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Abstract. We present a Bayesian analysis for recurrent events data

using a nonhomogeneous mixed Poisson point process with a dynamic

subject-specific frailty function and a dynamic baseline intensity func-

tion. The dynamic subject-specific frailty employs a dynamic piecewise

constant function with a known pre-specified grid and the baseline in-

tensity uses an unknown grid for the piecewise constant function. Imple-

mentation of Bayesian inference using a reversible jump Markov Chain

Monte Carlo (RJMCMC) algorithm is developed to handle the change

of the dimension in the parameter space for models with a random num-

ber of change points. A data set provided by Grubbs et al. (1991) with

recurrent times to mammary tumors for 59 rats is used to illustrate the

application of the new models. We compare several models including

constant or piecewise constant subject-specific frailty and a fixed num-

ber or a random number for the change points in the baseline using the

pseudo-marginal likelihood criterion. We show that models with a ran-

dom number of change points in the baseline improve upon that of a

fixed number.
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son point process, reversible jump Markov Chain Monte Carlo.

MSC: 62M05.

1 Introduction

Data sets for times to occurrences of a specific event, such as recurring

tumors, infections, and hospitalizations have been collected in many

medical studies. For most of these studies, the interest is on assessing

whether the treatment is effective in reducing the overall occurrence of

events.

For analysis of this kind of data, it is important to account for within

subject correlations, because data collected for the same subject are

likely to be more related. Failure to do this may cause severe under-

estimation for the variance of the treatment effect. Commonly used

approaches for modeling within subject correlations include marginal,

conditional, and frailty models (Vaupel, Manton, and Stallard, 1979).

For marginal models, both working independent and working correla-

tion models are considered, and the robust ‘sandwich’ method (Lin and

Wei, 1989, Wei, Lin, and Weissfeld 1989) is applied for the variance esti-

mate adjustment. Conditional models for recurrent events are based on

event ranks. The baseline risk is the same for events with the same num-

ber of previous events, and different for events with different previous

event numbers. The Prentice, Williams, and Peterson (1981) model is an

example of a conditional model. Frailty models assume an unobservable

random effect shared by events from the same subject. Within-subject

correlation is accounted for using the random effect. If a subject has a

large value of frailty, then this subject is at a higher risk of a new event

compared to a subject with a small value of frailty.

We consider frailty models in this paper. One of the models is called

the shared frailty model which assumes the frailty term is common to

recurrent events of the same subject and is constant over time. For ex-

amples of Bayesian analyses involving shared frailty models, see Sinha

(1993), Sahu et al. (1997), Aslanidou, Dey, and Sinha (1998), Sinha

(1998), Dunson and Dinse (2000), Chen, Ibrahim, and Sinha (2002),

and Dunson and Chen (2004). To relax the constant frailty assumption,

dynamic models where random effects can vary stochastically over time

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:0

8 
+

04
30

 o
n 

S
at

ur
da

y 
A

ug
us

t 1
9t

h 
20

17

http://jirss.irstat.ir/article-1-212-en.html


Bayesian Dynamic Frailty Models 129

or event sequence have been considered. They include Paik, Tsai, and

Ottman (1994), Yue and Chan (1997), Yau and MacGilchrist (1998),

Fong, Lam, Lawless, and Lee (2001), Lam, Lee, and Leung (2002), Hen-

derson and Shimakura (2003) and Pennell and Dunson (2006). Dynamic

frailty models will allow us to investigate the possible changes in the sub-

ject’s failure risk and serial dependence of the frailty according to time

since the beginning of the experiment. We will focus on a time-varying

dynamic frailty model in this paper because it is more appropriate to

assume the subject-specific risk changes according to time as opposed

to number of events in the tumor carcinogenesis studies.

It is common to use a nonhomogeneous Poisson counting process

to model the number of recurring events (Lawless and Nadeau, 1995).

The intensity function of the Poisson process for each subject can be

modeled as a multiplicative function of the common baseline intensity,

the treatment effect and the subject-specific frailty. Both the baseline

intensity and the subject-specific frailty functions can be modeled by

piecewise constant functions with a known number of change points.

The piecewise functions are more flexible than parametric models to ac-

commodate the evolution changes of the intensity function. In many

situations, determining a desirable number of change points is a chal-

lenge. If we set the number too large, this will make the model complex.

The extra parameters may increase estimation uncertainty. If we set the

number too small, it may not fit the data well. Therefore it is desirable

to make this number random. So we extend shared and dynamic frailty

models with a fixed number of change points in the baseline to that with

a random number. The new models have the advantage of making the

locations and the number of change points to be data-dependent, and

therefore they are more flexible and adaptive for model fitting. We de-

velop a reversible jump Markov Chain Monte Carlo method (RJMCMC;

Green, 1995) to handle the change of the dimension of the parameter

space. The algorithm can be extended to a random number of change

points for each subject-specific frailty function. However, our analysis

in this paper did not incorporate this extension due to the data set we

have selected does not have enough data points for reliable inference for

the dimension change of each subject’s specific frailty.

