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212 Farbod and Gasparian

1 Introduction

In large-scale biomolecular systems a basic subject of any statistical
inference is characterization of the distributions of object frequencies
for a population, so-called frequency distributions (see, for example:
Kuznetsov, 2002; Danielian and Astola, 2007). For empirical frequency
distributions some general statistical facts based on many data sets are
extracted. From the mathematical point of view these are: skewness
to the right, regular variation at infinity, unimodality, stability by pa-
rameters, convexity, etc. (see, for example, Astola and Danielian, 2004,
2010). Any distribution satisfying the statistical facts has a chance to
be approved by biologist in order to be applied, at least, in one among
great variety of large-scale biomolecular systems (Astola and Danielian,
2007, p.1).

We notice that there are different methods for constructing para-
metric families of frequency distributions. These methods are: usage
of stationary distributions of standard stochastic Birth-Death Process;
discretizations of stable densities; special functions; etc. For a review
see, for example, Astola et al. (2010).

The standard stochastic Birth-Death Process with various forms of
coefficients is an excellent source for obtaining skewed distributions which
in turn are important in modeling different phenomena in many large-
scale biomolecular systems: for instance, in protein data sets and the
number of expressed genes (Danielian and Astola, 2004; Kuznetsov et
al., 2002b). Based on the standard Birth-Death models several frequency
distributions have been considered for biomolecular applications. We
would like to point out, for example, the works of Simon (1955), Irwin
(1963), Glanzel and Schubert (1995), Bornholdt and Ebel (2001) and
Kuznetsov (2001).

According to variety and diversity of biomolecular sequences new
frequency parametric families were needed. Kuznetsov et al. (2002b)
and Kuznetsov (2003a) suggested three-parametric Kolmogorov-Waring
Distribution; Astola and Danielian (2004) and Danielian and Astola
(2004) gave a wide generalization of the previous models. In the sequel
and based on the statistical facts mentioned above, a four-parametric
regular frequency distribution (Also, known as Generalized Pareto-type
Frequency Distribution) has been introduced by Astola and Danielian
(2007). The paper is devoted to investigate the MLE for the parameters
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of such distribution.

The remainder of the paper is formed as follows. In Section 2, we
give some preliminaries about the method of constructing such frequency
distribution using stochastic Birth-Death Process and introduce four-
parametric Generalized Pareto-like Frequency Distribution. Moreover,
some notaions (are needed in the paper) are presented. The main results
of the paper are proposed in Sections 3, 4 and 5. Section 6 concludes.

2 Preliminaries

Let {ϱ(t) : t ≥ 0} be a homogeneous Markov Process with continuous
time and countable number of states 0, 1, 2, ... . The stationary distribu-
tion of the process {ϱ(t) : t ≥ 0} exists if and only if (see, for example,
Danielian and Astola, 2004; Saaty, 1983)

∞∑
n=1

n∏
m=1

λm−1

µm
<∞, (1)

which takes the form (λm−1

µm
gives a sequences of ratios of Birth and

Death coefficients):
pk = p0 ·

∏k
m=1

λm−1

µm
, k = 1, 2, ...,

p0 =
(
1 +

∑∞
n=1

∏n
m=1

λm−1

µm

)−1
.

(2)

With the help of (1) and (2), Astola and Danielian (2007) constructed
the following four-parametric Generalized Pareto-like Frequency Distri-
bution:

pα(k) = Pα(ξ = k) = [g(α)]−1 · θk

(k+b)ρ ·
∏k−1

m=0(1 +
c−1

(m+b)ρ ), k = 1, 2...,

pα(0) = [g(α)]−1 =
[
1 +

∑∞
n=1

θn

(n+b)ρ ·
∏n−1

m=0(1 +
c−1

(m+b)ρ )
]−1

,

(3)

where α = (θ, c, b, ρ) is unknown parameter and

α ∈ Ω =
{
α : 0 < θ < 1, 0 < c <∞, 0 < b <∞, 1 < ρ <∞

}
, bρ > 1− c.
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214 Farbod and Gasparian

The role of the parameter θ here is explained by Astola and Danielian
(2007, Ch. 4, Th. 4.2); the parameter c so-called non-linear scale pa-
rameter (or exponential scale parameter); the parameter b is a location
parameter and the parameter ρ characterize the shape of the probability
function.

One of the most important problems for the model (3) is the sta-
tistical analysis of the parameters estimators. In this paper, firstly, we
give two real data sets for fitting of the distribution (3) and, secondly,
we propose some conditions under which the MLE for the parameter α
of distribution (3) coincides with the solution of the system of likelihood
equations. Thirdly, in order to estimate the parameters, the approx-
imation for the solution based on Accumulation Method is given and
simulation studies are proposed as well.

