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Prediction in a Trivariate Normal Distribution
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Abstract. In this paper, assuming that (X,Y1, Y2)
T has a trivariate

normal distribution, we derive the exact joint distribution of
(
X,Y(1),

Y(2)

)T , where Y(1) and Y(2) are order statistics arising from (Y1, Y2)
T .

We show that this joint distribution is a mixture of truncated trivariate
normal distributions and then use this mixture representation to derive
the best (nonlinear) predictiors of X in terms of

(
Y(1), Y(2)

)T . We also

predict Y(1) in terms of
(
X,Y(2)

)T , and Y(2) in terms of
(
X,Y(1)

)T . Fi-
nally illustrate the usefulness of these results by using real-life data.

Keywords. Exchangeability, linear and nonlinear predictors, multi-
variate selection normal distribution, multivariate unified skew-normal
distribution, order statistics, truncated trivariate normal distribution.
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1 Introduction

In some situations, such as visual acuity, one is interested in studying
relationships between an extreme measure or a function of extremes
measures with one or more covariates. Let (X,Y1, Y2)

T have a trivariate
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normal distribution with mean vector μ∈R
3 and positive definite co-

variance matrix Σ, i.e. (X,Y1, Y2)
T ∼ N3 (μ,Σ), We shall treat X as a

covariate and write X as a covariate (such as age, weight, height, etc.),
Y(2) =

(
Y(1), Y(2)

)T for the vector of order statistics from Y=(Y1, Y2)
T .

Olkin and Viana (1995) discussed the covariance structure of
(
X,Y(1),

Y(2)

)T in the case when (X,Y1, Y2)
T has a trivariate normal distribution

with Y1 and Y2 being exchangeable and (X,Yi)T , i = 1, 2, having a
common correlation. They utilized this covariance structure to obtain
the best linear predictors for X and

(
Y(1), Y(2)

)T . Viana (1998) consid-
ered the same exchangeable case and derived the best linear predictors
for X and a linear combination of Y(1) and Y(2). Loperfido (2008) de-

rived the exact joint distribution
(
X,Y(2)

)T as well as the conditional
distribution of X | Y(2), under the same set-up. Jamalizadeh and Bal-

akrishnan (2009) obtained the exact joint distribution of
(
X,aTY(2)

)T ,
where a = (a1, a2)

T ∈ R
2 and μ and Σ denoted the mean vector and

covariance matrix. They showed that this joint distribution is a mix-
ture of bivariate unified skew-normal distributions and used it to derive
the best (non-linear) predictors of aTY(2) based on X as well as the
predictors of X based on aTY(2). In this paper, we derive the exact

joint distribution of
(
X,Y(1), Y(2)

)T , as mixture of truncated trivariate
normal distributions and use it to derive the best predictors of X based
on
(
Y(1), Y(2)

)T , as well as the predictors of Y(1) based on
(
X,Y(2)

)T ,

and the predictors of Y(2) based on
(
X,Y(1)

)T .
There are other possible fields of application besides visual acuity:
1. Reliability theory: Loperfido et al. (2007) obtained the distribu-

tion of order statistics arising from exchangeable random variables, as
models for the failure time of parallel and series systems. However, they
did not consider the use of covariates, whose values are often available.
As an example, the failure time of a parallel system with two compo-
nents (that is the maximum of failure times the components themselves)
is definitely influenced by some properties of the components’ material.
The results in this paper my be useful in this setup, if both failure times
and the main material’ characteristic are modelled by a trivariate normal
distribution.

2. Spatial statistics: As remarked by Loperfido and Guttorp (2008),
monitoring networks are primarily aimed at finding large values of air
pollution. Hence there is an interest in predicting the maximum level
of air pollution on a given site, using the observed pollution level in
a neighboring site, or the maximum value recorded in two neighboring
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sites.
The rest of this paper is organized as follows. Section 2 presents a

brief review of skew-normal distribution theory with special regard to the
univariate and bivariate cases. We also, describe truncated univariate
and trivariate normal distributions in this section. In Section 3, we
derive the exact joint distribution of

(
X,Y(1), Y(2)

)T when (X,Y1, Y2)
T

has a mean vector and a covariance matrix. Finally, in Section 4, we
illustrate our results using a real-life data.

