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Abstract. In this paper, we have dealt with the distribution theory of concomitants of
order statistics arising from Farlie-Gumbel-Morgenstern bivariate Lomax distribution.
We have discussed the estimation of the parameters associated with the distribution of
the variable Y of primary interest, based on the ranked set sample defined by ordering
the marginal observations on an auxiliary variable X, when (X,Y) follows a Farlie-
Gumbel-Morgenstern bivariate Lomax distribution. When the association parameter
and the shape parameter corresponding to Y are known, we have proposed four esti-
mators, viz., an unbiased estimator based on the Stokes’ ranked set sample, the best
linear unbiased estimator based on the Stokes’ ranked set sample, the best linear un-
biased estimator based on the extreme ranked set sample and the best linear unbiased
estimator based on the multistage extreme ranked set sample for the scale parameter
of the variable of primary interest. The relative efficiencies of these estimators have
also been worked out.
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1 Introduction

In modelling bivariate data, sometimes, prior information will be available about the
form of marginals of the parent bivariate distribution. Johnson and Kotz (1972) have
introduced a class of bivariate distributions known as Farlie-Gumbel-Morgenstern
(FGM) distributions in which each cumulative distribution function (cd f ) F(x, y) is
determined by the specified marginal cd f s FX(x) and FY(y) and possesses a form given
by

F(x, y) = FX(x)FY(y)
{
1 + α[1 − FX(x)][1 − FY(y)]

}
, −1 ≤ α ≤ 1, (1.1)

where α is known as the association parameter. The probability density function (pd f )
corresponding to the bivariate cd f F(x, y) defined in (1.1) is given by

f (x, y) = fX(x) fY(y)
{
1 + α[1 − 2FX(x)][1 − 2FY(y)]

}
, −1 ≤ α ≤ 1, (1.2)

where fX(.) and fY(.) are the pd f s corresponding to the marginal cd f s FX(.) and FY(.),
respectively. It is clear to note that, if we put α = 0 in (1.1), then it describes the case of
the independence of distributions of marginal random variables X and Y of (X,Y) with
cd f F(x, y).

The concept of concomitants of order statistics was first introduced by David (1973).
Let (Xi,Yi), i = 1, 2, . . . , n, be a random sample drawn from an arbitrary bivariate dis-
tribution with cd f F(x, y) and pd f f (x, y). If the sample values on the marginal random
variable X are ordered as X1:n,X2:n, . . . ,Xn:n, then the accompanying Y-observation in
the ordered pair with X-observation equal to the rth order statistic Xr:n is called the
concomitant of Xr:n and is denoted by Y[r:n]. For a review of results on concomitants of
order statistics and their applications, see David and Nagaraja (1998). For some recent
developments in the theory of concomitants of order statistics, see Thomas and Veena
(2011) and Veena and Thomas (2008, 2015, 2016).

One of the important applications of concomitants of order statistics is in the ranked
set sampling (RSS). McIntyre (1952) introduced RSS in situations where observational
economy consideration is warranted in the experimentation involved. For a review
of various types of RSS and their applications in parameter estimation, see Chen et al.
(2004). Ranking of units by judgement method as required in McIntyre’s method of
RSS becomes unsuitable when one is not confident of making perfect ranking on the
units or when ambiguity arises in discriminating the rank of one unit with another. In
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such situations, one may prefer ranking of units based on the measurements made on
some easily measurable variable (auxiliary variable) that is correlated with the variable
of primary interest (study variable). Thus, as an alternative to McIntyre’s method
of RSS, Stokes (1977) has defined a RSS procedure by fixing the units based on the
rank assigned to the observations made on an auxiliary variable X which is jointly
distributed with the study variable Y and used the resulting sample to estimate the
mean of the variable Y. Chen et al. (2004) used Stokes’ RSS to estimate the total
amount of plutonium present in the surface soil within a fenced area adjacent to a
hazard waste site. In Stokes’ method of RSS, n independent sets of units each of size
n are selected. In the first set, the Y variable of the unit associated with the smallest
ordered X is measured. In the second set, the Y variable of the unit associated with the
second smallest X is measured. This procedure is continued until the Y variable of the
unit associated with the largest X from the nth set is measured. Thus, the observations
made on the n units selected by the procedure explained above constitute a ranked set
sample of size n.

Stokes (1977) suggested the ranked set sample mean as an estimator for the mean of
the study variate Y when an auxiliary variate X is used for ranking the sampling units
under the assumption that (X,Y) follows a bivariate normal distribution. Barnett and
Moore (1997) improved it by deriving the best linear combination of the observations
of the ranked set sample as an unbiased estimator of the mean of Y.

Since the FGM family of bivariate distributions is a flexible family possessing a wide
variety of models, it gives ample freedom for a user to choose the most appropriate
one for modelling any bivariate data set. Also, as it is easier to construct a bivariate
distribution with prior information available about the form of the marginal distribu-
tions, extensive studies have been undertaken on this family both in the theoretical
framework and in the application perspective. Chacko and Thomas (2008, 2009) have
obtained the best linear unbiased estimators (BLUEs) of the parameters involved in the
distribution of Y using ranked set sample, when (X,Y) follows FGM bivariate expo-
nential distribution and when (X,Y) follows FGM bivariate logistic distribution. For
some other recent works in this direction, see Chacko and Thomas (2007), Lesitha et al.
(2010) and Lesitha and Thomas (2013).

Al-Saleh and Al-Kadiri (2000) have introduced the concept of double stage ranked
set sampling (DSRSS) as an extension of the RSS introduced by McIntyre (1952) and
shown that the estimator based on the DSRSS is more efficient than those estimators
based on both RSS and simple random sampling in estimating the population param-
eters. Al-Saleh and Al-Omari (2002) have generalized DSRSS to multistage ranked set
sampling (MSRSS) and proved that there is increase in the precision of MSRSS estima-
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tors when compared with DSRSS estimators and RSS estimators. Chacko and Thomas
(2008) have obtained the BLUE of the mean of the study variate Y using multistage
ranked set sample, when (X,Y) follows FGM bivariate exponential distribution.

Even though estimation of parameters of several distributions belonging to the
FGM family have been carried out using RSS, the inference problems of Farlie-Gumbel-
Morgenstern bivariate Lomax (FGMBL) distribution using RSS is not seen carried out
so far in the available literature. Hence the aim of this paper is to consider the distribu-
tional aspects of concomitants of order statistics arising from FGMBL distribution and
to deal with the problem of estimation of some parameters involved in this distribution.

For details on the genesis of Lomax distribution and its applications for the study
of business failure data, see Lomax (1954). Turnbull et al. (1974) have used Lomax
distribution for the analysis of heart transplant data and Fox and Kraemer (1971) have
carried out the study of remission rates of psychiatric patients using this distribution.

The joint pd f h(x, y) of the FGMBL distribution is obtained by substituting the pd f s

fX(x) =
β1λ

β1
1

(λ1+x)β1+1 , fY(y) =
β2λ

β2
2

(λ2+y)β2+1 and cd f s FX(x) = 1 − ( λ1
λ1+x )β1 , FY(y) = 1 − ( λ2

λ2+y )β2 of
two univariate Lomax distributions in (1.2). Thus we have

h(x, y) =
β1β2λ

β1
1 λ

β2
2

(λ1 + x)β1+1(λ2 + y)β2+1

{
1 + α [2(

λ1

λ1 + x
)β1 − 1] [2(

λ2

λ2 + y
)β2 − 1]

}
, (1.3)

where x, y > 0; λ1, λ2 > 0; β1, β2 > 0;−1 ≤ α ≤ 1 and h(x, y) takes zero elsewhere. Here
α is the association parameter, λ1 and λ2 are the scale parameters and β1 and β2 are the
shape parameters.