To illustrate the application of our models, we use the data on times

to mammary tumors of 59 rats from Grubbs et al. (1991). This data
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130 Song and Kuo

set has been analyzed before. For example, Kokoska et al. (1993) use

an expanded data set and compare four treatment groups based on a

parametric analysis for the number of tumors per animal and the time

to each tumor detection. Dunson and Dinse (2000) model the mean and

hazard function using Poisson and logistic regression; and Pennell and

Dunson (2006) model the mean and hazard function using a dynamic

frailty model with a nonparametric Dirichlet process.

We evaluate four types of models including constant shared or dy-

namic subject-specific frailty models and dynamic baseline models with

a fixed or random number of change points using the logarithm of the

pseudo-marginal likelihood (LPML). This is the logarithm of the prod-

uct of the conditional predictive ordinates (CPO) (Gelfand, Dey, and

Chang, 1992) over all subjects. For the data set by Grubbs et al., we

show that most of the dynamic frailty models fit the data better than

the constant shared frailty models, and models with a random number

of change points in the baseline are superior to that with a fixed number.

We would like to point out that our model is related to Pennell and

Dunson (2006) except we model the subject-specific frailty and the base-

line intensity directly by two separate dynamic piecewise constant func-

tions without the unknown Dirichlet distribution as hyper-parameter.

Furthermore, they assume fixed knots in the piecewise dynamic gamma

models, we added unknown variable knots in them to be learned from

the data. Different from the approach used in Pennell and Dunson, we

need to employ RJMCMC to handle the unknown variable knots prob-

lem. We also address model determination issues in our paper for the

various models we explore.

2 Model Specification

The typical data set contains time epochs of recurrent events for each

subject and a right-censored time for each subject. Some of these times

epochs can have ties. We will first transform the data set into a counting

process data set. The underlying process for the number of recurrent

events could be modeled as a nonhomogeneous Poisson process. We use

Ni(t) to denote the number of events of the ith subject for the small

time interval around time t, and λi(t) to denote the intensity function

for the ith subject at time t. The intensity function could be modeled
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Bayesian Dynamic Frailty Models 131

as a multiplicative function of the subject-specific frailty, an exponen-

tial function of the covariates and the baseline intensity. The intensity

function λi(t) for subject i at time t could be expressed as

λi(t) = Ii(t)wi(t) exp{βT zi(t)}B(t), (1)

where Ii(t) is an indicator function with value 1 when the subject i is

at risk at time t and 0 otherwise; wi(t) denotes the frailty of subject i

at time t; zi(t) is a p dimensional time-dependent vector of covariates

evaluated at time t for subject i and β is the p-dimensional regression

coefficient; and B(t) denotes the baseline intensity at time t common to

all subjects.

Therefore, three components, β, B(t), and wi(t), for i = 1, . . . , I

need to be estimated. Nonparametric estimation of B(t) and wi(t) may

be undesirable due to limited number of data points. To make the

estimation of B(t) and wi(t) more computationally tractable and without

sacrificing too much generality, we assume piecewise constant models as

an intermediate between parametric and nonparametric models. The

details are given next.

2.1 Subject-Specific Frailty

We consider both time-independent shared frailty and time-dependent

dynamic frailty models.

In the time independent shared frailty models, wi(t) is assumed to

be a constant wi, which does not evolve with time.

In dynamic frailty models, wi(t) is modeled by a time-varying piece-

wise constant function. In particular, we divide the study period (0, T ]

into m + 1 segments with t0 = 0 < t1 < t2 < · · · < tj−1 < tj < · · · <
tm+1 = T, where the jth segment is defined by (tj−1, tj ]. The frailty for

each subject can be modeled by a step function

wi(t) =

m+1∑
j=1

wijI(tj−1 < t ≤ tj), (2)

where wij denotes the frailty of the ith subject at the jth segment. Note

that we assume for simplicity that all subjects, i = 1, . . . , I, share the

same pre-specified change points at tj , j = 1, . . . ,m, but with different

unknown frailty magnitudes.

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:0

8 
+

04
30

 o
n 

S
at

ur
da

y 
A

ug
us

t 1
9t

h 
20

17

http://jirss.irstat.ir/article-1-212-en.html


132 Song and Kuo

The evolution of frailties over segment j could be defined by wij =
wi(j−1)ϕij , where ϕij is the multiplicative frailty innovation for the ith

subject over segment j. Note wij =
∏j
g=1 ϕig. This multiplicative dy-

namic structure has a convenient way of modeling between subject and

within subject variations. In a model with ϕij
i.i.d∼ G(ψ,ψ), a gamma

distribution with mean 1 and variance 1
ψ , we assume that heterogeneities

between and within subjects have the same magnitude 1/ψ. Then the
correlation between frailties of the segments j and j + d (for a positive
integer d) for each subject could be calculated similarly as in Pennell
and Dunson (2006):

Corr(wij , wi(j+d)) =
E(Πj

g=1ϕ
2
igΠ

j+d
g=j+1ϕig)− E(Πj

g=1ϕig)E(Πj+d
g=1ϕig)√

V (Πj
g=1ϕig)V (Πj+d

g=1ϕig)

=
E(Πj

g=1ϕ
2
ig)E(Πj+d

g=j+1ϕig)− E(Πj
g=1ϕig)E(Πj+d

g=1ϕig)√
V (Πj

g=1ϕig)V (Πj+d
g=1ϕig)

=
(1 + 1/ψ)j − 1√

((1 + 1/ψ)j − 1)((1 + 1/ψ)j+d − 1)

=

√
(1 + 1/ψ)j − 1

(1 + 1/ψ)j+d − 1
. (3)

So we can verify the autocorrelation is decreasing in d and increasing

in j, both are expected. Moreover, it is a rational function of 1 + 1/ψ,

where 1/ψ measures the temporal heterogeneity within each subject.