Let us use symbols Eα(.), V arα(.) and Covα(., .), correspondingly,
for the expectation, the variance and the covariance with respect to the
distribution Pα. Let also Xn = (X1, ..., Xn) be a sample corresponding
to a random variable ξ with the distribution (3). In the sequel we use
the following notations:

hγ,j(x, α) =
x−1∑
m=0

(m+ b)−γ [(m+ b)ρ + c− 1]−j , x, j ∈ N, γ ∈ R;

lγ,j,k(x, α) =

x−1∑
m=0

(m+ b)γ [(m+ b)ρ + c− 1]−j · [ln(m+ b)]k,

j, k ∈ N, γ ∈ R;
H(x, α) = (c− 1)h1,1(x, α) + (x+ b)−1;

Λ(x, α) = (c− 1) l0,1,1(x, α) + ln(x+ b);

Xn =
1

n

n∑
i=1

Xi ; ψn
k (b) =

1

n

n∑
i=1

(Xi + b)−k, k ∈ N;

fn(α) =
1

n

n∑
i=1

f(Xi, α).

3 Fitting of the Distribution

As we have said in the Preliminaries, the model (3) has been constructed
using stochastic Birth-Death Process. But, Astola and Danielian (2007)
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were not fitted the model (3) with real data. Here, we propose two ex-
amples for fitting the model (3) with some real data sets. Comparing
to Kuznetosv et al. (2002b, p. 399) and Kuznetsov (2003b, p. 378), in
order to use the probability function (3) to the data, we consider the
random variable ξ as doubly-truncated. Namely, random variable ξ is
restricted from 1 to the maximum observed in each data set. Moreover,
we present some graphs of the distribution (3) for some different values
of the parameters.

Example 3.1. Let us consider 30 biggest protein clusters for Sac-
charomyces cerevisiaetwo (Apweiler et al., 2000) as a real data set in
the following Table:

Table 1.

124 115 83 69 68 66 52 35 34 33 32 32 28 24 24
21 21 20 20 20 19 19 18 17 17 16 16 14 14 14

Let us assume that the data (Table 1) random variable, ξ, follows
the model pα(k). We obtain the MLE of the parameter α = (θ, c, b, ρ)
in the following:

θ̂ = 0.9903; ĉ = 96.0111; b̂ = 0.7213; ρ̂ = 2.2488.

The p-value of theK-S Test is 0.4271, which does not reject the adequacy
of the Generalized Pareto-like Frequency Distribution for the number of
proteins. In order to give an informal goodness of fit test, we plot the
empirical cumulative distribution function (ecdf) and fitted cumulative
distribution function (cdf) for the number of proteins data in Figure 1.

Example 3.2. We consider the number of residues for 12 electron
transports in globular proteins (Kabsch and Sander, 1983) as a real data
set in the following Table:

Table 2.

85 103 103 112 134 82
54 98 138 54 125 99

Supposing the data (Table 2) random variable, ξ, follows the model
pα(k). The MLE of the parameter α = (θ, c, b, ρ) are obtained as follows:

θ̂ = 0.9724; ĉ = 16.1974; b̂ = 0.102; ρ̂ = 1.2465.
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216 Farbod and Gasparian

Figure 1: Fitting of the doubly-truncated Generalized Pareto-like Frequency
Distribution to the data of Table 1. The dashed line is the ecdf of data and
the solid line is the fitted cdf.

With the help of K-S Test the p-value is 0.963, which does not reject
the adequacy of the Generalized Pareto-like Frequency Distribution for
the number of residues. For an informal goodness of fit test, we plot the
ecdf and fitted cdf of the number of residues data in Figure 2.

3.1 Figures of the Model

Let us present some plots of the doubly-truncated Generalized Pareto-
like Frequency Distribution for different values of the parameters in Fig-
ure 3. We see that the Plots have right skewness.

4 On the MLE

In this Section, we are going to prove the following Theorems 4.1 and 4.2.

Theorem 4.1. The system of likelihood equations for finding the
MLE of the parameter α for a random variable ξ with the distribution
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Figure 2: Fitting of the doubly-truncated Generalized Pareto-like Frequency
Distribution to the data of Table 2. The dashed line is the ecdf of data and
the solid line is the fitted cdf.