Clearly,

E(X) =
λ1

β1 − 1
, V(X) =

β1λ2
1

(β1 − 1)2(β1 − 2)
,

E(Y) =
λ2

β2 − 1
, (1.4)

V(Y) =
β2λ2

2

(β2 − 1)2(β2 − 2)
(1.5)

and the correlation coefficient ρ between X and Y is given by

ρ = α

√
β1β2(β1 − 2)(β2 − 2)
(2β1 − 1)(2β2 − 1)

. (1.6)
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The main objective of this paper is to develop the distribution theory of concomitants
of order statistics arising from FGMBL distribution so as to expose this model to users to
deal further with the theoretical as well as applied perspectives to problems involving
concomitants of order statistics.

This paper is organized as follows. The distribution theory of concomitants of
order statistics arising from the FGMBL distribution is developed in Section 2. It may
be noted that the distribution theory of concomitants of order statistics is an essential
requirement for applying Stokes’ RSS. Thus, we use the results developed in Section
2 to generate ranked set sample from FGMBL distribution and the details are given in
Section 3. In this section, four types of estimators of the scale parameter λ2 involved
in the FGMBL distribution have been proposed when the association parameter α and
the shape parameter β2 are known. Two of them are (i) an unbiased estimator λ̃2
based on the mean of the observations of the Stokes’ ranked set sample and (ii) the
BLUE λ̂2 based on the Stokes’ ranked set sample. Fisher information (FI) contained
in the concomitant of a particular order statistic of a random sample drawn from a
distribution gives the required knowledge for selecting the most appropriate unit(s)
from a group of units to define an appropriate ranked set sample. Thus the FI about the
parameter λ2 contained in the concomitant of rth order statistic of a random sample of
size n arising from the FGMBL distribution has been derived and presented in Section
3.3. The values of FI contained in all concomitants in a sample of size n are computed
for n = 2(2)10, β2 = 3(1)5 and α = 0.25(0.25)1 and are presented in Table 1. Using the
computed values in Table 1, we have identified the concomitant which contains the
maximum amount of information as the concomitant of the smallest order statistic or
the largest order statistic according asα < 0 orα > 0. Accordingly, we define an extreme
ranked set sampling (ERSS) in Section 3.3 and used the observations in it to propose
another estimator λ∗2 of the scale parameter λ2 when α and β2 are known. We have also

proposed an unbiased estimate ̂̂
λ2 of λ2 based on the method of moments approach

using a simple random sample of equivalent sample size n arising from the FGMBL

distribution. The efficiencies of λ∗2 relative to λ̃2, λ̂2 relative to λ̃2 and λ∗2 relative to ̂̂
λ2

are computed for n = 2(2)10, β2 = 3(1)5 and α = 0.25(0.25)1 and are presented in Table
2.

In some real life situations such as in the study of bilirubin level of newborn babies
with liver complaints, one may measure the bilirubin level (auxiliary variable X) in
the urine of all babies without pain and much effort whereas making measurement on
the bilirubin level of blood (variable Y of primary interest) is painful and sometimes
risky. In particular, in such situations measurement on the auxiliary variable X can
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be made from any number of units whereas number of units to be chosen for making
measurement on the variable Y of primary interest should be as small as possible. Mul-
tistage ranked set sampling is a very suitable sampling strategy in the above described
cases and accordingly we have utilized Section 3.4 to define multistage extreme ranked
set sampling (MSERSS) and propose an estimator λ̂n(r)

2 of λ2 which is the BLUE based
on the observations in the sample generated by MSERSS. We have further analysed
the steady state efficiency of λ̂n(r)

2 (as r → ∞). Finally, an estimator of 1/(β2 − 1) has
been proposed in Section 4 using Stokes’ RSS when λ2 is known. Keeping in mind the
method of moments approach of estimating parameters, we have thereby proposed an
estimate of β2 as well in this section.

2 Distribution theory of concomitants of order statistics arising
from FGMBL distribution

Let (Xi,Yi), i = 1, 2, . . . , n, be a random sample of size n drawn from the FGMBL
distribution defined by the pd f (1.3). Let Y[r:n] be the concomitant of the rth order
statistic Xr:n. Then using the expression for the distribution of concomitants of order
statistics given by Scaria and Nair (1999), the pd f h[r:n](y) of Y[r:n], 1 ≤ r ≤ n, and the
joint pd f h[r,s:n](y1, y2) of Y[r:n] and Y[s:n], 1 ≤ r < s ≤ n, are obtained as

h[r:n](y) =
β2λ

β2
2

(λ2 + y)β2+1

{
1 +

α(n − 2r + 1)
n + 1

[2(
λ2

λ2 + y
)β2 − 1]

}
, (2.1)

y > 0; λ2 > 0; β2 > 0; −1 ≤ α ≤ 1
and

h[r,s:n](y1, y2)

=
β2

2λ
2β2
2

(λ2 + y1)β2+1 (λ2 + y2)β2+1

{
1 +

α(n − 2r + 1)
n + 1

[2(
λ2

λ2 + y1
)β2 − 1]

+
α(n − 2s + 1)

n + 1
[2(

λ2

λ2 + y2
)β2 − 1]

+α2{n − 2s + 1
n + 1

− 2r(n − 2s)
(n + 1)(n + 2)

}[2(
λ2

λ2 + y1
)β2 − 1][2(

λ2

λ2 + y2
)β2 − 1]

}
,

y1, y2 > 0; λ2 > 0; β2 > 0; −1 ≤ α ≤ 1.
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The expressions for the means, variances and covariances of the concomitants of
order statistics Y[r:n], 1 ≤ r ≤ n, arising from the FGMBL distribution with pd f defined
by (1.3) are obtained as follows.

For 1 ≤ r ≤ n,

E(Y[r:n]) = λ2

{
1

β2 − 1
+
αβ2(n − 2r + 1)

n + 1

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]}
, (2.2)

provided β2 > 1, where Γ(.) is the complete gamma function. For 1 ≤ r ≤ n,

Var(Y[r:n]) =λ2
2

{
2

(β2 − 1) (β2 − 2)
+

2αβ2(n − 2r + 1)
n + 1

(
2Γ(2β2 − 2)
Γ(2β2 + 1)

−
Γ(β2 − 2)
Γ(β2 + 1)

)
−

[
1

β2 − 1
+
αβ2(n − 2r + 1)

n + 1

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)]2
 , (2.3)

provided β2 > 2. For 1 ≤ r < s ≤ n,

Cov(Y[r:n],Y[s:n]) = λ2
2 α

2β2
2

[
n − 2s + 1

n + 1
− 2r(n − 2s)

(n + 1)(n + 2)
− (n − 2r + 1)(n − 2s + 1)

(n + 1)2

]
×

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]2

, provided β2 > 1. (2.4)

Now, for β2 > 2, we define the constants ψr,n, δr,r,n and δr,s,n by

ψr,n =
1

β2 − 1
+
αβ2(n − 2r + 1)

n + 1

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]
, (2.5)

δr,r,n =
2

(β2 − 1) (β2 − 2)
+

2αβ2(n − 2r + 1)
n + 1

(
2Γ(2β2 − 2)
Γ(2β2 + 1)

−
Γ(β2 − 2)
Γ(β2 + 1)

)
−

[
1

β2 − 1
+
αβ2(n − 2r + 1)

n + 1

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)]2

(2.6)

and

δr,s,n = α
2β2

2

[
n − 2s + 1

n + 1
− 2r(n − 2s)

(n + 1)(n + 2)
− (n − 2r + 1)(n − 2s + 1)

(n + 1)2

]
×

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]2

. (2.7)
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Consequently, we may re-write equations (2.2), (2.3) and (2.4) as, for 1 ≤ r ≤ n,

E(Y[r:n]) = λ2 ψr,n , (2.8)

Var(Y[r:n]) = λ2
2 δr,r,n (2.9)

and for 1 ≤ r < s ≤ n,

Cov(Y[r:n],Y[s:n]) = λ2
2 δr,s,n.