When ψ → 0, then the autocorrelation approaches 0; when ψ → ∞,

then the autocorrelation approaches
√
j/(j + d). We can also assume

a slightly more general version with ϕi1
i.i.d.∼ G(ψ1, ψ1) for all i for the

between heterogeneity as in Pennell and Dunson, which has a different

parameter than the within heterogeneity ψ. For our data, we found the

first version is sufficient.

2.2 Baseline Intensity

The baseline intensity B(t) is modeled by a piecewise constant function

with

B(t) =
k+1∑
h=1

BhI(sh−1 < t ≤ sh), (4)
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Bayesian Dynamic Frailty Models 133

with change points at sh, h = 1, . . . , k, where 0 < s1 < s2 < · · · < sh <

· · · < sk+1 = T. We set the number of change points k in the baseline

intensity separately from that in dynamic frailty models denoted by m,

because we consider also models where the number k is unknown while

m is always pre-specified.

We define the evolution of the baseline intensity over segment h as

Bh = Bh−1δh, where Bh denotes the baseline intensity at segment h, and

δh denotes the evolution innovation of the baseline intensity over the hth

segment. Equivalently we have for each h, Bh =
∏h
g=1 δg, as in Pennell

and Dunson. The auto-correlation between Bh and Bh+d can be built

similarly as that of the dynamic frailties in (3).

2.3 Different Models

We consider four types of models. Model I includes a constant shared

subject-specific frailty model (m = 0 in eq.(2)) and a fixed number of

change points k in the baseline. Model II includes dynamic models for

both subject-specific frailty model and the baseline with a fixed num-

ber of change points. Models III and IV are similar to models I and

II respectively, except the number of change points in the baseline is

assumed to be random.

2.4 Priors

For Bayesian inference, priors for parameters need to be specified. We

assume the baseline innovation δh
i.i.d∼ G(ν1, ν1) for h = 1, . . . , k + 1

and the multiplicative frailty innovation ϕij
i.i.d∼ G(ν2, ν2) for both i and

j indices, where ν1 and ν2 are given. We assume the change points

s1, s2, . . . , sk have an ordered discrete uniform distribution on (0,T]. In

models III and IV, the number of change points k has a Poisson distri-

bution prior with mean ξ. In models I and II, k is pre-specified. The β

parameter in our example has only one dimension, so we have chosen

eβ ∼ G(ν3, ν3) with known ν3 to facilitate the posterior sampling of β.

For the general problem of p dimensional β parameter, a multivariate

normal prior has been chosen in the literature.

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:0

8 
+

04
30

 o
n 

S
at

ur
da

y 
A

ug
us

t 1
9t

h 
20

17

http://jirss.irstat.ir/article-1-212-en.html


134 Song and Kuo

3 Inference

To obtain parameter estimates, we develop Markov Chain Monte Carlo

(MCMC) (Gelfand and Smith, 1990) algorithms for models I and II with

a fixed number of change points k. Parameter updating for models III

and IV with a random k is implemented by the reversible jump Markov

Chain Monte Carlo algorithm (RJMCMC) (Green, 1995).

3.1 Likelihood Function

3.1.1 Likelihood Function for Model II

We describe the likelihood function for model II first. We divide the

total study period (0, T ] into sufficiently narrow intervals and make the

assumptions that λi(t) = λil a constant for all time t in the interval

l. We use Ni(l) denotes the number of tumors observed for the ith rat

in the lth interval. We denote the count information from the data by

N = (N1,N2, ...,N I), where N i = {Ni(l)}l=1,...,L denotes the vector of

the counts of the tumor incidence for subject i collected over the study

period.

Let Φ denote the vector of ϕij , ∆ denote the vector of δh, and τ

denote the vector of sh. When the censoring is non-informative, the

likelihood function is given by

L(β,Φ,∆, τ ;N)

=

I∏
i=1

∏
l

f(Ni(l)|β,Φ,∆, τ )

=

I∏
i=1

∏
l

exp(−λil)λ
Ni(l)
il /Ni(l)! (5)

=
I∏
i=1

∏
l

exp{−Ii(l)wi(l)θi(l)B(l)}[Ii(l)wi(l)θi(l)B(l)]Ni(l)/Ni(l)!.

