from two different distributions, namely normal N(0, 1) and Laplace
(0,1) distributions. We generate 10,000 data sets from y; = v; +e;, (i=1,---,m).
The small areas are divided into five equal sized groups, and the ¢;’s remain the
same in each group. For the FH model with m = 15, 20, 30, 40, 50, 60, 80 and 100
areas and A = 1, we have investigated the coverage probabilities and average
lengths of the proposed methods. The coverage probability (CP) and average
length (AL) of confidence intervals can be expressed as

= 10; : — llength of CI;
CP; = Z |0 ; CIZI, Z | eng Of | (3.4)
i=1

i=1

where CI;, i=1,...,m, is the confidence interval of a certain method.

The main goal of this paper is to develop a closed form improved ClIs for a
small area mean based on the EBLUP using the Taylor series expansion methods
under the FH model. In this section, a simulation study is conducted to investi-
gate the performance of the proposed methods with the Cox (1975) and Prasad
and Rao (1990) type CIs. The performance measures are the CP and AL for the
95% Cls. The results are based on 10000 simulations under the three different
sampling variance patterns. We wrote an extension of SAS codes written by
Li (2007). We also compared the results obtained by PR, FH, ML and REML
estimators. Consider the following six different types of Cls.

e Cox (1975) suggested to generate the following CI:
Method I (MethT): O + z,0072(1 — )2, (3.5)

e Prasad and Rao (1990) proposed a CI which is given by
Method TI (Meth TI) : 6F® + z,,/, \|MSE(GEB). (3.6)
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e The improved CI based on the EBLUP is given by

Method IIT (Meth IIT) : 5 + £, \[MSE(6F®), (3.7)
~ ~ 2 ~
where £}, = z,/,(1+ h(A)), h(A) = (2 + 1)8AZ£WV(A).

The corresponding area specific versions of (3.6) are written as

CIRao : 0P + fr,o \/MSE(GEP), (3.8)

A i aoi " 12 H A
where trao = 2o, + (23, + Zap,) SRR o oi(A) = (Afw(yi —x/p)*V(A) and

8A2
CIY : O + ty \|[MSE(6EB), (3.9)
where A+ )
+ Vi)&3yvi
fyy = Za/, + (Zi/z + Za/z)T
and ~
. P2 (yi — X B)? .

S3pvi(A, yi) = V(A).

(Wi + AP A+ ¢ - x((X'E7'X)1x;
Another improved CI based on the EBLUP is written as

CIY1 : OB + tyy; [MSE(6F®), (3.10)

where A+ )
+ ¥i)83rY1i
byt = Za), + (25, + Za/z)#
and )
A gZi A
i(A) = ¢3;(A) - ———=V(A).
gyv1i(A) = g3i(A) At 0P (A)

In this section, we compare six different Cls given in (3.4), (3.5), (3.6), (3.7),
(3.8) and (3.9), which are referred as Method I, Method II, Method III, CIRao,
CIJY and CIJY1, respectively. Method I and Method II represents the Cox (1975)
and Prasad and Rao (1990) CIs for 6;. Both of them are naive methods and
have a coverage accuracy O(m™1). However, Method III, CIRao, CIJY and CIJY1
are improved Cls with coverage accuracy O(m~%/2). The CPs and ALs of the
proposed methods are comparable with Diao et al. (2013)’s CIs. However,
CIRao and CIJY are constructed based on the proposed area specific MSEs.
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The simulation results in Tables 1-6 shows the estimated CPs and ALs of
CIs for 0; under normal and Laplace random effects distributions for number
of small areas, m = 20. For example, when A = Apg and pattern (III), Method
I has a CP of 80.2%, 81.8%, 81.8%, 82.0% and 84.1% for G1, G2, G3, G4 and G5
respectively for normal random effects distribution. The CPs of the proposed
methods are larger than Method I and Method II for all patterns. Method III,
CIRao, CIJY and CIJY1 meet the nominal coverage rate more frequently than
Method I and Method II. Thus, Method III, CIRao, CIJY and CIJY1 perform
better than Method I and Method II in terms of coverage accuracy. However,
the AL of these Methods is a bit larger than Method I and Method II for large
sampling variances (G1 and G2). The proposed methods extend the widths of
Method I and Method II so as to satisfy the nominal confidence level (Kubokawa
,2011).

We have also considered Laplace distribution to assess the robustness of the
methods to possible deviations from the normality assumptions. In terms of CPs
the proposed methods perform better than Method I and Method II. Method I has
got a series under coverage problem (as low as 66.6%, 66.4%, 66.6%, 66.6% and
67.7% for G1, G2, G3, G4 and G5 respectively, values which are far below the 95%
nominal value) for pattern (III) and when A = Apg under Laplace distribution.

Figure 2 reports the CPs of CIs over a range of number of small areas m for
pattern (II). The CPs and ALs of CIs of all the methods are obtained through the
above simulation exercise for areas such as m=15, 20, 30, 40, 50, 60, 80 and 100. As
the number of small areas m increases the CPs increase and the ALs decrease for
all methods and patterns. When m > 60, there is very little difference introduced
by using any of the methods in terms of ALs and CPs for all patterns. All the
methods except Method I perform better any time in terms of CPs and ALs.
There is also no clear difference among the proposed methods in terms of CPs
and ALs under the normal distribution. The percentage difference between CPs
and ALs are negligible.

3.2 (Is for the Difference of Two Small Area Means

In this section we are interested in the difference of two small area means than in
the specific values of the small area means themselves. The difference between
estimated means (i.e., direct or EBLUP) gives information about the difference
between population means. This is also an extension of Diao et al. (2013) Cls
for 6; — 6; where i # j based on EBLUP estimator. In this paper, we develop
a closed form area specific confidence intervals for 6; — 6; based on éfB - é?B
under unequal sampling error variances and coverage probability is correct to
O(m3/2). We derive this theorem similar to Theorem 3.2. Note that the proof of
this theorem can also be found in the Supplementary material.
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Theorem 3.2. For any z > 0, the improved confidence interval is given by

z9(z)

P[0 - 0; € IFBP(A)] = 20(z) - 1 - — 1o+ Om ™),
where
2
2 Ay A\ 9 e A
o=@ i) ((A g argy) VY

Consider the following three corollaries that can be easily obtained from
Theorem 3.2.