Clearly, the constants ψr,n, δr,r,n and δr,s,n are known whenever α and β2 are known.

3 Estimation of λ2 when α and β2 are known

In this section we consider the situation where the association parameter α and the
shape parameter β2 are known and derive four types of estimators of λ2 of the FGMBL
distribution viz. (i) an unbiased estimator based on the observations in the Stokes’
ranked set sample, (ii) the BLUE based on the observations in the Stokes’ ranked set
sample, (iii) the BLUE based on the observations in the extreme ranked set sample
and (iv) the BLUE based on the observations in an unbalanced multistage ranked set
sample.

3.1 Unbiased estimator of λ2 using Stokes’ RSS

Let (X,Y) be a bivariate random variable which has an FGMBL distribution with pd f
defined by (1.3) where α and β2 are assumed to be known. Suppose n sets of sampling
units, each of size n are drawn from the FGMBL distribution. We assume that making
measurement on the variable X is cheap and easy. Hence from each of the units in the
rth set we make measurement on the variable X, order them as X(1:n)r,X(2:n)r, . . . ,X(n:n)r
and now choose the unit with X-observation equal to X(r:n)r to make measurement on
Y. Let the value of Y measured on this unit be denoted by Y[r:n]r. If we adopt this
process with all n sets, then it generates the ranked set sample Y[1:n]1,Y[2:n]2, . . . ,Y[n:n]n.
Clearly, the distribution of Y[r:n]r is the same as that of Y[r:n], the concomitant of rth order
statistic of a random sample of size n arising from the distribution (1.3). By using the
respective expressions (2.8) and (2.9) for the means and variances of concomitants of
order statistics arising from the FGMBL distribution, we obtain the means and variances
of Y[r:n]r, for 1 ≤ r ≤ n, as

E(Y[r:n]r) = λ2 ψr,n (3.1)
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and
Var(Y[r:n]r) = λ2

2 δr,r,n, (3.2)

where ψr,n and δr,r,n are given as in (2.5) and (2.6) respectively. Since Y[r:n]r and
Y[s:n]s (for r , s) are measurements on Y made from units involved in two indepen-
dent samples, we have

Cov(Y[r:n]r,Y[s:n]s) = 0, for r , s. (3.3)

The following theorem gives an unbiased estimator λ̃2 ofλ2 using ranked set sample
observations obtained by Stokes’ method.

Theorem 3.1. Let (X,Y) have FGMBL distribution with pd f given by (1.3). Let Y[r:n]r, r =
1, 2, . . . , n, be the ranked set sample observations on the variable Y of primary interest. Then

λ̃2 =
(β2 − 1)

n

n∑
r=1

Y[r:n]r (3.4)

is an unbiased estimator of λ2 and its variance is given by

Var(λ̃2) =
λ2

2(β2 − 1)2

n

{
2

(β2 − 1)(β2 − 2)
− 1

(β2 − 1)2

−
α2β2

2(n − 1)
3(n + 1)

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]2
 , (3.5)

provided β2 > 2.

Proof. The proof of the theorem follows as a straightforward implication of equations
(3.1) to (3.4). □

Remark 1. If variance of λ̃2 for a given value of α ∈ (0, 1] is evaluated, then this variance
is equal to the variance of λ̃2 for −α since the expression (3.5) for the variance of λ̃2
depends on α by a term involving α2 only.

Remark 2. When α is unknown, using (1.6) we propose a moment type estimator for α
as follows. For FGMBL distribution, the correlation coefficient between the variables

X and Y is given by ρ = α
√
β1β2(β1−2)(β2−2)
(2β1−1)(2β2−1) = αK where K =

√
β1β2(β1−2)(β2−2)
(2β1−1)(2β2−1) , where

β1 , 1
2 and β2 , 1

2 . If we use the pooled set of observations made on X from all units
available, then the unknown quantity β1 may be estimated using the first and third
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quartiles of those X observations. Let P1 and P3 denote the first and third quartiles of
the distribution of the marginal random variable X. Then

1
4
= P(X ≤ P1) = 1 − (

λ1

λ1 + P1
)β1

and
3
4
= P(X ≤ P3) = 1 − (

λ1

λ1 + P3
)β1 .

On simplification we obtain

P1

(4/3)(1/β1) − 1
=

P3

4(1/β1) − 1
. (3.6)

If we replace P1 and P3 in (3.6) by P̂1 and P̂3, the first and third sample quartiles
respectively for the data on X-values, then on solving for β1, we get an estimate β(0)

1 of
β1.

If n is moderately large and we consider Y[r:n]r, r = 1, 2, ..., n, as a sample of size n
from the distribution of the marginal random variable Y and write Q1 and Q3 to denote
the first and third quartiles of the marginal distribution of Y, we then get an equation

Q1

(4/3)(1/β2) − 1
=

Q3

4(1/β2) − 1
. (3.7)

In (3.7), if we replace Q1 and Q3 by Q̂1 and Q̂3, the first and third quartiles of
the sample Y[1:n]1, Y[2:n]2, . . . ,Y[n:n]n, then we can solve for β2. Let β(0)

2 be the estimate
obtained.

Then using β(0)
1 and β(0)

2 , we can estimate K as K(0) =

√
β(0)

1 β(0)
2 (β(0)

1 −2)(β(0)
2 −2)

(2β(0)
1 −1)(2β(0)

2 −1)
. If r is the

sample correlation coefficient between X(i:n)i and Y[i:n]i, i = 1, 2, ..., n, then the moment
type estimator of α is obtained by equating r with the population correlation coefficient
ρ and is obtained as

α̂ =


−1, if r ≤ −K(0)

r
K(0)

, if − K(0) < r < K(0)

1, if r ≥ K(0).

Thus, when all λ2, β2 and α are unknown, we can estimate those parameters step
by step as described above.
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3.2 BLUE of λ2 using Stokes’ RSS

In this section, we provide a better estimator λ̂2 of λ2 by deriving the BLUE when α
and β2 are known.