(3) when ρ > 3 has the form:

Eα(ξ) = Xn,

Eα[h0,1(ξ, α)] = hn0,1(α),

Eα[H(ξ, α)] = Hn(α),

Eα[Λ(ξ, α)] = Λn(α).

(4)

Theorem 4.2. If for ρ > 3 the solution of the system (4) (if it exists)
satisfies the following conditions (we shall call them (A)),

Eα(ξ + b)−k = ψn
k (b),

Eα[hk,1(ξ, α)] = hnk,1(α), k = 1, 2,

Eα[hk,2(ξ, α)] = hnk,2(α), k = 0, 1− ρ, 2− ρ,

Eα[lρ,2,k(ξ, α)] = lnρ,2,k(α), k = 1, 2,

Eα[lρ−1,2,1(ξ, α)] = lnρ−1,2,1(α),
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Figure 3: Graphs of the doubly-truncated Generalized Pareto-like Frequency
Distribution for different values of the parameters θ, c, b, ρ.

then it coincides with the MLE of the parameter α.

In order to prove Theorems 4.1 and 4.2 the following Lemma will be
used (compare to Astola et. al, 2007; Gasparian and Danielian, 2006):

Lemma 4.1. a). For the model (3) the following inequalities hold
for any α ∈ Ω:

(i) 1 < g(α) < 1+
{
I(0,1](c)+ I(1,∞)(c) · exp[(c− 1)ζ(ρ, b)]

}
· ζ(ρ, b),

where ζ(ρ, b) =
∑∞

n=0(n + b)−ρ < ∞
(
ζ(ρ, b) < b−ρ + ζ(ρ), ζ(ρ) =∑∞

n=1 n
−ρ <∞,

ρ > 1, is a Riemann’s Zeta Function
)
, and I(.,.)(.) is an indicator

function;
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(ii) if ρ > k + 1, k ∈ N, then

Eα(ξ
k) ≤

{
I(0,1](c) + I(1,∞)(c) · exp[(c− 1)ζk(ρ, b)]

}
· ζk(ρ, b),

where ζk(ρ, b) =
∑∞

n=1 n
k(n+ b)−ρ <∞.

b). If ρ > 3 then the following means are finite:

(i) Eα[hi,1(ξ, α)]
2 <∞, i = 0, 1, 2;

(ii) Eα[hi,2(ξ, α)] <∞, i = 0, 1− ρ, 2− ρ;

(iii) Eα[l0,1,1(ξ, α)]
2 <∞;

(iv) Eα[lρ,2,i(ξ, α)] <∞, i = 1, 2;

(v) Eα[lρ−1,2,1(ξ, α)] <∞.

Proof. a). The following inequalities take place when α ∈ Ω:

(i) according to (3) we have

1 < g(α) < 1 +
∑∞

n=1
θn

(n+b)ρ · exp
[
(c− 1) ·

∑n−1
m=0(m+ b)−ρ

]
<

{
1 + ζ(ρ, b), if 0 < c ≤ 1,
1 + ζ(ρ, b) · exp[(c− 1)ζ(ρ, b)], if c > 1;

(ii) on the other hand, if ρ > k + 1, k ∈ N, then

Eα(ξ
k) ≤ [g(α)]−1 ·

∑∞
n=1

nk

(n+b)ρ · exp
[
(c− 1)

∑n−1
m=0(m+ b)−ρ

]
<

{
ζk(ρ, b), if 0 < c ≤ 1,
ζk(ρ, b) · exp[(c− 1)ζ(ρ, b)], if c > 1.

b). The following inequalities also hold when ρ > 3:

(i) we have for i = 0, 1, 2,

Eα[hi,1(ξ, α)]
2 ≤

∑∞
n=1 n ·

(∑n−1
m=0

1
(m+b)2i

· 1
[(m+b)ρ+c−1]2

)
· pα(n)

<
(∑∞

m=0
1

(m+b)2i
· 1
[(m+b)ρ+c−1]2

)
· Eα(ξ) <∞.
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The series on the right side is convergent because ζ(2(ρ+ i), b) <∞;

(ii) it is obvious that for i = 0, 1− ρ or 2− ρ,

Eα[hi,2(ξ, α)] <
∑∞

m=0
1

(m+b)i
· 1
[(m+b)ρ+c−1]2

<∞,

where the condition ζ(2ρ+i, b) <∞ implies the convergence of the series;

(iii) also, we have

Eα[l0,1,1(ξ, α)]
2 <

( ∞∑
m=0

(m+ b)2

[(m+ b)ρ + c− 1]2

)
· Eα(ξ) <∞,

where the series is convergent because ζ(2ρ− 2, b) <∞;

(iv) similarly, there take place (i = 1, 2)

Eα[lρ,2,i(ξ, α)] <
∞∑

m=0

(m+ b)ρ+i

[(m+ b)ρ + c− 1]2
<∞,

in view of the fact that ζ(ρ− i, b) <∞;

(v) and finally we have

Eα[lρ−1,2,1(ξ, α)] <

∞∑
m=0

(m+ b)ρ

[(m+ b)ρ + c− 1]2
<∞,

as ζ(ρ, b) <∞.