Corollary 3.4. The CP of I°FBPRa0(A) pased on the Rao (2001) is written as

Pwrﬁjeﬂ“W“mH=mwy4—MMme+om4%, (3.11)
where
2
@,+1) 2 (A + ¥i)gsraci(A) + (A + 1)) g3Ra0j(A)
1RaoD = / (gll( )+g1j(A)) 2( = VA Gl ) ,
11)2
3Raoi(A) = (Aw Gror Wi =X BV (A) and garaoj(A) = Aoy Vi =X ﬁ )V (A),

Corollary 3.5. The CP of ICEBDIY (A) based on JY is written as

P[Qi — 9]' c ICEBD]Y(A)] — 2(1)(2) 1 Qb( )T?]YD + O(m_3/2)
where
(2 +1) o ((A+1)) (A) + (A + U)) (A)Z
MyD = Za/28 (gli(A) +g1j(A)) 2< Vi)3ary o Y7)83yvj ) ,
¢2 . /B)Z X
! V(A
g3]Y( ) (A + 1 )4A + l/)z _ X,(X’ 1X)_1X1‘ (A)
and A
. ; (vj = x;B)? )
gyyj(A) = V(A).

(A+%ﬁA+%—ga@4m4M


http://jirss.irstat.ir/article-1-335-en.html
http://dx.doi.org/10.18869/acadpub.jirss.15.2.1

[ DOI: 10.18869/acadpub.jirss.15.2.1 ]

Downloaded from jirss.irstat.ir at 10:23 +0430 on Sunday August 20th 2017

Area Specific Confidence Intervals 13

Corollary 3.6. The CP of [<EBPIY1 (A) based on JY1 is written as

P[6; - 0; € TP (A)] = 20(2) -1 - Z(Pf) mvip + O(m™32),
where
(Z2,+1) o (A + ) gavii(A) + (A + 1) gy (A) 2
YD = /28 (gli(A)+g1]-(A)) 2( 3yl o 718311 ) ,
- i) s
g3v1i(A) = g3i(A) — g5i(A), where  g5(A) = WV(A)
and
g3v1j(A) = g3j(A) — g5i(A), where gs5;(A) = %V(/ﬁ).
(A+1y)

3.2.1 Comparison of Confidence Intervals for the Difference between Two
Small Area Means: Simulation Study

The main purpose of this section is to find out which method performs best under
normal and non normal random effects distributions. Here we have adopted the
simulation set up of Section 3.1.1 with some modifications.

The two kinds of CIs for 6; — 6; where i # j are computed using the following
formula:

Method 1D (MetID) : 0F%— 6"z, (¢}/2(1 P24 (- yj)l/z), (3.12)

Method ITID (MetlID) : 65 — 6% + z,, \/MS\E(QEB) — MSE(0™).  (3.13)

The improved ClIs for 6; — 6; where i # j based on the EBLUP estimator in
the FH model under unequal sampling variances consideration are given by

Method MID (MetllID): 6f® - 0% + t,, \/@(é}%) - 1\@(9?3), (3.14)

(z2p*D) 2 ((A+)gsi(AyHA+gsi(A))?
where taD:za/Z[ 3 <gli(A)+81j(A)) Gl VA) P A) |

Similarly, the corresponding area specific versions of (3.12) are written as

CIRaoD : OFF — 0% + troop \/MS\E(éFB) — MSE(0"®), (3.15)

where and

CIIYD : 6% — 6% + tyyp, \/ﬁs\E(éFB) — MSE(0"®), (3.16)
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(z2,+1) =2 ((A+99)gamilA)+A+Y) gy (A))
where tjyp = Za/z[ /52; (gu(A) +g1]~(A)) (9 VA L SNIG) +1].

Another improved Cls for 6; — 0 based on éfB - é}‘:B where i # j is written as

CIYID : 0% — 6% + v \/MASE(éFB) — MSE(0"®) (3.17)

@,+1) =2 (A4 gay1i(A)HATY ) gav (A))
where tjyip = Za/Z[ 5 (gu(A) +g1j(A)) (g ) L) Y

Similar to the previous case, in this section, we compare six different CIs given
in (3.10), (3.11), (3.12), (3.13), (3.14) and (3.15), which are referred as Method ID,
Method IID, Method IIID, CIRaoD, CIJYD and CIJY1D, respectively. We see
that the CPs of Method IIID, CIRaoD, CIJYD and CIJY1D behaved satisfactorily.
They never differed from their 95% nominal value by more than 1.9%, 0.8%, 0.8%
and 0.2% for FH, PR, ML and REML estimators, respectively, for pattern (II) and
normal random effects distribution. The ALs of the proposed methods are a bit
larger than Method ID and Method IID especially for large sampling variances
(G1 and G2) and small sample sizes. This is to be expected since Method IIID,
CIRaoD, CIJYD and CIJY1D increases the width of the intervals to meet the
nominal coverage.

As far as the Laplace distribution is concerned, we see that for m = 20 there
is under coverage problem for all the methods, but the under coverage problem
becomes more series for Method ID. For this distribution, the CPs of the proposed
methods never differed from their 95% nominal value by more than 3.9%, 4.2%,
3.2% and 3.5% (slightly below the 95% nominal value) for FH, PR, ML and REML
estimators, respectively, for pattern (II). These findings are sensible for this heavy
tail distribution. Like in the previous section, Figure 3 report CPs of the methods
over a range of number of small areas, m, for pattern (II). As the number of small
areas, m, increases the CPs increase for all the methods and patterns. The CPs
and AlLs for all variance patterns can be found in the Supplementary material.

4 Application to Real Data

In this section, we illustrate the proposed methods to estimate percentage of
food expenditure by using the 2010/11 HCE and the 2007 census data sets of
Ethiopia. Expenditure refers to total expenditure, including accommodation,
food, purchases, travel, leisure activities and miscellaneous expenditure. The
proposed Cls are used to estimate the percentage of food expenditure relative to
total expenditure in 94 small areas (zones) in Ethiopia.