Suppose n sets of sampling units each of size n are drawn from the FGMBL distribu-
tion with pd f defined by (1.3) and generated a ranked set sample as proposed by Stokes
(1977). Let Y[n] = (Y[1:n]1,Y[2:n]2, . . . ,Y[n:n]n)′ be the column vector of concomitants of
order statistics arising from (1.3). Clearly, the distribution of Y[r:n]r is the same as that
of Y[r:n]. Then we may write from equation (2.8), the mean vector of Y[n] as

E(Y[n]) = λ2Ψ, (3.8)

where Ψ = (ψ1,n , ψ2,n , . . . , ψn,n)′ and ψr,n is as given in (2.5) for r = 1, 2, . . . , n. From
equations (2.9) and (3.3), the variance-covariance matrix of Y[n] may be written as

D(Y[n]) = λ2
2∆, (3.9)

where ∆ = diag(δ1,1,n, δ2,2,n, · · · , δn,n,n) and δr,r,n is given by (2.6) for r = 1, 2, . . . , n. If α
and β2 are known, then (3.8) and (3.9) together defines a generalized Gauss-Markov set
up and the BLUE λ̂2 of λ2 based on ranked set sample observations is obtained as (see,
David and Nagaraja (2003), p.185),

λ̂2 = (Ψ′∆−1Ψ)
−1
Ψ′∆−1Y[n]

with variance given by

Var(̂λ2) =
1

Ψ′∆−1Ψ
λ2

2.

On simplification we obtain

λ̂2 =

n∑
r=1

ψr,n

δr,r,n
Y[r:n]r

n∑
r=1

ψ2
r,n

δr,r,n

with variance given by

Var(̂λ2) =

 n∑
r=1

ψ2
r,n

δr,r,n


−1

λ2
2. (3.10)

In this case also, Remark 2 applies as such if one intends in the estimation of all
parameters λ2, β2 and α in a stage by stage manner.
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Remark 3. As in the case of variance of λ̃2, once the variance of λ̂2 for a given value of
α ∈ (0, 1] is evaluated, there is no need to again evaluate the variance for −α. To clarify
this, we state and prove the following theorem.

Theorem 3.2. If, for α ∈ (0, 1], Var(α)(̂λ2) is the variance of the BLUE λ̂2 of λ2 of the FGMBL
distribution with pd f defined by (1.3), then

Var(−α)(̂λ2) = Var(α)(̂λ2).

Proof. The constants ψr,n and δr,r,n given by (2.5) and (2.6) are functions of α, r and n
and hence ψr,n and δr,r,n can be written as ψr,n(α) and δr,r,n(α) respectively. From (2.5)
and (2.6), it is obvious that, for 1 ≤ r ≤ n,

ψr,n(α) = ψn−r+1,n(−α) (3.11)

and
δr,r,n(α) = δn−r+1,n−r+1,n(−α). (3.12)

As a consequence of (3.11) and (3.12), we can rewrite (3.10) as

Var(α)(̂λ2) =

 n∑
r=1

ψ2
r,n(α)

δr,r,n(α)


−1

λ2
2

=

 n∑
r=1

ψ2
n−r+1,n(−α)

δn−r+1,n−r+1,n(−α)


−1

λ2
2

= Var(−α)(̂λ2).

□

3.3 BLUE of λ2 using ERSS

In order to identify the most suitable unit from a group of units for making mea-
surements on them, we derive the FI about the scale parameter λ2 contained in the
concomitant of rth order statistic arising from FGMBL distribution.
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Let Y[r:n], r = 1, 2, . . . , n, be the concomitants of order statistics of a random sample
of size n arising from the FGMBL distribution with pd f defined by (1.3). Then, taking
the natural logarithm on both sides of the pd f h[r:n](y) defined in (2.1) we obtain

ln h[r:n](y) = ln β2 + β2 lnλ2 − (β2 + 1) ln(λ2 + y)

+ ln
{

1 +
α(n − 2r + 1)

n + 1
[2(

λ2

λ2 + y
)β2 − 1]

}
. (3.13)

Let the Fisher’s measure of information about the parameter λ2 contained in Y[r:n],
the concomitant of rth order statistic Xr:n arising from FGMBL distribution with asso-
ciation parameter α be denoted by I(α)

λ2
(Y[r:n]). Then,

I(α)
λ2

(Y[r:n]) = E
(∂ln h[r:n](y)

∂λ2

)2

=

∫ ∞

0

(∂ln h[r:n](y)
∂λ2

)2
h[r:n](y)dy.

Using (2.1) and (3.13) in the above integral and simplifying we get

I(α)
λ2

(Y[r:n]) =
1
λ2

2

∫ ∞

0

 β3
2

(1 + t)β2+1
+
β2(β2 + 1)2

(1 + t)β2+3 −
2β2

2(β2 + 1)

(1 + t)β2+2

 ×
{

1 + d[
2

(1 + t)β2
− 1]

}
dt

+
1
λ2

2

∫ ∞

0

4dβ2
2(β2t − 1)t

(1 + t)2β2+3 +
4d2β3

2t2

(1 + t)3β2+3[1 + d[ 2
(1+t)β2

− 1]]

 dt, (3.14)

where d = α(n−2r+1)
n+1 .

Theorem 3.3. If I(α)
λ2

(Y[r:n]) is the FI about λ2 contained in Y[r:n], the concomitant of rth order
statistic Xr:n arising from FGMBL distribution with association parameter α, then

I(−α)
λ2

(Y[n−r+1:n]) = I(α)
λ2

(Y[r:n]), r = 1, 2, . . . , n. (3.15)

Proof. The constant d involved in I(α)
λ2

(Y[r:n]) given by (3.14) is a function of α, r and n

and hence one can write d as d(α, r,n) = α(n−2r+1)
n+1 . It can be easily seen that d(α, r,n) =

d(−α,n − r + 1,n). Hence the proof of the theorem follows from the expression for
I(α)
λ2

(Y[r:n]) given by (3.14). □
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We have computedλ2
2I(α)
λ2

(Y[r:n]) for n = 2(2)10, β2 = 3(1)5 andα = 0.25(0.25)1 and the

computed values are given in Table 1. As a consequence of Theorem 3.3, I(−α)
λ2

(Y[n−r+1:n])

is the same as I(α)
λ2

(Y[r:n]) for the corresponding positive values of α and hence values of

λ2
2I(−α)
λ2

(Y[n−r+1:n]) for n = 2(2)10, β2 = 3(1)5 and α = 0.25(0.25)1 are not included in the
table.

From Table 1, it can be seen that, for n ≤ 10, the maximum FI about λ2 is available
on the concomitant of largest order statistic when α > 0. As a consequence of Theorem
3.3, it follows that the maximum FI about λ2 is available on the concomitant of smallest
order statistic when α < 0.

Accordingly, we define a RSS procedure which utilizes either the concomitant of
smallest or largest order statistic according as α < 0 or α > 0 and the problem of
estimation of λ2 based on ERSS which arises in two cases of α is described below.

Case 1: α < 0. Let X(1:n)r denote the smallest order statistic of X-observations in
the rth sample and Y[1:n]r the measurement made on the Y-variate of the same unit
for r = 1, 2, . . . , n. In this case, from Theorem 3.3 and Table 1, we observe that the
maximum information about λ2 is contained in the concomitant of the smallest order
statistic and hence we consider a lower extreme ranked set sampling (LERSS) which
yields Y[1:n]1, Y[1:n]2, · · · ,Y[1:n]n as the observations in the sample.