In the formula,

wi(l) =

m+1∑
j=1

wijI(tj−1 < l ≤ tj) =

m+1∑
j=1

(Πjg=1ϕig)I(tj−1 < l ≤ tj),

θi(l) = exp{βT zi(l)},
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Bayesian Dynamic Frailty Models 135

and B(l) =

k+1∑
h=1

BhI(sh−1 < l ≤ sh) =

k+1∑
h=1

(Πhg=1δg)I(sh−1 < l ≤ sh).

For the data set considered in this study, l denotes the lth week, and

Ni(l) denotes the number of tumors observed for the ith rat in the lth

week. So we have evaluated the likelihood at a finer time grid than both

that of the baseline and of the frailty functions.

3.1.2 Likelihood Functions for Other Models

The likelihood function for model I is a special case of the model II with

m = 0. The partial likelihood of model III (IV) conditioning on the

given number of change points in the baseline to be k is that of model

I (II).

3.2 Updating Algorithm

We illustrate the updating algorithm for model IV first. It is the dy-

namic frailty and dynamic baseline model with random k in the baseline.

Updating for models I-III will be discussed later.

3.2.1 RJMCMC for Model IV

Suppose we are at the iteration step with k change points. There are

three possible moves S,D, and B for the next iteration step. The move

S denotes stay with no changes of k in the dimension for baseline. The

move D denotes death, reducing k by 1. The move B denotes birth,

increasing k by 1. Parameter updating is done by randomly selecting one

of the three moves (S,D,B) with probabilities ck, dk and bk respectively.

So we first calculate the probabilities of each move. Consider bk =

γmin{1, Pξ(k + 1)/Pξ(k)} and dk = γmin{1, Pξ(k − 1)/Pξ(k)}. Here

Pξ(k) denotes the probability of an outcome k (change points) from a

Poisson distribution with mean ξ. The constant γ is chosen as large as

possible subject to bk + dk ≤ 0.9 for each k. The probability of stay ck
is simply 1− bk − dk.

We will describe the possible three moves in more details:

(S Steps) If the move type is S, there are no changes of parameter

dimension. We update all parameters using the MCMC algorithm from

the following posterior distributions.
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136 Song and Kuo

(S.1) Generate the regression coefficient β from the density

[β|Φ,∆, τ , N ] ∝

[
I∏
i=1

∏
l

exp{−Ii(l)wi(l)θi(l)B(l)}[Ii(l)θi(l)]Ni(l)

]
π(β),

where [Ii(l)θi(l)]
Ni(l) = 1 if Ii(l) = 0. For the general multivariate β for-

mulation, β is typically sampled using the Metropolis-Hastings (Hast-

ings 1970) algorithm with a normal density proposal. For the special

case given in our example with the control group being 0, treatment

group being 1 and a gamma prior for θ = eβ, then we sample eβ directly

from an updated gamma distribution.

(S.2) Dynamic updating of the frailty evolution parameter {ϕij}j=1,...,

m+1 is done sequentially from j = 1 to j = m + 1 for each sub-

ject i, where ϕij is generated from G(ν2 + N∗
ij , ν2 + M∗

ij) with N∗
ij =∑

l>tj−1
Ni(l) and M∗

ij =
∑

l>tj−1
Ii(l)w

∗
i (l)θi(l)B(l) with w∗

i (l) calcu-

lated by
∑m+1

g=1 (Πga=1,a̸=jϕia)I(tg−1 < l ≤ tg). Derivation of this updat-

ing is based on the density

[ϕij |ϕig,g ̸=j ′s,∆,β, τ , N ] ∝ ∏
l>tj−1

exp{−Ii(l)wi(l)θi(l)B(l)}[Ii(l)ϕij ]Ni(l)

π(ϕij).
(S.3) For a random chosen index h from 1 to k, generate δh for the

baseline intensity fromG(ν1+N
∗
h , ν1+M

∗
h), whereN

∗
h =

∑I
i=1

∑
l>sh−1

Ni(l)

and M∗
h =

∑I
i=1

∑
l>sh−1

Ii(l)wi(l)θi(l)B∗(l) with B∗(l) calculated by∑k+1
g=1(Π

g
a=1,a̸=hδa)I(sg−1 < l ≤ sg). Derivation of the updating is based

on the function

[δh|δg,g ̸=h′s,Φ,β, τ , N ] ∝ I∏
i=1

∏
l>sh−1

exp{−Ii(l)wi(l)θi(l)B(l)}[Ii(l)δh]Ni(l)

π(δh).
(S.4) To update the time sh, propose another s′h by drawing an

integer randomly between (sh−1, sh+1). Accept s
′
h with probability

min{1, (likelihood ratio)× (prior ratio)× (proposal ratio)}.
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Bayesian Dynamic Frailty Models 137

The likelihood ratio is derived by replacing sh with s′h in the likelihood

function defined in (5) and then divided by the original likelihood. The

prior ratio is

prior ratio =
(sh+1 − s′h)(s

′
h − sh−1)

(sh+1 − sh)(sh − sh−1)
,

and the proposal ratio is 1 because the new point is generated from a

discrete uniform distribution.

If the move is a type B, then we implement the following steps

to update the parameters in the baseline. The other parameters are

updated with the same algorithm as before.