In 2012, only 6.6% of consumer expenditure go to food consumed at home
relative to total consumption expenditures in America. The amount of income
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spent on food fell from 17.5% to 9.7% between 1960 and 2007 in America (Morri-
son , 2014). Countries such as Spain, Norway, Belgium and France spend twice
as much on food compared to America. Whereas countries like Mexico, China
and Turkey spend three times as much on food compared to America. In con-
trast, people in poor countries are forced to spend the largest share of income
on food (The Economist, 2013). The percentage of food expenditure spend on
food in 2012 for some African countries such as Ethiopia, Kenya, Niger, Namibia
and South Africa are 39.84%, 47.44%, 44.99%, 24.36% and 26.04%, respectively
(“Household consumption expenditure", 2014). Food prices started increasing
in 2007 and exerting pressure on household budgets. Low income households
spend a greater percentage of income on food (Carr et al. , 2014). If you spent
very less on food, that leaves more money to things like health care, education,
energy, home and saving.

4.1 Generalized Variance Function

We use the generalized variance function (GVF) to smooth out the uncertainty

of the design based variance estimate. The factors exp(%) = 1.29 are the bias-
correction terms in the log-linear analysis for the percentage of food expenditure
estimates. Underestimation of the true variances will be occurred when we
ignore the correction term in GVF method (Rivest and Belmonte , 2000; Rao ,
2001). Figure 2 (top two) illustrates the GVF and variance in dots and stars for
the percentage of food expenditure measures. From the figure we can easily
observe that how the GVF smooth out the unreliable and noisy design based
estimated variances (Esteban ef al. , 2012; Hawala and Lahiri , 2010).

4.2 Percentage of Food Expenditure Estimates

The direct and model-based CI estimates are computed for the percentage of
food expenditure measures. We present some of the CI estimates based on CIRao
since almost all the proposed methods perform similarly. Zone3 50.03% (95%
CI=47.21% - 52.86%), Borena 51.10% (95% CI=48.26% - 53.94%), Itang 52.68%
(95% CI1=49.88% - 55.49%), Nuer 52.73% (95% CI=49.78% - 55.68%) and Basketo
59.64% (95% ClI=56.74% - 62.54%) spent the highest share of income on food
(above 50%). This result matches with other economical indicators, as they are
quite deprived provinces where the percentage of food expenditure is important"
Militino et al. (2012, page 2941). In contrast, zones such as Zone5 29.90% (95%
CI=27.21%-32.61%), Konso 30.71% (95% CI=27.86% - 33.56%), Mekelle 32.54%
(95% CI=29.73% - 35.36%), Nifas Silk 32.88% (95% CI=30.01% - 35.74%), Bahirdar
33.83% (95% CI=31.04% - 36.61%), Akaki 34.26% (95% CI=31.43% - 37.09%) and
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Adama 35.14% (95% CI=32.34% - 37.94%) spent the smallest share of income on
food.

4.3 Coverage Diagnostic

This method evaluates the validity of the CIs based on EBLUP estimates. It is
used to measure the overlap between the 95% CIs generated by the direct and the
model based estimates in small area estimation procedure (Brown et al. , 2001).
This test can be done as follows. Let X; and X, be two independent normal
random variables having the same mean and variance GX and 0% , respectively.
If z(«x) is such that the probability that a standard normal Var1ab1e takes values
greater than z(a) is a/2, then a sufficient condition for there to be probability of
a that the two intervals X1 + z(f)ox, and X + z(f)ox, do not overlap is when

ox. \ ! 0%4
z(B) = z(a) (1 + —) 1+ —, 4.1)

where o, is the estimated standard error of the EBLUP estimate and o, is the
estimated standard error of the direct estimate, z(a) = 1.96. In our real data
application z(8) = 1.39. This confirms that the overlap proportion is 95%. In
addition, Figure 1 shows that the CIs based on the EBLUP estimates lies within
the CIs of the direct estimates.

5 Conclusion

The findings of this study indicate that there is no single method which dominates
all the other methods in terms of the proposed methods. However, all the
proposed methods have been numerically shown to be superior to the

Furthermore, CIs based on resampling approach do not have sensible em-
pirical plug-in which is routinely used in place of the unknown parameters
(Chatterjee and Lahiri , 2002). However, the advantages of our proposed meth-
ods are computational. Once we estimate the unknown parameters, then plug-in
the estimates to MSEs and Cls.

The usefulness has also been shown through the application to the HCE
survey data in Ethiopia to estimate percentage of food expenditure measures at
the zone level. We derive zonal-level estimates of percentage of food expenditure
measures by using small area estimation techniques to link data from the 2010/11
HCE and 2007 population and housing Census.
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Figure 1: A plot illustrating the width of CIs of percentage of food expenditure
estimates versus Ethiopian zones in 2010/11; Direct CI refers the CI based on the
direct survey estimates. Method III, CIRao, CIJY and CIJY1 referring the Cls
given by equations (3.7 - 3.10).
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Appendices

Appendix A: Proof of Theorem 2.1

Proof.

Z3v1i(A) — Z3vii(A) = (g3i(A) — 83i(A)) — (g5i(A) — g5i(A))
=1 —I.

According to Prasad and Rao (1990),

Ell1| = 185i(A) = gai(A)] = o(m™).
Let us show that E|I;| = o(m™1).

L &iA)
g5i(A) = A+ o) V(A)
2 .

= AT o) l¢.)4 X (X'Z71X) I V(A)

For example, for the PR moment estimator, V(A) = % YA+ ¥;)?. Substi-
tuting reveals that

297 iy (A + i)’

8si(A) = EA T O X (X'E71X)1x;,
I, = gsi(A) — g5i(A)
_ 24’1‘2 YA+ ) 3 2%2 Yl (A+ )

PAVIR S SV rix/y—1y\—1, .
mZ(A+17b,-)4 x; (X' X)) x A T O x; (X' T X) " x;.
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Rewriting I,

2ym oo p )2 YA 2
. 2 Zi:Al(A + i) x;(X'ﬁ_1X)_1Xi _ 2y ZzzAl(A + 1) X(X'Z71X)x;
m2(A + )t m2(A + )
2'7[]12 Z‘:il(AA + l‘l}i)z 7w/ y—1yy-1, . 21/)12 2:11(14 + lzbi)Z 7w/ y—1yvy-1, .
iy o XX i - — g NXETX