Thus the proof of Lemma 4.1 is completed. �

Proof of Theorem 4.1. For a random sample Xn = (X1, ..., Xn) ∼ Pα

from the distribution (3) the likelihood function will be

fα(X
n) =

n∏
i=1

pα(Xi) = [g(α)]−n · θn·X
n∏n

i=1(Xi + b)ρ

n∏
i=1

Xi−1∏
m=0

(1 +
c− 1

(m+ b)ρ
)

such that for the logarithm of likelihood function we obtain

Lα(X
n) = ln fα(X

n)

= −n ln g(α) + n ·Xn ln θ − ρ
∑n

i=1 ln(Xi + b)

+
∑n

i=1

∑Xi−1
m=0 ln(1 + c−1

(m+b)ρ ).
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The necessary conditions for existence of the MLE for the parameter α
are

∂Lα(X
n)

∂αi
= 0, i = 1− 4,

where α1 = θ, α2 = c, α3 = b, α4 = ρ.

The derivatives with respect to parameters are as follows:

∂Lα(X
n)

∂θ
= − n

g(α)
· ∂g(α)

∂θ
+
n ·Xn

θ
, (5)

where (see (3))
1

g(α)
· ∂g(α)

∂θ
=

1

θ
· Eα(ξ), (6)

such that the condition ∂Lα(Xn)
∂θ = 0 implies

Eα(ξ) = Xn.

Also, we have

∂Lα(X
n)

∂b
= − n

g(α)
· ∂g(α)

∂b
− nρ · ψn

1 (b)− nρ(c− 1)hn1,1(α), (7)

where

1

g(α)
·∂g(α)
∂b

= −ρ·Eα(ξ+b)
−1−ρ(c−1)Eα[h1,1(ξ, α)] = −ρ·Eα[H(ξ, α)],

(8)

and from the condition ∂Lα(Xn)
∂b = 0 we obtain

Eα[H(ξ, α)] = Hn(α).

Besides, we have

∂Lα(X
n)

∂c
= − n

g(α)
· ∂g(α)

∂c
+ n · hn0,1(α), (9)

where
1

g(α)
· ∂g(α)

∂c
= Eα[h0,1(ξ, α)], (10)

such that from the condition ∂Lα(Xn)
∂c = 0 we obtain

Eα[h0,1(ξ, α)] = hn0,1(α).
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Finally, we have

∂Lα(X
n)

∂ρ
= − n

g(α)
· ∂g(α)

∂ρ
− n · ln(Xn + b)− n(c− 1) ln0,1,1(α), (11)

where

1

g(α)
· ∂g(α)
∂ρ

= −Eα[ln(ξ+ b)]− (c− 1) ·Eα[l0,1,1(ξ, α)] = −Eα[Λ(ξ, α)],

(12)

and the condition ∂Lα(Xn)
∂ρ = 0 implies

Eα[Λ(ξ, α)] = Λn(α).

Theorem 4.1 is proved. �

Let us now prove that the solution α̂ = α̂n = (α̂n
i )

4
i=1 of the system

(4) (if it exists) is the MLE of the parameter α. In order to do that, it
is enough to show that the matrix

L̂n =
(
L̂n
ij

)4

i,j=1

with L̂n
ij = Ln

ij(α̂), Ln
ij(α̂) =

∂2Lα(Xn)
∂αi ∂αj

|α=α̂, is negative definite.