(B Steps) We first draw a new jump time s∗ from (0, T ). Suppose

s∗ ∈ (sh−1, sh). The new time introduces two new levels of the evolution

parameters δ∗h and δ∗h+1 for the baseline intensity by using transfor-

mations from δh and ϵ, where ϵ is drawn randomly from the proposal

density G(α, α) with the density function denoted by gα(ϵ). We use a

transformation of δ∗h = δh/ϵ and δ
∗
h+1 = ϵ, and accept δ∗h and δ∗h+1 with

probability

min{1, (likelihood ratio)× (prior ratio)× (proposal ratio)× J},

where J is the Jacobian of the transformation. Simple derivation will

show

likelihood ratio =

∏I
i=1

∏s∗

l=sh−1+1 exp{−λ∗i (l)}λ∗i (l)Ni(l)∏I
i=1

∏s∗

l=sh−1+1 exp{−λi(l)}λi(l)Ni(l)
,

where λ∗i (l) = Ii(l)wi(l)θi(l)(Π
h−1
g=1δg)δ

∗
h, l ∈ (sh−1, s

∗];

prior ratio =
Pξ(k + 1)

Pξ(k)

(2k + 2)(2k + 3)

T 2

(sh+1 − s∗)(s∗ − sh−1)

(sh+1 − sh−1)

π(δ∗h)π(δ
∗
h+1)

π(δh)
,

where π(δh) denotes the gamma density with δh ∼ G(ν1, ν1); and

proposal ratio =
dk+1T

bk(k + 1)gα(ϵ)
=

dk+1T

bk(k + 1)

Γ(α) exp{αϵ}
ααϵα−1

;

and the Jacobian of the transformation can be calculated to be J =

|δ∗h+1|. Details for deriving prior ratio and proposal ratio were given by

Green (1995).
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(D Steps) For a move of type D, we choose an h randomly from

{1, 2, 3, . . . , k} for the step involving the removal of the change point h

in the baseline. In particular, we propose a new parameter δ∗h in the

segment (sh−1, sh+1) to replace existing evolution parameters δh and

δh+1 at segment (sh−1, sh) and (sh, sh+1). The parameter δ∗h is defined

to be δ∗h = δh ∗ δh+1, which is the reverse of the B move. The likelihood

ratio, prior ratio, proposal ratio and Jacobian of the transformation are

simply the reverse of the ratios defined in the B move.

3.2.2 Updating For Models I-III

Model III is a special case of model IV where the number of change points

m in frailties is 0, and the algorithm is the same as that of the model

IV with m = 0. Therefore, in the frailties we have wi(l) = wi = ϕi1 for

all l.

Model II is a special case of model IV where the probability of move

S is 1. So the algorithm for model II is the same as the algorithm of the

move S in model IV.

Model I is a special case of the dynamic frailty model with the num-

ber of change points in the subject-specific frailty m = 0. The algorithm

is exactly the same as the algorithm of model II with m = 0.

4 Model Evaluation Criterion

We use a summary statistics which is the logarithm of the pseudo-

marginal likelihood (LPML) based on the conditional predictive ordi-

nates (CPO; Gelfand, Dey and Chang, 1992) to compare the proposed

models. We prefer this criterion because of the cross-validated idea for

the predictive density that provides a meaningful measure of the en-

tertained models with the current data. Pseudo-marginal likelihood is

less sensitive to prior choices than the Bayes factor, so it is more useful

in practice. Moreover, it is easy to estimate CPOs from the posterior

samples using the harmonic mean estimates formula (Gelfand and Dey,

1994), whereas the harmonic mean method is known to have problems

in estimating the marginal likelihood used in the Bayes factor (Xie et

al. 2011).

The CPOi denotes the predictive probability of N i based on N1, ...,
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N i−1,N i+1, ...,N I , and

CPOi = Pr(N i|zi,N (−i)), i = 1, . . . , I,

where N (−i) denotes the data set with the ith subject data N i deleted.

So CPOi is the predictive probability of N i based on the rest of the

data. In Monte Carlo simulation, CPOi can be approximated by the

following harmonic mean estimator of the likelihood function based on

the full data:

ĈPOi =

{
1

R

R∑
r=1

1

f(N i|ϑr, zi)

}−1

,

where R denotes the number of Monte Carlo replications, and ϑr denotes

the value of ϑ for the rth Monte Carlo replicate. Note ϑ = (β, τ ,∆)

denotes the vector of all parameters except Φ. In our model, f is the

Poisson probability function defined in (5). The frailties are treated as

latent variables. So we calculate CPOi by integrating out the random

effects. For example, for the constant shared frailty models, we can show

f(N i|ϑr, zi) =
νν22
Γ(ν2)

Γ(ν2 +
∑

lNi(l))

{ν2 +
∑

l Ii(l)θi(l)B(l)}ν2+
∑

lNi(l)

×

[∏
l

[θi(l)Ii(l)B(l)]Ni(l)/Ni(l)!

]
.

For dynamic frailty models, there are no closed forms for the integration.

We then use Monte Carlo simulations to integrate out the random effects

for each individual.