= @/mg2A + ) A + 240+ Y 2 /m) [x;(x'ﬁ‘lxrlxi - xl'.(X’ZJ_1X)_1xi]

+x/(X'Z7'X) x;

@A+ )Y (A + i)
i=1

= @A+ )Y (A + )
i=1

Applying Taylor series expansion around A, we get
Iy = X)X £7X) "% - X (XEX) 1,
_ (A _ 1w y—1y\—1 .
= (A - A) [ X/ (X' E7X)!x;/9A] e
= —(A - AXXETX) T X ETEX) T X ETX)

and E|I3| = o(m™!) (see Prasad and Rao, 1990).
It can also been shown that

X.(X'Z'X)"x; < (1/m)(A + Yu)(m maxx(X'E7X) " x;) = O(m™)

Iy = @/mW2[(A+ o)™ Y A+l = A+ )™)Y (A+ )
i=1 i=1
= /myY2A + ) [(A - AP +2(A + DA - A)]
+ @ImypAA% + 249 + Y W2 m)[(A + )Tt = A+ )
=I5 +1e,

where P = Y1, ¢i/m.
Using a similar argument to Prasad and Rao (1990), it can be shown that

Ells| = o(m™")

and
Ellg| = o(m™).

Thus, E|Zsv1i(A) — $3pv1i(A)] = o(m™). |
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Appendix B: Proof of Theorem 3.1

Proof. The proof of the theorem about Cls based on the EBLUP estimator is given.
The conditional distribution of 0; given y; is given by

Qi | Vi~ N(éFB/ gli(A))/

where 08 = (1 - 7))y; + i/, 68 = (1 —yi)yi +yixlB, g1(A) = j{%ﬁi-
Consider the following expression as

plos <0 +2x (WEO) = El0e + Fo

The symbols ®(z) and ¢(z) represents the distribution function and the proba-
bility density function, respectively, of the N(0, 1) distribution. Thus, the CP of
ICEB(A) is written as

6, — 658

P[6; € IFB(A)] = P[-z + F(-z2) < L <z +F(2)]

81i
= E[®(z + F(z)) - ©(-z + F(-2))],

z><( JMSE(658)- \/g1;(A))+éFB—é?
Vs1i(A) '

Using the Taylor expansion with an integral remainder term, ®(z + F(z)) is
evaluated as

where F(z) =

Dz + F(2) = 0(2) + FRO() + ;P ()

1

z+F(z)
+3 f (z + F(2) — x)*¢" (x)dx

= d(z2)

z 1 z+F(z) 5 5
+ [F(z) — EF @)]p(z) — 5 f (z+ F(z) = x)°(1 = x*)p(x)dx.
z
Taking expectation on both sides reveals that

E(®(z + F(z))) = P(z) + E [P(z)qb(z) - ng(z)gb(z)

1

z+F(z) ) )
-3 L (z + F(z) — x)°(1 — x°)p(x)dx.
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First consider that
0:° = 07 = (L= Py + Pixip — L= yyi — yixip
=i—P)ri+yix.(B-P),
where r; = (yi — x] ,@).Thus F(z) can be decomposed into three components as

(VSBECE) - Vi®) g, g,y

zZ X
F(z) = +
: Joid NN

=851+ 52+ 53 say.

Let us evaluate the expected value of each term as

EF(z) = E(S1 + S» + S3)
= E(51) + E(S2) + E(S3).

Applying the Taylor series expansion and taking expectation on both sides,
1 -1 (SR (HEB
ES: = 23 (1(A)) ™" E(MSE(6}®) - g11(4))

- 2 (51i(A)) 2 E (VBE(O®) - g11(4))’

3 . MSE(0®) o )
+ 272 (81i(A4))” I E f x5/ (MSE(@FB)—gli(A)) dx.
$1i(A)

Let us compute the expectation of each term as

E (Ms\E(é}fB) — 1i(A)) = E(MSE(0F®)) — E(g1:(A)),
E(MSE(6F®)) = MSE(OE®),

since E(I\TS\E(QFB)) is nearly a second order unbiased estimator of MSE(@?B).
Thus, using the Taylor expansion, the second term can be expressed as

MSE(OFP) = MSE(0F5(A)) + MSE(OF¥(A) V(A - A) + O(m™P),

E(MSE(O™) - gu(A)) = (¢\(A)E(A - A%,

_ A DAy Wi Ay _ ¢} MWeayy2 = Y
where 81i(A) = 277, 81 (A) = g — A+ — A+’ (&), (A)” = A+t
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24 Shiferaw and Galpin

Substituting reveals that
1/)4
(A+yi)

where E(A — A)? = V(A) + Op(m‘l) V(A) can be the asymptotic variance of the
FH, PR, ML and REML estimators of A. Substituting reveals that

1,b4 2 v 2 -1
Aoy Z(A+¢i) +O(m™).

E(MSE(E?) - g1i(4))” = ————E(A - A2 + O(m™>"),

E (MSE(0F®) - gll(A))

Let us compute the integral term using the same approach by Datta et al. (2002);
Chatterjee and Lahiri (2002) and Diao et al. (2013) as follows.

MSE(0FF) . )
E f x~/2 (MSE(0F®) - g1(A)) dx = EL + EL
81i(A)

MSE(0FF)

_ -5/2 (MSE(HEB ’
R (MSE(OF) ~ 81i())” dx| I g gems gy
81 - l
and
MSE(6EP) . 2 -
EL = |E f x7/2 (MSE(07") = 81i(A)) dx | I g o)<y
£1i(A) - ]
But

MSE(0FF) o 5
EL = |E f x5/ (MSE(0£P) - g1i(A))” dx|1
$1i(A)

(MSE(0F)>g1(A))

IA

MSE(0FP) . )
E f “ (811(A) ™2 (MSE(QFB)_gli(A)) A% | I 5ggp (08211041
&1i i

IA

2511 5 (VBB - guia)) |
= O(m?)