2 Multivariate Selection Normal Distributions:

Preliminaries

Let U ∈ R
q and V ∈ R

p be two random vectors and C be a measurable
subset of R

q. Arellano-Valle et al. (2006) defined a selection distribution
as the conditional distribution of V givenU ∈ C. Specifically, a p-
dimensional random vector X is said to have a multivariate selection
distribution, denoted by X ∼SLCTp,q, with parameters depending on

the characteristics of U,V, and C, if X d= (V|U ∈ C). If V has a
probability density function (pdf) fV, then X has a pdf fSLCTp,q given
by

fSLCTp,q (x) = fV (x)
Pr (U ∈ C|V = x)

Pr (U ∈ C)
, (1)

where (U,V) has a joint density function, fU,V. An alternative expres-

sion for the pdf of X d= (V|U ∈ C) is given by

fSLCTp,q (x) =

∫
C fU,V (u,x) du∫
C fU (u) du

.

One of the most important of selection distributions is when U and
V are jointly normal distribution, i.e.

(
U
V

)
∼ Nq+p

((
δ
ξ

)
,

(
Γ ΔT

Δ Ω

))
,

where δ ∈ R
q, ξ ∈ R

p, Ω ∈ R
p×p, Γ ∈ R

q×q and Δ∈R
p×q. In this case

X d= (V|U ∈ C) is said to have a multivariate selection normal distribu-
tion denoted by X ∼SLCT − Np,q (θ), where θ = (ξ, δ, Ω, Γ, Δ, C).
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In this case the pdf of X can be easily seen to be [see the Arellano-Valle
et al. (2006) for more details]

φSLCT−Np,q(x;θ)=
φp (x;ξ,Ω)

−
Φq

(
C; δ + ΔT Ω−1 (x−ξ) ,Γ − ΔT Ω−1Δ

)
−
Φq (C; δ,Γ)

,x ∈R
p,

(2)
where φp (·;ξ,Ω) denotes the pdf of Np (ξ,Ω), and

−
Φq

(
C; δ + ΔTΩ−1 (x−ξ) ,Γ − ΔTΩ−1Δ

)
and

−
Φq (C; δ,Γ) respectively denote Pr (Y ∈C) when

Y ∼Nq

(
δ + ΔTΩ−1 (x−ξ) ,Γ − ΔTΩ−1Δ

)
,

and Y ∼Nq (δ; Γ).
The moment generating function is [see Arellano-Valle et al. (2006)]

MSLCT−Np,q (s;θ) =
exp

(
ξT s+1

2s
TΩs

) −
Φq(C; δ + ΔT s,Γ)

−
Φq (C; δ,Γ)

, s∈R
p. (3)

In the special case when C= {u ∈ R
q |u > 0} then the density func-

tion in (2) reduces to the density function of the multivariate uni-
fied skew-normal distribution presented by Arellano-Valle and Azzalini
(2006),denoted by X ∼ SUNp,q (θ), θ = (ξ, δ,Ω,Γ,Δ), as

φSUNp,q (x;θ) =
φp (x;ξ,Ω)Φq

(
δ + ΔT Ω−1 (x−ξ) ; Γ − ΔT Ω−1Δ

)
Φq (δ;Γ)

, x ∈R
p ,

where Φq

(·; Γ − ΔTΩ−1Δ
)

and Φq(·,Γ) denote the cumulative dis-
tribution functions (cdf) of Nq

(
0,Γ − ΔTΩ−1Δ

)
and Nq (0,Γ), respec-

tively.

2.1 Univariate and Bivariate Unified Skew-Normal
Distributions

In this section, we focus on two special cases of the multivariate unified
skew-normal distribution with the density function given in (2). When
p = 1 and q = 1 in (2), we obtain a univariate unified skew-normal
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random variable X with parameter θ =
(
ξ, δ, ω, γ2,λ

)
, denoted by X ∼

SN (θ), with density function

φSN (x;θ) =
1

Φ
(
δ
γ

) φ(x; ξ,ω) Φ

⎛
⎝δ + λ

ω (x− ξ)√
γ2 − λ2

ω

⎞
⎠ , x ∈ R, (4)

where φ(· ; ξ, ω) is the pdf of N (ξ,ω) and Φ (·) is the cdf of N (0, 1)
(standard normal distribution).