While CPOi explains the goodness of model fit for the ith subject

based on the remaining data, an overall measure for prediction can

be summarized by the product of CPOs, or equivalently its logarithm,

called the logarithm of the pseudo-marginal likelihood (LPML):

LPML =

I∑
i=1

log(CPOi).

5 Analysis of Chemoprevention Data

5.1 Model Comparisons

We first describe the data set given by Grubbs et al. (1991). In the ex-

periment, 119 rats were randomized into four groups with 30 rats in each
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of the three treatment groups with diet supplements and 29 rats in the

control group to examine the effect of canthaxanthin (a carotenoid found

in many vegetables and fruits) on chemically induced mammary car-

cinogenesis. We use part of the data (Dunson and Dinse, 2000, p.1072)

consisting of a treatment group and a control group. Each rat in the

treatment group received daily diet supplement with 3390 mg/kg can-

thaxanthin from 34 days old until 54 days old. All rats were given 15

mg of the carcinogen dimethylbenzanthracene by gavage at 55 days old.

Then each rat was followed for 180 days, and the times of occurrence

of mammary tumors (detected by palpations) were recorded. The rats

were not considered to be at risk of developing tumors for the first three

weeks, so regular palpations started when a rat was 75 days old. A

graphical representation of the data that plots the times and numbers

of tumors for each rat is shown in Figure 1. For example, we see Rat #1

has no tumors and is censored at week 26, and Rat #19 has six tumors

occurring at weeks 7, 13, 14, 14, 17, 19 and dies at week 19th.

To exemplify our method, we applied it to the data set in Figure

1. As a first step we compared the fit of Models (I)-(IV) to determine

which one was most appropriate for the data. The four types of mod-

els are (I) constant shared subject-specific frailty models with dynamic

baseline models with a fixed number of change points k, (II) dynamic

frailty models with fixed change points with size m and dynamic base-

line models with the same fixed points, (III) constant shared subject-

specific frailty and dynamic baseline with a random k and (IV) dynamic

subject-specific frailty with a fixed m and dynamic baseline with ran-

dom k. Models of type I and II depend on a pre-specified parameter k

for the baseline. We evaluate four different models with k to be 2, 4, 6,

and 8 respectively. Models of type II and IV depend on the pre-specified

parameter m for subject-specific frailty; we also set m to be 2, 4, 6, and

8 for the four different models under each type. When m = 2, t1 and t2
are chosen to be 5 and 20. When m = 4, t1 to t4 are chosen to be 5, 10,

15 and 20. When m = 6, t1 to t6 are chosen to be 5, 8, 12, 16, 20 and

24. When m = 8, t1 to t8 are chosen to be 5, 7, 9, 12, 15, 18, 21 and

24. The locations of the change points are chosen so that each interval

between change points contains a meaningful number of events. We set

ξ, the prior mean on the number of change points, to 5.0 for models III

and IV, the variance of the baseline evolution parameter 1/ν1 to 1, and
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Figure 1: The plot of times to tumors for each rat.

The x-axis denotes the study week for the study, and the y-axis denotes the

rats ID. Times and numbers of tumors are plotted for each rat. The number of

tumor marked by 1 indicates that one tumor is found at the location marked

by 1; 2 indicates that two tumors found at the location marked by 2, etc. The

censoring times are denoted by +. Rats #1 to #29 belong to the vehicle control

group, and rats #30 to #59 belong to the treatment group.

variance of the subject-specific frailty evolution 1/ν2 to 0.5 respectively

for all four models. We have also chosen eβ ∼ G(0.01, 0.01) (with mean

of 1 and variance of 100 as the prior for eβ.) To implement each of the

MCMC methodology for models I and II and the RJMCMC methodol-

ogy for models III and IV, we ran a single chain of 40, 000 iterations for

each type with the first 10, 000 iterations as burn-ins and the remaining

30, 000 iterations used to summarize the posterior characteristics. For

each type in Model IV, it takes about 10 minutes for each run on a Dell

Optiplex 990 Minitower with an Intel Core i7 2600 Processor (3.4GHz,

8M), 32 GB RAM and a Linux operating system.
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Table 1: Results for Model Fitting.

PM(β) PSD(β) HPD(β) LPML

Type I: Constant shared subject-specific frailty

and dynamic baseline with a fixed change points

k=2 -1.19 0.24 (-1.67,-0.73) -577

k=4 -1.19 0.24 (-1.66,-0.71) -579

k=6 -1.18 0.24 (-1.64,-0.70) -579

k=8 -1.19 0.24 (-1.66,-0.70) -581

Type II: Dynamic subject-specific frailty and dynamic baseline,

both with fixed change points

k=m=2 -1.09 0.30 (-1.69,-0.51) -574

k=m=4 -1.11 0.32 (-1.75,-0.49) -577

k=m=6 -1.12 0.34 (-1.79,-0.45) -579

k=m=8 -1.12 0.37 (-1.87,-0.43) -586

Type III: Constant shared subject-specific frailty

and dynamic baseline with unknown change points

Random k -1.10 0.24 (-1.59,-0.62) -572

Type IV: Dynamic subject-specific frailty model with fixed change points

and dynamic baseline with unknown change points

Random k, m=2 -1.06 0.32 (-1.69,-0.44) -571

Random k, m=4 -1.07 0.35 (-1.79,-0.40) -569

Random k, m=6 -1.04 0.38 (-1.79,-0.33) -574

Random k, m=8 -1.02 0.40 (-1.83,-0.24) -580

PM(β) denotes the posterior mean of β, PSD(β) denotes the posterior standard

deviation of β, HPD(β) denotes the 95% highest posterior density interval of

β, and LPML denotes the logarithm of the pseudo-marginal likelihood.
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Table 1 shows the results for the four types of models. The esti-