— A 3 —
since using Taylor series expansion E (MSE(@fB) - gli(A)) = O(mT3 ).
In order to evaluate EI,, we choose €, = m™@ (0 < a < 1/2) (Datta etal. ,2002,

see). According to Diao et al. (2013) we can rewrite [ == (NBE(OE)<g1,(4)) 2

Ltz 0m)<g1i0a) = I8RO <guta)r-em) + Lig1i(A)-en<sMBE@P)<g1iA)
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Then,

(MSE(OFP)<g1:(A)—€m)

i(A)-MSE(0F") 5
Ef x? (MSE(@fB)+x) dx|1
0

$1i(A)-MSE(OFP)
< Ef 2520 | 1
0

_E [2 {g1(A) - MSE@™)) 1

[MSE(0FP)<g11(A)—€m)

M‘S\E(éFB)sgu(A)—em}]

<2 \[Elgii(4) — ME(OF)] \[P (s11(4) ~ MSE(0L") > e,

{(A) — MSE(03))”
So(m_l/z)EJ(gu ) - STSE(0")

€

= O(m™),
— A 3 =
since using Taylor series expansion E (MSE(QEB )— gli(A)) = O(m73) and also

gll(A) . 2
E f x™2 (x - MSE(OFF)) dxI

I\fs\E(éfs) lgu(A)—emsl\//IS\E(éfB)ggh(A)]]

$1i(A) . )
< . — -5/2 _ AEB .
= (gll(A) em) E |:j1:/[/s\E(éFB) (x MSE(GL )) dxl{g-l,-(A)—EmSMSE(G,EB)Sg‘U(A)}}
1 —_ B N 3
< 3(8u(A) — en)E (gui(4) - MSE(0F"))

= O(m?),

T A 3 —
since using Taylor series expansion E (MSE(Q?B) - gli(A)) = O(mTS).Thus, El; +
El, = O(m?).
Let us compute S, as

(yi — Py — xp)
$1i(A) '

By the Taylor expansion, y;(A) = yi(A) +V(A*)(A~A) and = f(A) +fD(A")(A-
A), where |JA* - A| < |A - Al and \"(A") is the derivative of f(A) evaluated at
A = A", similarly ﬁ(l)(A*) is the derivative of y;(A) evaluated at A = A*. Thus,
yi(A) - yi(A) = 7/51)(14 — A) and - B(A) = BD(A - A). Substituting reveals that

Sy =

$2 = =37V ((A = Ay — x(A) — (A - AxpD(A - 4))).
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Taking expectation on both sides,
ES> = =g, *E (i — y)(yi — xiP)]
= g, "YE[(A - Ay - XA + g,V VE [(A - AxpUA - 4)).
Let the first part can be written as
= -, VE|(A - Ay - xB(A)]
= —glf/ZyE”E (A= A)wi - xp)] + o(m™).
sing Stein identity (see equation (8)), ES, = gl_ll/z M + ¢)E(§A) = 0, since
= Op(m™). The expected value of S3 can be evaluated as

9y

m

S3 = glz A)” 1/2 (Z

m

xix!

-1
since § = (221 m) Yiti ﬁyir

E(S3) = 0.
Combination of the above results, we have

EF(z) = E(S1) + E(S2) + E(S3)
=E(S1)+0+0

¥
B ) (A+ lei)4
%(AAf;bi) [(A“W l(ZA 1y A#’WBV(A)
S )‘2 v!
8\A+¢;] (A+ )
EF(z)> = E(S1 + S» + S3)?
= E(S7) + E(S3) + E(S3) + 2E(S1S2) + 2E(S1S3) + 2E(S2S53).

We compute all the expectation values turn by turn as follows.
Let us evaluate 515, using the Taylor expansion as

2 (VBB - \ul) (s - (v = %)
g1i(A)
& (W5 (MSEOF) - g1(4)) i = 7w = x{B)
~g5 (387 D) (A - A7y - X)) - (A - A°xpV ().

= ; (g1(A) " (g21(A) + g3i(A)) — z (glz'(z‘\)Y2 V(A) + O(m™3)?)

V(A) + O(m™3)>).

515; =
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Letting ¢ = —g1(A)3 ggli)(A)yl(.l)(A) and taking expectation on both sides gives
that

ES1S2 = cE ((A - A (y: — XB(A)) - cE((A - APXBD(A)) = r11 + 12,
say,
Ery = cE((A - A)(yi — X/B(A)))
= cE((A - AY(yi = x[f)) + o ™).
Using Stein identity (see equation (8)),
Eryy = c(A + ,)E (%(A - A)Z)

A~

. A
= (A +;)E (Z(A - A)a—%),
but g—; = Op(m™).
Erp = cE((A - APx/fV(4))
= cx)fV(A)EA - A).

Since E(A — A)% = O(m~%), (Prasad and Rao, 1990), thus E(A — A)® = O(m~3/2).
Let us evaluate 5,53 as using the Taylor series expansion as

5283 = g1 (yi — XByyix|(B - B)vi — Vi)
= —g7 (i — XA FVA)YA - Ay P (A)A - A)
+ g VA A - Ay FOA)A - A)yD(A)A - A)

=711 + 122.
Taking expectation on both sides gives
Erar = =837 (AyiE ((yi = ¥ BANxBI(ANA - A4)°)
= gy (AE ((vi — X PXFDANA — AP) + o(m ™).

Using Stein identity (see equation (8)),

Ery = —g; v (AyiA + Y)E (% {xBV(A)A - A)Z}) +o(m™").

i
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Note that
Jd ~ R
Z g _ A2
3y, BN - a7
d (5 . . . 0A
= 2 (g0 _ AP 420 gD _
7 {xlﬁ (A)}(A A)” +2x B (A)A A)ayi,
where

d (s o ,(d 5
S O] = o { o)
_ 9 [ hy ay
" 94 {A+¢,}+O(m )
_1 R R
in which f; = x {27;1(A ; q)j)—lx]-x;.} is O(m™), 24 = Op(m™") and 2 (B(A)) =
Op(m™') (see Kubokawa (2011, page 14) and Datta et al. (2011, page 20)).
Ery = gl xpOAYA - Ay ixfOA)A - Ay P(A)A - A)
~ 2 A
= g1 vy (A VA EA - AP = Om™P).