Lemma 4.2. If for ρ > 3 the solution α̂ of the system (4) (if it
exists) satisfies the Conditions (A), then the elements of the matrix L̂n

are:

L̂n
11 = − n

θ̂2
· V arα̂(ξ), L̂n

12 = L̂n
21 = −n

θ̂
· Covα̂[ξ, h0,1(ξ, α̂)],

L̂n
13 = L̂n

31 =
nρ̂

θ̂
· Covα̂[ξ,H(ξ, α̂)], L̂n

14 = L̂n
41 =

n

θ̂
· Covα̂[ξ,Λ(ξ, α̂)],

L̂n
22 = −n · V arα̂[h0,1(ξ, α̂)], L̂n

23 = L̂n
32 = nρ̂ · Covα̂[h0,1(ξ, α̂),H(ξ, α̂)],

L̂n
24 = L̂n

42 = n · Covα̂[h0,1(ξ, α̂),Λ(ξ, α̂)], L̂n
33 = −nρ̂2 · V arα̂[H(ξ, α̂)],

L̂n
34 = L̂n

43 = −nρ̂ · Covα̂[H(ξ, α̂),Λ(ξ, α̂)], L̂n
44 = −n · V arα̂[Λ(ξ, α̂)],

such that the matrix L̂n can be represented as L̂n = n · M̂n.

Lemma 4.3. If the conditions of Lemma 4.2 are valid then the ma-
trix L̂n is negative definite.
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Proof of Lemma 4.2.

1. From the representation (5) we obtain

Ln
11(α) =

∂2Lα(X
n)

∂θ2
= n

[ 1

g2
· (∂g
∂θ

)2 − 1

g
· ∂

2g

∂θ2
− Xn

θ2

]
,

Ln
1j(α) =

∂2Lα(X
n)

∂θ∂αj
= n

[ 1

g2
· ∂g
∂θ

· ∂g
∂αj

− 1

g
· ∂2g

∂θ∂αj

]
, j = 2, 3, 4,

where by (6) it follows that

1

g
· ∂

2g

∂θ2
=

1

θ2
· Eα[ξ(ξ − 1)],

1

g
· ∂

2g

∂θ∂c
=

1

θ
· Eα[ξ · h0,1(ξ, α)],

1

g
· ∂

2g

∂θ∂b
= −ρ

θ
· Eα[ξ ·H(ξ, α)],

1

g
· ∂

2g

∂θ∂ρ
= −1

θ
· Eα[ξ · Λ(ξ, α)],

such that according to (6), (8), (10) and (12) we receive

Ln
11(α) =

n
θ2

·
{
(Eα(ξ)−Xn)− V arα(ξ)

}
,

Ln
12(α) = Ln

21(α) = −n
θ · Covα[ξ, h0,1(ξ, α)],

Ln
13(α) = Ln

31(α) =
nρ
θ · Covα[ξ,H(ξ, α)],

Ln
14(α) = Ln

41(α) =
n
θ · Covα[ξ,Λ(ξ, α)].

2. It follows from the representation (9) that

Ln
22(α) =

∂2Lα(Xn)
∂c2

= n
[

1
g2

· (∂g∂c )
2 − 1

g · ∂2g
∂c2

]
− n · hn0,2(α),

Ln
23(α) =

∂2Lα(Xn)
∂c ∂b = n

[
1
g2

· ∂g
∂c ·

∂g
∂b −

1
g · ∂2g

∂c ∂b

]
− nρ · hn1−ρ,2(α),

Ln
24(α) =

∂2Lα(Xn)
∂c ∂ρ = n

[
1
g2

· ∂g
∂c ·

∂g
∂ρ − 1

g · ∂2g
∂c ∂ρ

]
− n · lnρ,2,1(α).

From (10), after not complicated transformations, we obtain

1
g · ∂2g

∂c2
= Eα[h0,1(ξ, α)]

2 −Eα[h0,2(ξ, α)],

1
g · ∂2g

∂c ∂b = −ρ
{
Eα[h0,1(ξ, α) ·H(ξ, α)] + Eα[h1−ρ,2(ξ, α)]

}
,

1
g · ∂2g

∂c ∂ρ = −
{
Eα[h0,1(ξ) · Λ(ξ, α)] + Eα[lρ,2,1(ξ, α)]

}
.
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Then, according to (8), (10) and (12) we have

Ln
22(α) = n

{
(Eα[h0,2(ξ, α)]− hn0,2(α))− V arα[h0,1(ξ, α)]

}
,

Ln
23(α) = Ln

32(α) = nρ
{
(Eα[h1−ρ,2(ξ, α)]− hn1−ρ,2(α))

+ Covα[h0,1(ξ, α),H(ξ, α)]
}
,

Ln
24(α) = Ln

42(α) = n
{
(Eα[lρ,2,1(ξ, α)]− lnρ,2,1(α)) + Covα[h0,1(ξ, α),

Λ(ξ, α)]
}
.