mates for the posterior mean, the posterior standard deviation, the 95%

highest posterior density intervals of β and model fitting score LPML

are displayed for each model. Note we do not use the boldface β here

because we only have one covariate (treatment) in this data set.

As we can see from the table, the point estimates of β are not sen-

sitive to the choice of the number of change points in both the frailty

function and the baseline. The posterior standard deviation for treat-

ment effect becomes larger as the model becomes more complex. For

example, the constant shared frailty models have smaller posterior stan-

dard deviation of β than that of the dynamic frailty models. The values

for model fitting criterion LPML are similar for constant shared frailty

models with different choices of k. But this is not the case for the dy-

namic frailty models. LPML varies greatly with different choices of k

andm.With good choices of k andm, dynamic frailty models can fit the

data better than the constant shared frailty models, which indicates that

the dynamic frailty models could explain the variability of the data bet-

ter than shared frailty models. Both the constant shared frailty model

and the dynamic frailty model with random k show an improvement

over models with a fixed k. This supports the advantage of model fitting

using a random k in terms of the LPML criterion.

5.2 Results of Best Fit Model

We perform an expanded analysis based on the best model given in Table

1, that is the dynamic frailty model with random k in the baseline, with

m = 4 for each subject-specific frailty with change points located at 5,

10, 15, and 20, and ν2 = 2 as the prior mean for the subject-specific

frailty multiplicative innovation; and with ξ = 5 as the prior mean

number of change points, and ν1 = 1 for the prior mean of the baseline

multiplicative innovation.

The convergence of several parameters in the RJMCMC algorithm

has been checked by trace plots and autocorrelation plots. To illustrate

the performance of the number of change points k in the model, we

plotted the posterior histogram of the number of change points k in

Figure 2. As we can see from the graph, six or seven change points are

most frequently supported by the data.
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Table 2: Sensitivity Analysis for Model Type 4 with m = 4.

PM(β) SD(β) HPD(β) LPML

Models with varying ν1
ν1 = 0.5, ν2 = 2, ξ = 5 -1.04 0.36 (-1.74,-0.34) -569

ν1 = 1, ν2 = 2, ξ = 5 -1.07 0.35 (-1.79,-0.40) -569

ν1 = 2, ν2 = 2, ξ = 5 -1.12 0.35 (-1.79,-0.40) -570

Models with varying ν2
ν1 = 1, ν2 = 1, ξ = 5 -1.03 0.46 (-1.92,-0.12) -587

ν1 = 1, ν2 = 2, ξ = 5 -1.07 0.35 (-1.79,-0.40) -569

ν1 = 1, ν2 = 5, ξ = 5 -1.10 0.26 (-1.62,-0.59) -569

Models with varying ξ

ν1 = 1, ν2 = 2, ξ = 5 -1.07 0.35 (-1.79,-0.40) -569

ν1 = 1, ν2 = 2, ξ = 9 -1.08 0.35 (-1.74,-0.38) -569

ν1 = 1, ν2 = 2, ξ = 12 -1.11 0.35 (-1.79,-0.42) -569

PM(β) denotes the posterior mean of β, PSD(β) denotes the posterior standard

deviation of β, HPD(β) denotes the 95% highest posterior density interval of

β, and LPML denotes the logarithm of the pseudo-marginal likelihood.

Figure 3 shows the empirical and the estimated baseline intensity

functions for the control (on the left panel) and for the treatment group

(on the right panel). The empirical baseline intensity function for the

control (treatment) group is calculated by taking the ratio of the ob-

served number of tumors over the number of rats at risk for each week

for the control (treatment) group. As we can see, the estimated baseline

function is a lot smoother than the empirical one. Smoothing is induced

by the model which describes evolution of the baseline over time. The

baseline intensity is quite low at the beginning of the study. After the

fifth week, it increases dramatically. It becomes more stable in the mid-

dle of the study with a few change points. At the end of the study,

there is an increasing trend for the baseline. This is caused by the large

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:0

8 
+

04
30

 o
n 

S
at

ur
da

y 
A

ug
us

t 1
9t

h 
20

17

http://jirss.irstat.ir/article-1-212-en.html


Bayesian Dynamic Frailty Models 145

number of tumors found in the last week.

Figure 4 displays the estimated cumulative intensity function (solid

line) and observed cumulative number of tumors for each rat as a func-

tion of time (dotted line). The cumulative intensity function was es-

timated with the random effects integrated out. We observe that the

model estimates the intensity function well for most of the rats with

only a few exceptions, where the intensity increases a lot due to many

more tumors were found in the last week for a few rats.