Thus, E(S,53) = O(m~3/2).
Let us evaluate E(51S3) as

= x (VBE@OP) - V&) yixi(h - )

5153 =
193 21i(A)

Using the Taylor expansion we have = g71zy;g\Vx/f0(A - A)%. Then,
E(5153) = g72yig\ P xpVE(A - AY?
= gl‘ilzyiggll.)x;ﬁ(l)Var(A).
We know that

[ Ee - em)|

S2 —
! V81i(A)
Z

= 2 (331 (A)MSE(GE) - gui(4))

N
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Using the Taylor expansion, we have

2
52 = 2 (s (AVBEOF) - g1i(a)’

Taking expectation on both sides,

ES? = (57 (ANEL (A - A)) +O(n~)
2
= S g AL APEA - A7 + On™)
21/)2

= WV(A) +O(m™3/).

Let us evaluate 53 = g1 (yi — 7i)*(vi — X B)?. By the Taylor expansion,
= ¢ (i — P)*(yi — X}p)?
= 81t (AP (s — xBANHA - A
— 28 O/ ANV A i - XBA)A - AY
+ (@pY@WPA - 4
=731 + 13 +133.

Taking expectation on both sides,
Ers1 = g3 ("DAPE{(y; - XBA)AA - AP
= &1 VD ANE{(yi - xp)*(A - AP} + o(m ™).
Using Stein identity (see equation (8)),
E[(A - AY(yi = x;p)°] = (A + %)E[ {(A - A (yi - x] ﬁ)}]
=(A+1)

24 - Ayi - ()5 —A +(A- A>2 {(yz ~ x| ﬁ)}]

+o(m™")

= (A + ))E(A - A + o(m™),
Ers1 = g1 (0" (A)PA + P)EA — AP + o(m™),
Ers =287} (/D (A)2BVAE {(y: - XB)(A - A) } +o(m™")

X E

= 6371 (' (A2 BV (ANA + Y)E(A - A>2 o A Lo,

Erss = (x}f(A)E(A - A)* = O(m™?),
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since E(A — A)% = O(m™%). Substituting reveals that

ES% = E7’31 + E1’32 + ET33
= g /)X (A + Y)E(A - AP + O(m ™)

Vi n -2
=—— V(A
A+ gy DO
since (7/( ))2 i Af L and E(A - A2 = V(A) + op(m‘l). Using this fact, we obtain
i A -2
ES2=—"" _V(A) + .
S = ar o @+ 00
Similarly, we have
. -1
E(Sg)— A(All) l’b)x ZA+1{)]) xjx ] X;
j=1
E(S3) = O(m™),

where Var(e;) = 1;. The remainder term fz Z+F(Z)(z + F(z) — x)*(x* — 1)p(x)dx can

be simplified using the approach by Datta et al. (2002), Chatterjee and Lahiri
(2002) and Diao et al. (2013) as follows. Since within the limits of the integral
0 < |z + F(z) — x| < |F(z) and |(x* — 1)(x)| < 2¢( V3), it follows that

z+F(z)
E| (x* — 1)(z + F(z) — x)*¢p(x)dx|
z+F(z)
< EIF@)P| 2¢)( V3)dx|
= 2E|F(2)Pp( V3)
= O(m™3/?).

Finally, combination and simplification of all the above expressions give the
CP of IFB(A) as

P[Y; € IFFB(A)] = 2d(z) — 1 — % +O0@m™3),
where
W .
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Appendix C: Proof of Theorem 3.2

Proof. The CP of I°EB(A) is written as

0: = 0;— (67" - 07F)

V&1i(A) + 82j(A

= E[®(z + F(z)) — ®(~z + F(-2))],

P|0;i - 0; € IFB(A)| = P| -z + F(-2) <

<z+ F(z)]

where

z X (\/ﬁ(éFB ~0%) — \u@) + glj(A)) + 05— 67 — (655 - %)
F(z) = ’
$1i(A) + g1j(A)

g1i(A) = /%, g1j(A) = i—lpw"j. Using the Taylor expansion with an integral

remainder term, ®(z + F(z)) is evaluated as

z+F(z)
D(z + F(z)) = D(2) + F(2)p(z) + %Fz(z)d)’(z) + 5 f (z+F(z) — x)zq)"(x)dx

z_, 1 z+F(z) ) )
= D(z) + [F(z) - EF @)]p(z) - 5 f (z+ F(z) — x)°(1 = x7)p(x)dx.

Now observe that

E @G+ F@) = D) + E[F@6E) - SPE0E)

1

z+F(z) ) )
-3 f; (z+ F(z) — x)°(1 — x7)p(x)dx| .

In a similar manner to a one population case, we have
OFP — 68 - {QEB - 93}
1 1 ] ]
=1 = P)yi+Pixip— (L= yiyi — yixip-
(L= 9y + 7= (= vy = v
= (i=Pri+yixi(B=p) = (vj = Pprj = vix'(p — p)

7

where r; = (y; - x;ﬁ) and r; = (y; — x;ﬁ).
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Thus F(z) can be decomposed into three components as

2 |MSE(@F® - 6%) - JzilA) + g1A))
£1i(A) + g1j(A)
i =7iri = =7, EACRIIRD AR
V81i(A) + g1;(A) g1i(A) + g1j(A)

=Q1+Q2+Q3, say.

F(z) =

We obtained the expected values of Q; and Qf given above

! (gZi(A) + 83i(A) + g2(A) + g3j(A))

N N

EQ1 = (g1 + §1j)”

-1
(o 4 o) 1E 2¢:y; |y '
(81 + 1) 3 [(A oAy {Z A+ 1/”} x]]

i=1
11012 I]l}‘]'Z ’ A -3/2
Arg T @) (O

E(QD) = (g1 + §1,)°2E (MSE(OF — 0%) — (g1:(A) + g1/(A)))’

2
Z
- (g1 + glj)_zg

2
. AY; A, A ”b? ;
BRVEET AT {(A SRRV B
+O0(m™3").

Let us now evaluate Q% as

) ((Vi —Piri—(yj - )7]')7]']2
Q; =
$1i(A) + g1j(A)

1 R R 2
= (81 + §1/) ((7/1‘ =Pri—(yj—P)r j)
= (g1 +81)" {((Vi — P’ + ((Vj - )?j)rj)2 =2(i = Poriy; - 77]')7]'}
= Q1 + Q12 +Q13, Say.