Let Y∗[n] = (Y[1:n]1,Y[1:n]2, . . . ,Y[1:n]n)′ be the column vector of lower extreme ranked
set sample observations. Then we may write the mean vector of Y∗[n] as

E(Y∗[n]) = λ2Ψ
∗, (3.16)

where Ψ∗ = (ψ1,n , ψ1,n , · · · , ψ1,n)′ and the variance-covariance matrix of Y∗[n] may be
written as

D(Y∗[n]) = λ2
2∆
∗, (3.17)

where ∆∗ = diag(δ1,1,n, δ1,1,n, · · · , δ1,1,n). Now (3.16) and (3.17) together defines a gener-
alized Gauss-Markov set up and hence the BLUE of λ2 is given by

λ∗2 = (Ψ∗′∆∗−1Ψ∗)
−1
Ψ∗′∆∗−1Y∗[n]

with variance given by

Var(λ∗2) =
1

Ψ∗′∆∗−1Ψ∗
λ2

2.
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On simplifying we obtain

λ∗2 =
1

nψ1,n

n∑
r=1

Y[1:n]r

with variance given by

Var(λ∗2) =
δ1,1,n

nψ2
1,n

λ2
2. (3.18)

Table 1: Computed values ofλ2
2I(α)
λ2

(Y[r:n]) for n = 2(2)10, β2 = 3(1)5 andα = 0.25(0.25)1

n r β2 α = 0.25 α = 0.50 α = 0.75 α = 1
2 1 3 0.58724 0.57761 0.57124 0.56833

2 0.61579 0.63456 0.65630 0.68104

1 4 0.64979 0.63629 0.62632 0.62010
2 0.68680 0.71013 0.73662 0.76630

1 5 0.69436 0.67797 0.66529 0.65656
2 0.73762 0.76428 0.79424 0.82751

4 1 3 0.57928 0.56906 0.57057 0.58595
2 0.59198 0.58506 0.57928 0.57466
3 0.60911 0.61931 0.63057 0.64290
4 0.63057 0.67078 0.72084 0.78144

1 4 0.63871 0.62212 0.61831 0.62976
2 0.65615 0.64682 0.63871 0.63187
3 0.67836 0.69121 0.70521 0.72034
4 0.70521 0.75404 0.81332 0.88372

1 5 0.68096 0.65956 0.65165 0.65993
2 0.70192 0.69080 0.68096 0.67244
3 0.72788 0.74269 0.75868 0.77587
4 0.75868 0.81380 0.87975 0.95720

6 1 3 0.57650 0.56817 0.57746 0.60931
2 0.58417 0.57356 0.56852 0.56957
3 0.59416 0.58888 0.58417 0.58004
4 0.60640 0.61335 0.62085 0.62890
5 0.62085 0.64662 0.67732 0.71306
6 0.63749 0.68867 0.75410 0.83560

1 4 0.63464 0.61906 0.62276 0.65143
2 0.64558 0.63015 0.62075 0.61799
3 0.65903 0.65200 0.64558 0.63980
4 0.67490 0.68373 0.69314 0.70314
5 0.69314 0.72488 0.76186 0.80419
6 0.71372 0.77537 0.85211 0.94573

1 5 0.67593 0.65484 0.65415 0.68007
2 0.68931 0.67025 0.65756 0.65187
3 0.70532 0.69699 0.68931 0.68228
4 0.72387 0.73408 0.74490 0.75633
5 0.74490 0.78100 0.82255 0.86965
6 0.76836 0.83763 0.92253 1.02482

8 1 3 0.57512 0.56843 0.58345 0.62785
2 0.58047 0.56988 0.56913 0.57976
3 0.58724 0.57761 0.57124 0.56833
4 0.59541 0.59115 0.58724 0.58368
5 0.60493 0.61019 0.61579 0.62172
6 0.61579 0.63456 0.65630 0.68104
7 0.62798 0.66421 0.70884 0.76232
8 0.64148 0.69922 0.77415 0.86915

1 4 0.63256 0.61819 0.62762 0.66972
2 0.64041 0.62382 0.61795 0.62456
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3 0.64979 0.63629 0.62632 0.62010
4 0.66068 0.65505 0.64979 0.64491
5 0.67302 0.67973 0.68680 0.69422
6 0.68680 0.71013 0.73662 0.76630
7 0.70200 0.74616 0.79922 0.86163
8 0.71861 0.78788 0.87531 0.98378

1 5 0.67332 0.65310 0.65808 0.69798
2 0.68303 0.66193 0.65213 0.65555
3 0.69436 0.67797 0.66529 0.65656
4 0.70726 0.70062 0.69436 0.68850
5 0.72169 0.72947 0.73762 0.74614
6 0.73762 0.76428 0.79424 0.82751
7 0.75503 0.80496 0.86414 0.93298
8 0.77390 0.85155 0.94799 1.06608

10 1 3 0.57430 0.56890 0.58815 0.64223
2 0.57835 0.56859 0.57225 0.59215
3 0.58337 0.57265 0.56824 0.57082
4 0.58933 0.58074 0.57430 0.57010
5 0.59622 0.59266 0.58933 0.58624
6 0.60401 0.60824 0.61270 0.61737
7 0.61270 0.62739 0.64408 0.66275
8 0.62227 0.65008 0.68344 0.72251
9 0.63273 0.67632 0.73104 0.79787
10 0.64408 0.70618 0.78752 0.89197

1 4 0.63131 0.61797 0.63169 0.68428
2 0.63737 0.62094 0.61916 0.63528
3 0.64449 0.62868 0.61974 0.61842
4 0.65261 0.64080 0.63131 0.62424
5 0.66174 0.65705 0.65261 0.64842
6 0.67184 0.67725 0.68290 0.68879
7 0.68290 0.70128 0.72178 0.74440
8 0.69492 0.72908 0.76916 0.81528
9 0.70788 0.76066 0.82526 0.90261
10 0.72178 0.79609 0.89072 1.00953

1 5 0.67173 0.65234 0.66163 0.71252
2 0.67931 0.65784 0.65184 0.66486
3 0.68798 0.66837 0.65598 0.65164
4 0.69773 0.68351 0.67173 0.66250
5 0.70851 0.70299 0.69773 0.69272
6 0.72032 0.72660 0.73313 0.73991
7 0.73313 0.75420 0.77749 0.80298
8 0.74693 0.78574 0.83070 0.88193
9 0.76172 0.82121 0.89295 0.97785
10 0.77749 0.86067 0.96485 1.09391

Case 2: α > 0. Let X(n:n)r denote the largest order statistic of X-observations in the
rth sample and Y[n:n]r the measurement made on the Y-variate of the same unit for
r = 1, 2, . . . , n. In this case, from Theorem 3.3 and Table 1, we observe that the maximum
information about λ2 is contained in the concomitant of the largest order statistic
and hence we consider an upper extreme ranked set sampling (UERSS) which yields
Y[n:n]1, Y[n:n]2, · · · ,Y[n:n]n as the observations in the sample.

Let Y∗[n] = (Y[n:n]1,Y[n:n]2, · · · ,Y[n:n]n)′ be the column vector of upper extreme ranked
set sample observations. Then, the BLUE of λ2 is given by

λ∗2 =
1

nψn,n

n∑
r=1

Y[n:n]r
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with variance given by

Var(λ∗2) =
δn,n,n

nψ2
n,n
λ2

2. (3.19)

Remark 4. Using equations (3.11) and (3.12), it follows from (3.18) and (3.19) that Var(λ∗2)
for positive values of α and that for corresponding negative values of α are identically
equal.