3. From (8) it follows that

Ln
33(α) =

∂2Lα(Xn)
∂b2

= n
[

1
g2

· (∂g∂b )
2 − 1

g · ∂2g
∂b2

]
+ nρ

[
(c− 1) · hn2,1(α)

+ ψn
2 (b)

]
+ nρ2(c− 1) · hn2−ρ,1(α),

Ln
34(α) =

∂2Lα(Xn)
∂b∂ρ

= n
[

1
g2

· ∂g
∂b ·

∂g
∂ρ − 1

g · ∂2g
∂b∂ρ

]
− n ·Hn(α) + nρ(c− 1) · lnρ−1,2,1(α).

According to (8) we obtain

1
g · ∂2g

∂b2
= ρ2Eα[H(ξ, α)]2 + ρEα(ξ + b)−2 + ρ(c− 1)Eα[h2,1(ξ, α)]

+ ρ2(c− 1) · Eα[h2−ρ,2(ξ, α)],

1
g · ∂2g

∂b∂ρ = ρ Covα[H(ξ, α),Λ(ξ, α)]− Eα[H(ξ, α)]

+ ρ(c− 1)Eα[lρ−1,2,1(ξ, α)],

such that by (8), (12) and with the help of not difficult transformations
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we receive

Ln
33(α) = −nρ2 · V arα[H(ξ, α)]

+ nρ2(c− 1)
{
hn2−ρ,2(α)− Eα[h2−ρ,2(ξ, α)]

}
+ nρ

{
ψn
2 (b)− Eα(ξ + b)−2

}
+ nρ(c− 1)

{
hn2,1(α)− Eα[h2,1(ξ, α)]

}
,

Ln
34(α) = −nρ Covα[H(ξ, α),Λ(ξ, α)] + n

{
Eα[H(ξ, α)]−Hn(α)

}
+ nρ(c− 1)

{
Eα[lρ−1,2,1(ξ, α)]− lnρ−1,2,1(α)

}
.

4. Finally from (11) we have

Ln
44(α) =

∂2Lα(Xn)
∂ρ2

= n
[

1
g2

· (∂g∂ρ)
2 − 1

g · ∂2g
∂ρ2

]
+ n(c− 1) · lnρ,2,2(α).

Then by (12) we obtain

∂2g

∂ρ2
= Eα[Λ(ξ, α)]

2 + (c− 1) · Eα[lρ,2,2(ξ, α)]

such that

Ln
44(α) = −n · V arα[Λ(ξ, α)]− n(c− 1)

{
Eα[lρ,2,2(ξ, α)]− lnρ,2,2(α)

}
.

Assuming now that the solution α̂ = (θ̂, ĉ, b̂, ρ̂) of the system (4) satisfies
the Conditions (A), the proof of Lemma 4.2 is finished.

Proof of Lemma 4.3. The necessary and sufficient conditions for
negative definiteness of the matrix L̂n are the following conditions (see,
for example, Gantmacher, 2000)

L̂n
11 < 0, ∆2 ≡ det

(
L̂n
ij

)2

i,j=1
> 0,

∆3 ≡ det
(
L̂n
ij

)3

i,j=1
< 0, ∆4 ≡ det L̂n > 0.

By Lemma 4.2 we have

L̂n
11 = − n

θ̂2
· V arα̂(ξ) < 0
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in view of ξ ̸= constant, P− a.s. (a.s. means almost surely).

Then,

∆2 = L̂n
11 · L̂n

22 − (L̂n
12)

2

= (n
θ̂
)2 ·

{
V arα̂(ξ) · V arα̂[h0,1(ξ, α̂)]− Cov2α̂[ξ, h0,1(ξ, α̂)]

}
.

Hence by Cauchy-Schwarz inequality it follows that ∆2 ≥ 0. But, be-
cause

h0,1(ξ, α) ̸= b(α) + c(α)ξ Pα − a.s.,

for some b(α) and c(α), then ∆2 > 0.

On the other hand, we have

∆3 = −n
3 ρ̂2

θ̂2
· det

(
D̂3

)
, D̂3 =

(
q̂ij

)3

i,j=1
,

where

q̂ij ≡ qij(α̂) = Covα̂(ξi, ξj), ξ1 = ξ, ξ2 = h0,1(ξ, α̂), ξ3 = H(ξ, α̂).

Hence, because det
(
D̂3

)
≥ 0 (D̂3 is a variance-covariance matrix ), then

∆3 ≤ 0. But since there does not exist such ci(α) ̸= 0, i = 1, 2, 3, and
b(α) ∈ R that

3∑
i=1

ci(α)ξi = b(α) Pα − a.s.,

then det
(
D̂3

)
̸= 0 Pα − a.s. .