Let us evaluate each term turn by turn as

Qu1 = (g1i + 81)) (i = P)*(yi — X'p)*.


http://jirss.irstat.ir/article-1-335-en.html
http://dx.doi.org/10.18869/acadpub.jirss.15.2.1

[ DOI: 10.18869/acadpub.jirss.15.2.1 ]

Downloaded from jirss.irstat.ir at 10:23 +0430 on Sunday August 20th 2017

Area Specific Confidence Intervals 33

Using the Taylor expansion,

Qu = (g1 + 81) 0 (ANHA - A (yi — xf - XFD(A)A - A))?
= (1 + 81) /P APA - A (yi — Xp)?
= 2(1; + 81/) " (P VANHA - APBDAYA - Ay - xp)
+ (g + @) OV AA - AP (KBVA)YA - )

We evaluated this part for the case of one population mean, thus

EQu = (g1: + §1) ' (/")H(A + Y)E(A - AP,
EQu = (g1 + 81) ' /") A + ) V(A).

Similarly,
EQuz = (1 +81)” 01 (A + 9)V(A),
Qs = —2(g1i + §1) (i = V)i = XP)yj — Pj)(rj — x;ﬁ).

Using the Taylor expansion,

Qus = = 2(g1i + 1) /(WA - A)wi = <[ ~ xpOA)NA - A))
x (\ANA = A)y; = xiB = X FDANA - A).

Using Stein identity (see equation (8)),
_ 1 1) 9A 1 9A
Qi3 = =2(g1i + 1) (A + ¢i)y; B_yi(A )y, 8_yj'

since g—‘; = Op(m™1). Therefore,

Q5 =011+ Qi+ Q13

= @i+ 1) (0 + ) + OPPA + 9| VA)
2

Ay AY; )_1{ Y ¥
)

S

V(A).

@) T @) (@rop T @y
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The expected value of Qg can be given as

2

) [%‘x,{(ﬁ -p)- ij;-(ﬁ -B)
EQ?=E
$1i(A) + £1j(A)

= (g1 + g1)"

m -1 m -1
szxll' {Z(A + 111’14)_1951495;4} Xi + yjz'xll' {Z(A + Qbu)_lx“x;} xl]
u=1

u=1

m

1
—2(g1i + 1)) Yy, {Z(A + ¢l¢)1xux;} Xj

u=1

-1
Ay Ay T [ L
_(A+¢1+A+¢j) [(A+¢,->2"f{z<f“+%> 1xuxu} X;

u=1
2

i ’ m i , -1

-1
Vi v v L
A A {Z(A ) 1xuxu} %l

u=1

The integral and remainder terms can be easily simplified similar to Theorem 1.
Combination and simplification of all the above results gives as

p [91' - 6]‘ € ICEB(A)] =20(z) -1 - Z¢4(Z)n + O(m_3/2),
where
. . 2 2 2
n=(+1) Ay | AV )~ i i V(A).

Avgi Avy) |AvoR  A+gP
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Appendix D: Graphs and Tables
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Figure 2: Simulated values of the CPs of Method I, Method II, Method III, CIRao,
CIJY and CIJY1 for nominal 95% ClIs for 1); pattern I1.2

2Meth I, Meth II, Meth III, CIRao, CIJY and CIJY1 referring the Cls given by equations (3.4
- 3.9). Methods of estimating A: PR, Prasad and Rao (1990); ML, maximum likelihood; REML,
restricted maximum likelihood; FH, Fay and Herriot (1979).
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Figure 3: Simulated values of the CPs of Method ID, Method IID, Method IIID,
CIRaoD, CIJYD and CIJY1D for nominal 95% Cls for v; pattern IT%.

4Note that: Method ID, Method IID, Method IIID, CIRaoD, CIJYD and CIJY1D referring the
CIs given by equations (3.10 - 3.15). Methods of estimating A: PR, Prasad and Rao (1990); ML,
maximum likelihood; REML, restricted maximum likelihood; FH, Fay and Herriot (1979).
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Figure 4: Simulated values of the CPs and ALs of Method I, Method II, Method
III, CIRao, CIJY and CIJY1 for nominal 95% Cls for 1p; pattern I1.6

®Meth I, Meth II,Meth III, CIRao, CIJY and CIJY1 referring the Cls given by equations (3.4
- 3.9). Methods of estimating A: PR, Prasad and Rao (1990); ML, maximum likelihood; REML,
restricted maximum likelihood; FH, Fay and Herriot (1979).

8Note that:

e Method ID, Method IID, Method IIID, CIRaoD, CIJYD and CIJY1D referring the Cls given

by equations (3.10 - 3.15).

e Methods of estimating A: PR, Prasad and Rao (1990); ML, maximum likelihood; REML,
restricted maximum likelihood; FH, Fay and Herriot (1979).

e Groups: G1, areas 1-3; G2, areas 4-6; G3, areas 7-9; G4, areas 10-12, G5, areas 13-15.
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Table 1: CPs for nominal 95% Cls for 1); pattern (II) under normal random effects distributions and m = 20. G1, areas
1-3; G2, areas 4-6; G3, areas 7-9; G4, areas 10-12, G5, areas 13-15.