If X ∼ SN (θ), where θ =
(
ξ, δ, ω, γ2,λ

)
, then the moment generat-

ing function, the first moment and the variance of X are, respectively,

MSN (s;θ) =
1

Φ
(
δ
γ

) exp
(
ξs+

1
2
ωs2
)

Φ
(
δ + λs

γ

)
,

E (X) = ξ +
λ

γ
r

(
δ

γ

)
,

V ar (X) = ω −
(
λ

γ

)2

r

(
δ

γ

){
δ

γ
+ r

(
δ

γ

)}
,

where r (t) = φ(t)
Φ(t) , t ∈ �, is the reversed hazard rate function of the

univariate standard normal distribution.
In the special case when p = 2 and q = 1 in (2), we obtain a bivariate

unified skew-normal distribution. Specifically, if U and V = (V1, V2)T

are random variables of dimensions one and two, respectively, such that(
U
V

)
∼ N3

((
δ
ξ

)
,

(
γ2 λT

λ Ω

))
,

where δ ∈ �, ξ = (ξ1, ξ2)
T ∈ �2, γ > 0, λ = (λ1, λ2)

T ∈ R
2, and Ω =(

ω11 ω12

ω21 ω22

)
is a two-dimensional positive definite covariance matrix.

Then, a bivariate random vector X = (X1,X2)T is said to have a bivari-
ate unified skew-normal variable, with parameter θ =

(
ξ, δ,Ω, γ2,λ

)T ,
denoted by BSN(θ), if

X d= V | U > 0. (5)

From the general form in (2), the pdf of X = (X1,X2)
T becomes

φBSN (x;θ) =
1

Φ
(
δ
γ

) φ2(x; ξ,Ω) Φ

(
δ + λTΩ−1 (x− ξ)√

γ2 − λTΩ−1λ

)
, x ∈ R

2,

(6)
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where φ2 (·; ξ,Ω) is the pdf of the bivariate normal distribution,N2 (ξ,Ω),
and Φ(·) is the univariate standard normal cdf, as before.

Lemma 2.1. If X = (X1,X2)
T ∼ BSN(θ), where θ = (ξ, δ,Ω, γ2,λ),

then

(i)
X1 ∼ SN(ξ1, δ, ω11, γ

2, λ1). (7)

(ii)
X1| (X2 = x2) ∼ SN(ξ1.2, δ1.2, ω11.2, γ

2
1.2, λ1.2), (8)

where

ξ1.2 = ξ1 +
ω12

ω22
(x2 − ξ2),

δ1.2 = δ +
λ2

ω22
(x2 − ξ2),

ω11.2 = ω11 − ω2
12

ω22
,

γ2
1.2 = γ2 − λ2

2

ω22
, λ1.2 = λ1 − ω12

ω22
λ2.

(iii)

E(X1|X2 = x2) = ξ1.2 +
λ1.2

γ1.2
r

(
δ1.2
γ1.2

)
, (9)

V ar(X1|X2 = x2) = ω11.2 −
(
λ1.2

γ1.2

)2

r

×
(
δ1.2
γ1.2

){
δ1.2
γ1.2

+ r

(
δ1.2
γ1.2

)}
;

here, r (t) = φ(t)
Φ(t) , t ∈ R, is the reversed hazard rate function of

the univariate standard normal distribution, as before.

2.2 Truncated Univariate and Trivariate Normal
Distributions

Let U ∼ N
(
δ, γ2

)
, then a univariate random variable X is said to have

a truncated normal distribution on C , where C is a measurable subset
of real line, denoted by X ∼ TN

(
θ =

(
δ, γ2, C

))
, if

X
d= U |(U ∈ C) .
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If X ∼ TN
(
δ, γ2, (−∞, a)

)
, a ∈ R, then

E (X) = δ − γ
φ
(
a−δ
γ

)
Φ
(
a−δ
γ

) ,

V ar (X) = γ2

⎛
⎜⎝1 −

(
a− δ

γ

) φ
(
a−δ
γ

)
Φ
(
a−δ
γ

) −
⎛
⎝ φ

(
a−δ
γ

)
Φ
(
a−δ
γ

)
⎞
⎠

2
⎞
⎟⎠ ;