Finally, we have

∆4 =
n4 ρ̂2

θ̂2
· det

(
D̂4

)
, D̂4 =

(
q̂ij

)4

i,j=1
,

where q̂ij = Covα̂(ξi, ξj), ξ1, ξ2, ξ3 are as before and ξ4 = Λ(ξ, α̂). So,

as above, it can be showed that det
(
D̂4

)
> 0 and the proof of Lemma

4.3 is finished.

The proof of Theorem 4.2 now immediately follows from Lemmas 4.2
and 4.3.
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Remark 4.1. Note that the Conditions (A) can be omitted if n
is sufficiently large. Really, in general case, if the Conditions (A) are
not satisfied, one can represent the matrix L̂n as (see Lemma 4.2)

L̂n = n · M̂n

= n ·
{
M̂n(0)− δ̂n2 · (e22) + ρ̂n · δ̂n3 · (e33) + (ĉn − 1) · δ̂n4 · (e44)

− ρ̂n · δ̂n5 · (e23)− δ̂n6 · (e24)− δ̂n7 · (e34)
}
,

where M̂n(0) is the matrix M̂n under the Conditions (A);
(
eij

)
, i, j =

2, 3, 4, are 4× 4-dimensional matrices all elements of which are zero ex-
cept the elements eij = eji = 1,

δ̂n2 = hn0,2(α̂)− Eα̂[h0,2(ξ, α̂)],

δ̂n3 =
{
ψn
2 (b)− Eα̂(ξ + b̂)−2

}
+ (ĉn − 1)

{
hn2,1(α̂)− Eα̂[h2,1(ξ, α̂)]

}
+ ρ̂n(ĉn − 1)

{
hn2−ρ,2(α̂)−Eα̂[h2−ρ,2(ξ, α̂)]

}
,

δ̂n4 = lnρ,2,2(α̂)− Eα̂[lρ,2,2(ξ, α̂)],

δ̂n5 = hn1−ρ,2(α̂)− Eα̂[h1−ρ,2(ξ, α̂)],

δ̂n6 = lnρ,2,1(α̂)− Eα̂[lρ,2,1(ξ, α̂)],

δ̂n7 =
{
ψn
1 (b)− Eα̂(ξ + b̂)−1

}
+ (ĉn − 1)

{
hn1,1(α̂)− Eα̂[h1,1(ξ, α̂)]

}
+ ρ̂n(ĉn − 1)

{
lnρ−1,2,1(α̂)− Eα̂[lρ−1,2,1(ξ, α̂)]

}
.

For n sufficiently large by the Strong Law of Large Numbers, a random
variable δ̂ni , i = 2− 7, becomes a.s. small enough such that all principal

minors of the matrix M̂n preserves the respective signs of the principal
minors of the negative definite matrix M̂n(0). Thus the matrix M̂n (and
also L̂n) for n sufficiently large is also a.s. negative definite (see Seber
and Lee, 2003, Appendix A.4).
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5 Accumulation Method for Approximate
Computation of the MLE

As we see from the system (4), it is hard to solve and obtain an explicit
form for the solution. To overcome this problem (compare to Astola
et al., 2007; Gasparian and Danielian, 2006), we suggest the Fisher’s
Accumulation Method (see, for example, Ivchenko and Medvedev, 1990,
p. 88) as an approximate method. In this Section, without loss of gen-
erality and only for simplicity, let us assume c = 1.

Let α(0) = (αi)i=1,3,4 (α(0) is the initial value of the parameter α)
be any consistent estimator for unknown parameter α = (αi)i=1,3,4 ∈ Ω,
where α1 = θ, α3 = b, α4 = ρ, (here α2 = c = 1). We consider the
Contribution Function U(α) = (Uj(α))j=1,3,4 with components Uj(α) =
∂Lα(xn)

∂αj
, where xn = (x1, ..., xn) is a realization of a sample Xn ∼ Pα.

We expand the components of the function U(α) into a Taylor Se-
ries around the point α(0), chosen as the first approximation for α̂ =
(α̂j)j=1,3,4 . Then, since U(α̂) = 0, we obtain (compare to Astola et al.,
2007)

Uj(α(0)) +
∑

m=1,3,4

∂Uj(α̃)

∂αm
(α̂m − αm(0)) = 0, j = 1, 3, 4, (13)

where α̃ is some intermediate point between α(0) and α̂.