Using expressions (3.5), (3.10) and (3.19), we have computed the efficiencies e1 =

e(λ∗2/λ̃2) = Var(λ̃2)
Var(λ∗2) of λ∗2 relative to λ̃2 and e2 = e(̂λ2/λ̃2) = Var(λ̃2)

Var(̂λ2)
of λ̂2 relative to λ̃2 for

n = 2(2)10, β2 = 3(1)5 and α = 0.25(0.25)1 and are presented in Table 2. Because of
Theorem 3.2, Theorem 3.2 and Remark 4, for n = 2(2)10 and β2 = 3(1)5, e1 and e2 for
α = −1, −0.75, −0.50, −0.25 are the same as e1 and e2 for the corresponding positive
values of α and for the same values of n and β2 and hence the values of e1 and e2 for
negative values of α are not included in this table.

Whenever we define a new estimation technique, it is customary to study the
advantage of the new estimator when compared with a traditional estimator based on
a simple random sample. In this respect we now consider an unbiased estimator of
λ2 using the method of moments technique. From (1.4), we notice that an unbiased

estimate ̂̂
λ2 of λ2 based on a random sample of equivalent sample size n arising from

the marginal distribution of Y is

̂̂
λ2 = (β2 − 1)Ȳ, (3.20)

where β2 > 1 and Ȳ is the mean of marginal Y observations of the bivariate random

sample. Further, using (1.5) and (3.20) we may write the variance of estimator ̂̂
λ2 as

Var(̂̂λ2) =
β2λ2

2

n(β2 − 2)
, (3.21)

provided β2 > 2.
Using expressions (3.19) and (3.21), we have computed the efficiency e3 of the

best estimator λ∗2 relative to ̂̂
λ2 given by e3 =

Var(̂̂λ2)
Var(λ∗2) for β2 = 3(1)5, n = 2(2)10 and

α = 0.25(0.25)1 and are further given in Table 2. We observe that our estimate λ∗2 is

highly efficient when compared with ̂̂
λ2 for all values of n, β2 and α tried.
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Table 2: The efficiencies e1 = e(λ∗2/λ̃2), e2 = e(̂λ2/λ̃2) and e3 = e(λ∗2/
̂̂
λ2) for β2 = 3(1)5,

n = 2(2)10 and α = 0.25(0.25)1.

For the values of α
β2 n Efficiencies 0.25 0.50 0.75 1
3 2 e1 1.03354 1.06723 1.10070 1.13362

e2 1.00028 1.00116 1.00277 1.00533
e3 1.03440 1.07080 1.10901 1.14894

4 e1 1.06177 1.12597 1.19123 1.25641
e2 1.00051 1.00231 1.00632 1.01490
e3 1.06337 1.13277 1.20753 1.28731

6 e1 1.07423 1.15235 1.23239 1.31274
e2 1.00062 1.00289 1.00831 1.02200
e3 1.07615 1.16064 1.25252 1.35135

8 e1 1.08123 1.16730 1.25583 1.34496
e2 1.00067 1.00319 1.00958 1.02729
e3 1.08334 1.17645 1.27820 1.38815

10 e1 1.08573 1.17693 1.27096 1.36580
e2 1.00072 1.00342 1.01042 1.03143
e3 1.08795 1.18663 1.29480 1.41201

4 2 e1 1.03578 1.07142 1.10650 1.14064
e2 1.00015 1.00060 1.00145 1.00288
e3 1.03696 1.07630 1.11790 1.16171

4 e1 1.06606 1.13459 1.20414 1.27346
e2 1.00026 1.00127 1.00369 1.00936
e3 1.06824 1.14393 1.22668 1.31645

6 e1 1.07948 1.16321 1.24918 1.33565
e2 1.00031 1.00159 1.00504 1.01433
e3 1.08209 1.17461 1.27709 1.38965

8 e1 1.08703 1.17950 1.27502 1.37158
e2 1.00036 1.00180 1.00588 1.01802
e3 1.08992 1.19212 1.30612 1.43220

10 e1 1.09189 1.19002 1.29178 1.39497
e2 1.00037 1.00194 1.00646 1.02086
e3 1.09493 1.20341 1.32496 1.45998

5 2 e1 1.03705 1.07383 1.10992 1.14490
e2 1.00009 1.00037 1.00091 1.00184
e3 1.03838 1.07938 1.12291 1.16895

4 e1 1.06850 1.13958 1.21184 1.28395
e2 1.00017 1.00082 1.00257 1.00694
e3 1.07098 1.15024 1.23763 1.33334

6 e1 1.08245 1.16953 1.25925 1.34985
e2 1.00019 1.00108 1.00363 1.01097
e3 1.08545 1.18257 1.29128 1.41212

8 e1 1.09033 1.18662 1.28657 1.38816
e2 1.00023 1.00123 1.00430 1.01396
e3 1.09359 1.20101 1.32225 1.45815

10 e1 1.09539 1.19766 1.30432 1.41320
e2 1.00024 1.00129 1.00473 1.01624
e3 1.09888 1.21300 1.34249 1.48840
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From Table 2, for all values of α and β2, it can be easily seen that λ∗2 is relatively more
efficient than λ̃2 and λ̂2 is relatively more efficient than λ̃2. Moreover, the efficiency
of the estimator λ∗2 is larger than the BLUE λ̂2 based on Stokes’ RSS. Also it can be
observed that for a fixed sample size n and β2, e1 and e2 increase as α increases for
positive values of α whereas e1 and e2 increase as α decreases for negative values of α.
The same trend can be observed on the efficiency e3 as well.

3.4 Estimation of λ2 using unbalanced MSERSS

The MSRSS scheme (in r stages) is described as follows:

1. Randomly select nr+1 units from the target bivariate population, where r is the
number of stages of MSRSS and allocate them randomly into nr−1 sets, each of
size n2 .

2. For each set in step 1, apply Stokes’ RSS procedure described in Section 3.1 to
obtain a ranked set sample of size n. This step yields nr−1 ranked sets of size n
each.

3. Arrange the nr−1 ranked sets, each of size n obtained from step 2 randomly into
nr−2 sets, each of size n2. Without doing any actual quantification, apply Stokes’
RSS method on each of the nr−2 sets to yield nr−2 second stage ranked sets of size
n each.

4. This process is continued, without any actual quantification, until we end up with
the rth stage ranked set sample of size n.

5. Finally, the n identified units in step 4 are quantified for the variable of interest.

In Section 3.2, we have considered an RSS method for estimating λ2 using Y[r:n]r
measured on the study variate Y on the unit having the rth smallest value observed
on the auxiliary variable X of the rth sample, r = 1, 2, . . . , n and hence the RSS so
considered was balanced. In Section 3.3, it has been proved that in a bivariate sample
of size n drawn from the FGMBL distribution, the concomitant of largest order statistic
possesses the maximum FI about λ2 when α > 0 and the concomitant of smallest
order statistic possesses the maximum FI about λ2 when α < 0. By assuming that the
random variable (X,Y) has a FGMBL distribution with pd f (1.3), where Y is the variable
of primary interest and X is an auxiliary variable, in this section for α > 0, first we
consider a multistage upper extreme ranked set sampling (MSUERSS) based on the
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measurements made on an auxiliary variate to choose the ranked sets and estimate λ2
involved in the FGMBL distribution based on the measurement made on the variable
of primary interest. At each stage and from each set, we choose a unit with the largest
value on the auxiliary variable as the units of ranked sets with an objective of exploiting
the maximum FI about λ2 on the finally selected ranked set sample.