Further, X ∼ TN
(
δ, γ2, (a,+∞)

)
, then

E (X) = δ + γ
φ
(
a−δ
γ

)
1 − Φ

(
a−δ
γ

) ,

V ar (X) = γ2

⎛
⎜⎝1 +

(
a− δ

γ

) φ
(
a−δ
γ

)
1 − Φ

(
a−δ
γ

) −
⎛
⎝ φ

(
a−δ
γ

)
1 − Φ

(
a−δ
γ

)
⎞
⎠

2
⎞
⎟⎠ .

Let U =(U1, U2)
T and V be random variables of dimensions two

and one, respectively, such that(
U
V

)
∼ N3

((
δ
ξ

)
,

(
Γ λ

λT ω

))
,

where δ = (δ1, δ2)
T ∈ R

2, ξ∈R, Γ=
(
γ11 γ12

γ21 γ22

)
is a two-dimensional

positive definite covariance matrix, ω > 0 and λ = (λ1, λ2)
T ∈ R

2.
Then, a trivariate random vector X = (X1,X2,X3)

T is said to have a
truncated trivariate normal distribution, with parameter

θ =
(
ψ =

(
ξ
δ

)
,Ψ =

(
ω λT

λ Γ

))
, denoted by X ∼TTN (θ), if

X d= (V,U1, U2)
T |(U1 < U2) (10)

The pdf of X = (X1,X2,X3)
T is

φTTN (x;θ) =

⎧⎪⎨
⎪⎩

φ3(x;ψ,Ψ)
Φ

(
cTδ√
cT Γc

) x2 < x3

0 x2 ≥ x3

(11)
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where c = (−1, 1)T .

Lemma 2.2. If X = (X1,X2,X3)
T ∼ TTN(θ), then

(i)
X1 ∼ SN

(
ξ, cT δ, ω, cTΓc, cTλ

)
, (12)

E (X1) = ξ +
cTλ√
cTΓc

r

(
cTδ√
cTΓc

)
;

(ii)
X2 ∼ SN

(
δ1, c

Tδ, γ11, c
TΓc, γ12 − γ11

)
, (13)

E (X2) = δ1 +
γ12 − γ11√

cTΓc
r

(
cTδ√
cTΓc

)
;

(iii)
X3 ∼ SN

(
δ2, c

Tδ, γ22, c
TΓc, γ22 − γ21

)
, (14)

E (X3) = δ2 +
γ22 − γ21√

cTΓc
r

(
cTδ√
cTΓc

)
;

(iv)
X1 | (X2 = x2,X3 = x3) ∼ N (ψ1.23,Ψ11.23) , (15)

E (X1 | X2 = x2,X3 = x3) = ξ +
(
λ1 λ2

)
Γ−1

(
x2 − δ1
x3 − δ2

)
;

(v)

(X1,X3)
T ∼ BSN

((
ξ

δ2

)
, cT δ,

(
ω λ2

λ2 γ22

)
, cTΓc,

(
cTλ

γ22 − γ21

))
,

(vi)

X2 | (X1 = x1,X3 = x3) ∼ TN (ψ2.13,Ψ22.13, (−∞, x3)) , (16)

E (X2 | X1 = x1,X3 = x3) = ψ2.13 −
√

Ψ22.13

φ
(
x3−ψ2.13√

Ψ22.13

)
Φ
(
x3−ψ2.13√

Ψ22.13

) ;

(vii)

(X1,X2)
T ∼ BSN

((
ξ

δ1

)
, cT δ,

(
ω λ1

λ1 γ11

)
, cTΓc,

(
cTλ

γ12 − γ11

))
,
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(viii)

X3 | (X1 = x1,X2 = x2) ∼ TN (ψ3.12,Ψ33.12, (x2,+∞)) , (17)