Replacing now α̃ into α(0) and
∂Uj(α̃)
∂αm

into Eα(0)

[
∂Uj(α(0))

∂αm

]
= −n ·

Ijm(α(0)) where I(α) =
(
Ijm(α)

)
j,m=1,3,4

is a Fisher’s Information Ma-

trix
(
Ijm(α) = −Eα

[
∂2Lα(X1)
∂αj∂αm

])
, the system (13) transforms into the

following one:∑
m=1,3,4

Ijm(α(0)) · (α̂m − αm(0)) =
1

n
· Uj(α(0)), j = 1, 3, 4.

The solution of this system gives the first approximation α(1) =
(αj(1))j=1,3,4 for α̂:

αj(1) = αj(0) +
∆j(α(0))

n · det I(α(0))
, j = 1, 3, 4,

where ∆j(α(0)) is determinant of the matrix, obtained by the matrix
I(α(0)), replacing the jth column by the vector U(α).
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Then, the (z + 1)th approximation can be found recurrently by the
formula

αj(z + 1) = αj(z) +
∆j(α(z))

n · det I(α(z))
, j = 1, 3, 4, z = 0, 1, 2, ... . (14)

The formula (14), in details, may be given as follows:

θ(z + 1) = θ(z) + ∆1(α(z))
n·det I(α(z)) ,

b(z + 1) = b(z) + ∆3(α(z))
n·det I(α(z)) ,

ρ(z + 1) = ρ(z) + ∆4(α(z))
n·det I(α(z)) .

(15)

By using the formula (14), we propose the following Algorithm (c =
1).

Algorithm I.

1. Generate data based on the MCMC method;

2. Use (14) (or (15)) in order to calculate αj(z), j = 1, 3, 4, z =
0, 1, 2, ...;

3. If |αj(z+1)−αj(z)| < ε (ε is some small positive constant), then
αj(z + 1) = α̂ is the MLE, otherwise go to the step 2.

5.1 Simulation study

Until now, to the authors knowledge, there has not been proposed any
closed form for the cdf of the model (3) (even for the case c = 1). So,
it is not possible to generate data based on the cdf. In order to over-
come this difficulty, we use MCMC method (see, for example, Given
and Hoeting, 2005; Rizzo, 2008). The same as Section 3, let us have
the random variable ξ as doubly-truncated. Here, random variable ξ is
restricted from 1 to 100.

To investigate the behavior of the MLE, obtained by the formula
(15), using MCMC we do simulation for 1000 times, i.e. M = 1000 (M
is the number of iteration) and for N = 50, 100 (N is the sample size).
We consider ε = 0.0005.
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Note. Notice that the following values are considered as true values
of the parameters:

α = (θ = 0.9, b = 2, ρ = 3.6), α = (θ = 0.99, b = 3, ρ = 4.5).

Now, from Algorithm I the following Table is proposed.

Table 3. The average of estimated mean squared errors (EMSE).

N=50 N=100
Case Mean EMSE Mean EMSE

θ = 0.9 0.87049 0.00087 0.87112 0.00083
b = 2 2.26768 0.07165 2.07161 0.00513
ρ = 3.6 3.19627 0.16299 3.42955 0.02905
Iteration 104 — 82 —

θ = 0.99 0.94064 0.00244 0.99911 8.3 ×10−5

b = 3 3.11567 0.01338 2.99373 3.9×10−5

ρ = 4.5 4.56459 0.00417 4.70897 4.3 ×10−2

Iteration 51 — 4 —

The average of estimations and the EMSE have obtained. As we
expected, with increasing sample size the EMSE decreases. Also, from
Table 3, we see that for θ close to 1 the rate of convergence increases
and the number of iterations decrease.

6 Conclusions

Two real data sets on the number of proteins and number of residues
(Tables 1 and 2) have been analyzed in order to fit the model (3). As
it has shown in the Section 3 the p-values of K-S Test are 0.4271 and
0.963, respectively. It shows that the model (3) fits data well.

Meanwhile, in the Section 4 we obtained some conditions under
which the MLE for the parameters of distribution (3) coincides with
the solution of the system of likelihood equations. The obtained MLE
are the same as some Moment Estimators. The solution of the systems
(4) always exists for sufficiently large n when some Regularity Condi-
tions (see, for example, Borovkov, 1998; Lehmann, 1983) are satisfied.
The questions relating to the asymptotic properties will be considered
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later.

In Section 5, using Accumulation Method for approximate computa-
tion of the MLE, we have proposed a recurrence formula for evaluating
the MLE of the parameters θ, b and ρ when c = 1. Simulation studies
have been illustrated to support our theory. As we saw from Table 3,
the Accumulation Method works well. We notice that all of the compu-
tations have been done using Statistical Software R (Version 15.2).
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