Histogram of k

Value of k

P
er

ce
nt

5 10 15

0.
00
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Figure 2: The posterior distribution for the number of change points k.

The treatment is clearly significant in reducing the number of tumors

for the rats. In particular, the point estimate for the treatment effect
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Figure 3: The baseline intensity function over time.

The left panel displays the baseline intensity functions. The right panel displays

them with the treatment effect. The symbol × indicates the empirical intensity

functions, and o indicates the estimated ones.

β is -1.07, which indicates that the expected number of tumors for the

rats in the treatment group is 66% less than those in the control group.

The 95% highest posterior density interval is (-1.79, -0.40), which is

completely to the left of 0. The result is comparable to the result −1.13

given by Dunson and Dinse obtained (2000) from a shared frailty model.

Compared to their model, our model (in particular model IV) with more

complex frailty and baseline structure leads to a deeper understanding

of the risk evolution and also a more appropriate interpretation due to

its better fit. We also consider our model less complex than that of Pen-

nell and Dunson (2006), because we don’t have the Dirichlet processes

as the hyperparameters for the frailty distribution and the baseline dis-

tribution. We model the frailty distribution and baseline distribution

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:0

8 
+

04
30

 o
n 

S
at

ur
da

y 
A

ug
us

t 1
9t

h 
20

17

http://jirss.irstat.ir/article-1-212-en.html


Bayesian Dynamic Frailty Models 147

0

5

10

15

20

5 10 15 20 25

01 02

5 10 15 20 25

03 04

5 10 15 20 25

05 06

5 10 15 20 25

07 08

5 10 15 20 25

09 10

11 12 13 14 15 16 17 18 19

0

5

10

15

20

20
0

5

10

15

20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39

0

5

10

15

20

40
0

5

10

15

20

41 42 43 44 45 46 47 48 49 50

51

5 10 15 20 25

52 53

5 10 15 20 25

54 55

5 10 15 20 25

56 57

5 10 15 20 25

58

0

5

10

15

20

59

Week

In
te

ns
ity
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Figure 4: The observed and predicted intensity functions for each rat.

The solid line denotes the estimated cumulative intensity function and the

dotted line denotes the observed cumulative number of tumors for each rat.

directly using dynamic piecewise constant functions. Pennell and Dun-

son partition the time into 24 small intervals. We assume the number of

knots and the location of knots in the baseline to be unknown so they

are estimated by data sharing. According to our pseudo-marginal like-

lihood criterion, much smaller number of partitions would fit the data

better. In summary, our approach is flexible enough to handle the dy-

namic evolution of the frailty and the baseline, yet simple enough to

interpret their evolutions.

5.3 Sensitivity Analysis

Next, we evaluate the sensitivity of the model type IV with m = 4 (the

one with the largest LPML from Table 1) to the choice of priors, we

choose different values of ν1, ν2 and ξ for further evaluations. As we can
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see from Table 2, the results are not sensitive to the choice of ν1 and ξ,

where the posterior mean, standard deviation, highest posterior density

interval of β and LPML do not change much with different choices of

ν1 and ξ. The model fitting could be affected by the choice of ν2, which

is the inverse of the variance of random effects. This is not surprising

because it is not reasonable to make the variance of random effects very

large. We recommend trying some different values and choose the best

fitting one by LPML, or just put a hyperprior on ν2 as in Pennell and

Dunson (2006) and estimate its value.

6 Discussion

We use a nonhomogeneous Poisson process to model the recurrent events

for each subject, where tied events can be handled easily by counting the

ties events in the Poisson process. The intensity functions for all subjects

share the same baseline function, the same regression coefficients for

the treatment effects, but with individual frailty functions. A frailty

function is used to model the correlation among recurrent events of the

same subject. We consider it as a constant function or a piecewise

constant function. We construct a correlated process by specifying the

dynamic evolution of frailties over the piecewise segments. Moreover, we

construct a correlated process for the baseline intensity similarly. The

piecewise constant approximation models are usually more appropriate

and flexible than simple parametric methods. For example, in cases

where a constant frailty for a subject exists, the piecewise dynamic frailty

models could still provide an unbiased estimate for the treatment effect

and a conservative estimate of its variance. While in a complex process,

a model with constant frailty may underestimate the variance of the

treatment effect and yield an inappropriate analysis. So the dynamic

formulation of frailties and baseline intensity will be more appropriate

for describing the evolution of risk that changes with time.

In this study, we implement MCMC algorithms for Bayesian infer-

ences for models with stepwise frailty and baseline intensity functions.

We also develop RJMCMC for models with a random number of change

points in the baseline intensity function. Compared to other models, this

model could adjust the number of change points to an optimal one and

make valid inferences at the same time. While this may add model com-
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plexity, we demonstrate that the computation is still tractable by the

implementation of the RJMCMC algorithm. It provides insight into any

significant dynamic changes of the baseline intensity during the study

period. Using the pseudo-marginal likelihood criterion applied to a data

set, we show it is desirable to extend models with a stepwise baseline

intensity function from a fixed number of change points to a random

one.
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