Shiferaw and Galpin

cp
Normal Distribution
Groups
PR 7 REML
Methl MethIl MethIll CIRao CIJY CIJY1 Methl MethIl MethIll CIRao CIJY CIJY1
Pattern I
Gl1 914 93.1 93.7 94.6 946 947 91.7 94.1 94.6 94.9 947 945
G2 91.9 93.6 94.0 94.7 947 948 92.0 94.3 94.8 94.9 949 947
G3 92.0 93.6 94.0 94.7 949  95.0 92.3 94.5 94.9 94.9 947 947
G4 92.5 94.0 94.3 95.0 95.0 949 92.5 94.7 94.9 95.1 95.1 95.0
G5 92.9 94.3 94.5 95.1 952  95.0 92.9 95.0 95.1 95.1 95.1 95.0
Pattern II
Gl1 87.6 91.5 93.0 92.8 925 943 90.6 93.1 93.8 94.0 93.7 93.8
G2 89.1 944 93.9 94.9 948 95.6 91.8 94.2 94.5 94.6 945 947
G3 89.3 94.7 94.3 94.8 95.1 95.8 91.9 944 94.8 94.7 947 947
G4 89.3 95.0 94.2 95.3 95.2  96.0 92.1 94.6 94.8 94.8 946  95.0
GhH 90.3 95.8 95.1 95.8 959  96.1 93.1 95.0 95.2 95.1 953  95.0
Pattern I1I
Gl1 80.2 87.7 92.2 89.1 89.5 946 89.9 92.0 93.5 93.5 93.7 937
G2 81.8 95.1 96.7 96.2 962 98.1 91.9 94.0 94.4 94.4 945 944
G3 81.8 95.2 96.7 96.3 96.7 98.1 92.2 94.3 94.6 94.7 948 944
G4 82.0 95.9 96.9 96.9 969 979 924 944 94.6 94.7 949 947
Gh 84.1 96.4 96.5 96.6 96.7 97.0 93.9 95.1 95.2 95.2 952 95.1
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Shiferaw and Galpin

Table 3: ALs for nominal 95% ClIs for ¢; pattern (II) under Normal random effects distributions and m = 20. GI,
areas 1-3; G2, areas 4-6; G3, areas 7-9; G4, areas 10-12, G5, areas 13-15.

AL
PR 7 REML
Groups
Normal Distribution
Pattern I
Methl MethIl MethIll CIRao CIJY CIJY1T Methl MethIl MethIll CIRao CIY CIJY1
Gl1 2.42 2.54 2.60 2.71 272 271 242 2.60 2.66 2.71 273 270
G2 2.31 2.42 247 2.58 2.59 2.58 2.31 2.48 2.53 2.58 2.59 2.57
G3 2.18 2.29 2.32 242 244 242 2.18 2.34 2.38 2.42 243 241
G4 2.02 2.12 2.14 2.24 225 224 2.02 2.17 2.19 2.23 224 222
G5 1.83 1.90 1.92 2.02 2.02  2.00 1.83 1.95 1.96 2.00 2.01 1.99
Pattern II
Gl1 2.98 3.28 3.49 3.54 3.54 3.63 3.06 3.30 3.51 3.53 3.54 350
G2 2.24 2.52 2.52 2.58 2.59 2.65 2.30 2.49 2.53 2.54 2.54 2.53
G3 2.12 2.39 2.37 2.44 2.44 2.50 2.17 2.35 2.38 2.39 2.39 2.37
G4 1.97 2.23 2.20 2.26 227 232 2.02 2.17 2.19 2.20 220 219
G5 1.52 1.75 1.71 1.77 1.77 180 1.56 1.65 1.66 1.66 1.66 1.65
Pattern I1I
Gl1 3.06 3.45 4.39 4.46 453  5.09 3.36 3.58 3.93 4.17 420 4.08
G2 2.07 2.67 2.89 3.00 3.01 3.69 2.30 2.47 2.52 2.58 259 255
G3 1.95 2.57 2.76 291 292  3.59 2.18 2.33 2.37 242 243 239
G4 1.81 2.45 2.62 2.81 2.81 3.47 2.02 2.16 2.18 2.23 2.24 2.20
G5 1.05 1.87 2.01 2.54 2.51 3.15 1.16 1.21 1.21 1.24 1.25 1.22
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g
& Table 5: CPs for nominal 95% Cls for 1p; pattern (II). Results obtained for the normal
& and Laplace (double exponential) random effects distributions and m = 20.
cp
Groups Normal Distribution
REML f FH
MetID MetlID MetIIID CIRaoD CIJYD CIJY1D MetID MetlID MetIIID CIRaoD CIJYD CIJY1D
Gl 90.5 92.1 949 95.2 95.1 94.8 92.5 93.9 94.4 95.9 95.9 96.0
G2 915 93.7 949 95.2 95.2 94.9 91.8 93.8 94.4 94.9 95.1 95.0
G3 919 94.2 94.9 95.4 95.2 95.0 922 94.3 94.4 95.2 94.9 95.0
G4 92.1 94.3 95.1 95.2 95.0 94.8 922 94.5 94.4 95.1 94.8 94.8
G5 92.7 95.0 94.8 95.2 95.1 94.8 90.7 93.1 94.2 93.1 93.1 93.1
ML I PR
Gl 89.1 91.7 94.6 94.6 94.8 94.5 87.7 90.7 95.6 95.6 95.6 95.8
G2 90.2 93.6 94.5 94.8 94.8 94.4 88.7 93.5 95.0 95.1 94.8 95.2
G3 90.8 94.0 94.6 949 949 942 89.0 94.0 94.7 95.0 94.9 95.0
G4 91.0 94.2 94.5 94.8 95.1 94.3 89.3 94.5 94.6 94.7 94.8 94.8
G5 91.9 95.1 94.2 94.7 94.9 94.4 90.3 95.7 94.2 94.5 94.3 94.5
Laplace Distribution
REML I FH
G1 82.8 86.1 942 91.6 92.6 922 88.5 91.0 89.6 91.3 91.2 90.9
G2 83.9 90.1 94.4 91.8 92.8 922 87.9 919 90.7 93.6 93.8 93.3
G3 83.9 90.7 94.5 91.8 92.8 92.1 88.1 92.6 91.1 94.4 94.5 94.0
G4 84.1 91.5 94.4 91.9 92.7 92.3 88.3 93.3 92.1 95.1 95.1 94.8
G5 85.4 94.0 94.4 91.5 92.5 91.8 87.3 93.5 93.8 95.8 95.9 95.6
ML I PR
G1 85.4 89.3 91.7 92.0 91.9 92.3 81.9 88.0 91.1 91.1 90.8 90.8
G2 86.3 919 91.9 92.3 92.5 92.4 824 90.7 92.3 92.9 92.8 94.1
G3 86.3 923 92.0 923 92.3 92.5 82.6 90.7 93.1 93.8 93.7 94.9
G4 86.8 93.1 92.2 93.1 93.2 925 82.7 90.4 93.8 94.6 94.6 95.5
G5 87.7 95.2 93.9 95.2 95.0 93.7 83.3 90.1 95.5 96.5 96.6 96.5
N
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