Let U(r)
i , i = 1, 2, . . . , n, be the units chosen by the (r stage) MSUERSS. Since the

measurement of auxiliary variable on each unit U(r)
i , i = 1, 2, . . . , n, has the largest

value, we may write Y(r)
[n:n]i to denote the value measured on the variable of primary

interest on U(r)
i , i = 1, 2, . . . , n. Clearly, the distribution of Y(r)

[n:n]i is the same as that of
Y[nr:nr], the concomitant of the largest order statistic of nr independently and identi-
cally distributed (iid) bivariate random variables with FGMBL distribution. Moreover
Y(r)

[n:n]i, i = 1, 2, . . . , n are also independently distributed with pd f given by (see, Scaria
and Nair (1999))

h(r)
[n:n]i(y) =

β2λ
β2
2

(λ2 + y)β2+1

{
1 − α(nr − 1)

nr + 1
[2(

λ2

λ2 + y
)β2 − 1]

}
, (3.22)

y > 0; λ2 > 0; β2 > 0; α > 0.
The means and variances of Y(r)

[n:n]i, for 1 ≤ i ≤ n, are obtained as

E(Y(r)
[n:n]i) = λ2

{
1

β2 − 1
−
αβ2(nr − 1)

nr + 1

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]}
, (3.23)

provided β2 > 1 and

Var(Y(r)
[n:n]i) =λ

2
2

{
2

(β2 − 1) (β2 − 2)
−

2αβ2(nr − 1)
nr + 1

(
2Γ(2β2 − 2)
Γ(2β2 + 1)

−
Γ(β2 − 2)
Γ(β2 + 1)

)
−

[
1

β2 − 1
−
αβ2(nr − 1)

nr + 1

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)]2
 ,

(3.24)

provided β2 > 2.

If, for β2 > 2, we write

ψnr,nr =
1

β2 − 1
−
αβ2(nr − 1)

nr + 1

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]
(3.25)
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and

δnr,nr,nr =
2

(β2 − 1) (β2 − 2)
−

2αβ2(nr − 1)
nr + 1

(
2Γ(2β2 − 2)
Γ(2β2 + 1)

−
Γ(β2 − 2)
Γ(β2 + 1)

)
−

[
1

β2 − 1
−
αβ2(nr − 1)

nr + 1

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)]2

,

(3.26)

then, for 1 ≤ i ≤ n, (3.23) and (3.24) may be re-written as

E(Y(r)
[n:n]i) = λ2ψnr,nr (3.27)

and
Var(Y(r)

[n:n]i) = λ
2
2δnr,nr,nr . (3.28)

Since Y(r)
[n:n]i and Y(r)

[n:n] j (for i , j) are measurements on Y made from units involved
in two independent samples, we have

Cov(Y(r)
[n:n]i,Y

(r)
[n:n] j) = 0, for i , j. (3.29)

Let Y(r)
[n] = (Y(r)

[n:n]1,Y
(r)
[n:n]2, . . . ,Y

(r)
[n:n]n)′. Then from equation (3.27), we get the mean

vector of Y(r)
[n] as

E(Y(r)
[n]) = λ2 ψnr,nr1, (3.30)

and from equations (3.28) and (3.29), the variance-covariance matrix of Y(r)
[n] may be

obtained as
D(Y(r)

[n]) = λ
2
2δnr,nr,nrI, (3.31)

where 1 is a column vector of n ones and I is a unit matrix of order n. If α > 0 and
β2 > 2 involved in ψnr,nr and δnr,nr,nr are known, then (3.30) and (3.31) together defines
a generalized Gauss-Markov set up and hence the BLUE of λ2 is obtained as

λ̂n(r)
2 =

1
nψnr,nr

n∑
i=1

Y(r)
[n:n]i (3.32)

with variance given by

Var(̂λn(r)
2 ) =

δnr,nr,nr

nψ2
nr,nr

λ2
2. (3.33)
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If we take r = 1 in the MSUERSS method described above, we get the usual single
stage UERSS which is already discussed in case (ii) of Section 3.3. In this case, the BLUE
λ̂n(1)

2 of λ2 is given by

λ̂n(1)
2 = λ∗2 =

1
nψn,n

n∑
i=1

Y[n:n]i

with variance given by

Var(̂λn(1)
2 ) = Var(λ∗2) =

δn,n,n

nψ2
n,n
λ2

2,

where we write Y[n:n]i instead of Y(1)
[n:n]i and it represents the measurement of the variable

of primary interest of the unit selected in the ranked set sample. Also ψn,n and δn,n,n
are obtained by putting r = 1 in (3.25) and (3.26), respectively.

Al-Saleh (2004) has considered the steady-state RSS by letting r to +∞. If we
apply the steady-state RSS to the above problem, the asymptotic distribution of Y(r)

[n:n]i
is obtained from (3.22) and is given by the pd f

h(∞)
[n:n]i(y) =

β2λ
β2
2

(λ2 + y)β2+1

{
1 − α[2(

λ2

λ2 + y
)β2 − 1]

}
. (3.34)

From the definition of MSUERSS, it follows that Y(∞)
[n:n]i, i = 1, 2, . . . , n, are iid random

variables each with pd f as defined in (3.34). Then Y(∞)
[n:n]i, i = 1, 2, . . . , n,may be regarded

as unbalanced steady-state ranked set sample of size n. Then from (3.27) and (3.28),
the mean and variance of Y(∞)

[n:n]i, for 1 ≤ i ≤ n, are obtained as

E(Y(∞)
[n:n]i) = λ2ψn∞,n∞

and

Var(Y(∞)
[n:n]i) = λ

2
2δn∞,n∞,n∞ ,

where

ψn∞,n∞ =
1

β2 − 1
− αβ2

[
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

]
(3.35)



Concomitants of order statistics from FGMBL distribution 89

and

δn∞,n∞,n∞ =
2

(β2 − 1) (β2 − 2)
− 2αβ2

(
2Γ(2β2 − 2)
Γ(2β2 + 1)

−
Γ(β2 − 2)
Γ(β2 + 1)

)
−

[
1

β2 − 1
− αβ2

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)]2

.

(3.36)

Let Y(∞)
[n] = (Y(∞)

[n:n]1,Y
(∞)
[n:n]2, . . . ,Y

(∞)
[n:n]n)′. Then, the BLUE λ̂n(∞)

2 based on Y(∞)
[n] and

the variance of λ̂n(∞)
2 are obtained by taking the limit as r → ∞ in (3.32) and (3.33),

respectively, and are given by

λ̂n(∞)
2 =

1
nψn∞,n∞

n∑
i=1

Y(∞)
[n:n]i

with variance given by

Var(̂λn(∞)
2 ) =

δn∞,n∞,n∞

nψ2
n∞,n∞

λ2
2, (3.37)

where ψn∞,n∞ and δn∞,n∞,n∞ are as given in expressions (3.35) and (3.36), respectively.

From (3.5) and (3.37), we obtain the efficiency e(̂λn(∞)
2 /λ̃2) = Var(λ̃2)

Var(̂λn(∞)
2 )

of λ̂n(∞)
2 relative

to λ̃2 for n = 2(2)10, β2 = 3(1)5 and α = 0.25(0.25)1 and are presented in Table 3.
As mentioned earlier, since the concomitant of smallest order statistic possesses the

maximum FI about λ2 when α < 0, in this case we consider a multistage lower extreme
ranked set sampling (MSLERSS) in which at each stage and from each set we choose a
unit of a sample with the smallest value on the auxiliary variable as the units of ranked
sets with an objective of exploiting the maximum FI about λ2 on the ultimately chosen
ranked set sample.

Let Y(r)
[1:n]i, i = 1, 2, . . . , n be the value measured on the variable of primary interest

on the units selected at the rth stage of the MSLERSS. Clearly, the distribution of Y(r)
[1:n]i

is the same as that of Y[1:nr], the concomitant of the smallest order statistic of nr iid
bivariate random variables with FGMBL distribution. Moreover, Y(r)

[1:n]i, i = 1, 2, . . . , n,
are also independently distributed with pd f given by

h(r)
[1:n]i(y) =

β2λ
β2
2

(λ2 + y)β2+1

{
1 +

α(nr − 1)
nr + 1

[2(
λ2

λ2 + y
)β2 − 1]

}
, (3.38)

y > 0; λ2 > 0; β2 > 0; α < 0.
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Since both h(r)
[1:n]i(y) and h(r)

[n:n]i(y) are functions ofα, let us rewrite h(r)
[1:n]i(y) as h(r)

[1:n]i(y;α)

and h(r)
[n:n]i(y) as h(r)

[n:n]i(y;α). Clearly, from (3.22) and (3.38) it can be seen that

h(r)
[1:n]i(y;α) = h(r)

[n:n]i(y;−α). (3.39)

Hence, from (3.39), it follows that E(Y(r)
[n:n]i) for α > 0 and E(Y(r)

[1:n]i) for α < 0 are

identically equal. Similarly, Var(Y(r)
[n:n]i) for α > 0 and Var(Y(r)

[1:n]i) for α < 0 are identically

equal. Consequently, if λ̂1(r)
2 is the BLUE of λ2 involved in the FGMBL distribution for

α < 0 based on the MSLERSS observations Y(r)
[1:n]i, i = 1, 2, . . . , n, then the coefficients

of Y(r)
[1:n]i, i = 1, 2, . . . , n in the BLUE λ̂1(r)

2 for α < 0 is the same as the coefficients of

Y(r)
[n:n]i, i = 1, 2, . . . , n in the BLUE λ̂n(r)

2 for α > 0.

Further, we have Var(̂λ1(r)
2 ) = Var(̂λn(r)

2 ) and hence Var(̂λ1(1)
2 ) = Var(̂λn(1)

2 ) and
Var(̂λ1(∞)

2 ) = Var(̂λn(∞)
2 ), where λ̂1(1)

2 is the BLUE of λ2 for α < 0 based on the usual
single stage LERSS observations Y[1:n]i, i = 1, 2, . . . , n and λ̂1(∞)

2 is the BLUE of λ2 for
α < 0 based on the unbalanced steady-state RSS observations. The case when r = 1 in
the MSLERSS method described above reduces to the usual single stage LERSS which
is already discussed in case (i) of Section 3.3.

Since Var(̂λ1(∞)
2 ) for α < 0 and Var(̂λn(∞)

2 ) for α > 0 are the same, values of e(̂λ1(∞)
2 /λ̃2)

for n = 2(2)10, β2 = 3(1)5 and α = −1,−0.75,−0.50,−0.25 are the same as that of
e(̂λn(∞)

2 /λ̃2) for n = 2(2)10, β2 = 3(1)5 and α = 0.25, 0.50, 0.75, 1 and hence, values of
e(̂λ1(∞)

2 /λ̃2) for α = −1,−0.75,−0.50, −0.25 are not included in Table 3.
From Table 3, it can be seen that efficiency increases as α increases and for a fixed

pair (n, α), efficiency increases as β2 increases. The value of efficiency varies from
1.10890 to 1.63003.

4 Estimation of 1/(β2 − 1) using Stokes’ RSS when λ2 is known

In this section, we provide an estimator of B = 1
β2−1 for known values of λ2. Suppose n

sets of sampling units each of size n are drawn from the FGMBL distribution with pd f
defined by (1.3), where the scale parameter λ2 is assumed to be known. As we have
seen earlier, since the distribution of Y[r:n]r is the same as that of Y[r:n], from equations
(2.2), (2.3) and (3.3) it can be seen that

E(Y[r:n]r + Y[n−r+1:n]n−r+1) =
2λ2

β2 − 1
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and

Var(Y[r:n]r + Y[n−r+1:n]n−r+1) =λ2
2

{
4

(β2 − 1) (β2 − 2)
− 2

(β2 − 1)2

−
2α2β2

2(n − 2r + 1)2

(n + 1)2

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)2
 .

Denote R[r:n]r =
1
2 (Y[r:n]r + Y[n−r+1:n]n−r+1), r = 1, 2, . . . , [ n

2 ], where [ n
2 ] is the integer part

of n
2 . Then for the FGMBL distribution,

R[r:n]r

λ2
is an unbiased estimator of B for each r.

Hence an unbiased estimator of B based on Stokes’ ranked set sample observations is
given by

B̂ =
1

[ n
2 ]λ2

[ n
2 ]∑

r=1

R[r:n]r (4.1)

with variance

Var(B̂) =
1

2([ n
2 ])2

[ n
2 ]∑

r=1

{
2

(β2 − 1) (β2 − 2)
− 1

(β2 − 1)2

−
α2β2

2(n − 2r + 1)2

(n + 1)2

(
2Γ(2β2 − 1)
Γ(2β2 + 1)

−
Γ(β2 − 1)
Γ(β2 + 1)

)2
 .

Remark 5. If one is very particular of getting an estimate β̂2 of β2, then the concept
involved in method of moments may be used to get it from (4.1). For this we write

T =
1

[ n
2 ]λ2

[ n
2 ]∑

r=1
R[r:n]r so that β̂2 =

1+T
T .

5 Concluding remarks

The theory of concomitants of order statistics arising from FGMBL distribution is de-
veloped. This development further provides the necessary statistical foundation to
formulate RSS strategies for a population random variable following a FGMBL distri-
bution. A modified ranked set sampling strategy called extreme ranked set sampling is
further developed. When making measurement on the auxiliary variable is very cheap,
one can improve the efficiency of the estimator of the parameter of interest further by
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Table 3: The efficiency of λ̂n(∞)
2 relative to λ̃2 for n = 2(2)10, β2 = 3(1)5 and for α =

0.25, 0.50, 0.75, 1
n β2 α = 0.25 α = 0.50 α = 0.75 α = 1
2 3 1.10890 1.23160 1.35923 1.46809
4 1.10893 1.23183 1.36075 1.47562
6 1.10895 1.23215 1.36291 1.48608
8 1.10897 1.23264 1.36623 1.50107
10 1.10901 1.23341 1.37097 1.52028
2 4 1.11779 1.25399 1.40163 1.54084
4 1.11781 1.25421 1.40302 1.54759
6 1.11783 1.25448 1.40502 1.55703
8 1.11786 1.25493 1.40806 1.57071
10 1.11789 1.25565 1.41251 1.58871
2 5 1.12280 1.26686 1.42654 1.58446
4 1.12284 1.26704 1.42785 1.59081
6 1.12284 1.26732 1.42975 1.59971
8 1.12287 1.26774 1.43265 1.61273
10 1.12291 1.26843 1.43693 1.63003
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defining multistage ranked set sampling. Accordingly, we have introduced multistage
extreme ranked set sampling in FGMBL and analysed its advantages over standard
RSS procedures.
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