E (X3 | X1 = x1,X2 = x2) = ψ3.12 +
√

Ψ33.12

φ
(
x2−ψ3.12√

Ψ33.12

)
1 − Φ

(
x2−ψ3.12√

Ψ33.12

) ;

where

ψ1.23 = ξ +
(
λ1 λ2

)
Γ−1

(
x2 − δ1
x3 − δ2

)
,

Ψ11.23 = ω − ( λ1 λ2

)
Γ−1

(
λ1

λ2

)
,

and

ψ2.13 = δ1 +
(
λ1 γ21

)( ω λ2

λ2 γ22

)−1(
x1 − ξ

x3 − δ2

)
,

Ψ22.13 = γ11 −
(
λ1 γ21

)( ω λ2

λ2 γ22

)−1(
λ1

γ21

)
,

and

ψ3.12 = δ2 +
(
λ2 γ12

)( ω λ1

λ1 γ11

)−1(
x1 − ξ

x2 − δ1

)
,

Ψ33.12 = γ22 −
(
λ2 γ12

)( ω λ1

λ1 γ11

)−1(
λ2

γ12

)
.

3 Joint Distribution of
(
X, Y(1), Y(2)

)T
Let X and Y = (Y1, Y2)T be two random variables such that(

X
Y

)
∼ N3

(
μ =

(
μX
μY

)
,Σ =

(
σXX σTYX
σYX ΣYY

))
(18)

where μY = (μY1, μY2)
T ∈ R

2 , and μX ∈ R, ΣYY=
(
σY1Y1 σY1Y2

σY2Y1 σY2Y2

)
is

a positive definite covariance matrix, σXX > 0 and σYX = (σY1X , σY2X)T

∈ [0,+∞) × [0,+∞) . Moreover, let Y(2) = (Y(1), Y(2))T denote the
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vector of order statistics from Y = (Y1, Y2)T . In the following the-
orem, we show that the joint cdf of (X,Y(1), Y(2))T , is a mixture of
two truncated trivariate normal distributions with the density function
given in (11). For this purpose let Y∗ = (Y2, Y1)

T , μY ∗ = (μY2 , μY1)
T ,

ΣY∗Y∗ =
(
σY2Y2 σY2Y1

σY1Y2 σY1Y1

)
and σY∗X = (σY2X , σY1X)T .

Theorem 3.1. The cdf of (X,Y(1), Y(2))T , is the mixture

F(X,Y(1),Y(2)) (t;μ,Σ) = pΦTTN (t;θ) + (1 − p)ΦTTN (t;θ∗) ; (19)

for t = (t1, t2, t3) ∈ R
3, where ΦTTN (·; θ) denotes the cdf of TTN (θ)

in (11), and

p = Φ

(
cTμY√
cTΣYYc

)
, θ = (μ,Σ) , θ∗ = (μ∗,Σ∗) ,

where

μ∗ =
(

μX
μY ∗

)
,Σ∗ =

(
σXX σTY∗X
σY∗X ΣY∗Y∗

)
.

with c = (−1, 1)T .

Proof. For t = (t1, t2, t3) ∈ R
3, we have

F(X,Y(1),Y(2)) (t;μ,Σ) (20)

= Pr
(
X ≤ t1, Y(1) ≤ t2, Y(2) ≤ t3

)
= Pr (Y1 < Y2) Pr (X ≤ t1, Y1 ≤ t2, Y2 ≤ t3 | Y1 < Y2)

+ Pr (Y2 ≤ Y1) Pr (X ≤ t1, Y2 ≤ t2, Y1 ≤ t3 | Y2 < Y1)

First, let us consider the first term on the RHS of (21). Now, Pr (Y1 < Y2) =
p, then

Pr (X ≤ t1, Y1 ≤ t2, Y2 ≤ t3 | Y1 < Y2) = ΦTTN(t;θ)

and consequently

Pr (Y1 < Y2) Pr (X ≤ t1, Y1 ≤ t2, Y2 ≤ t3 | Y1 < Y2) = pΦTTN(t;θ)

In a similar manner, we can show that

Pr (Y2 ≤ Y1) Pr (X ≤ t1, Y2 ≤ t2, Y1 ≤ t3 | Y2 < Y1) = (1−p)FTTN (t;θ∗)
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which completes the proof of the theorem. �

Corollary 3.1. The joint density function of (X,Y(1), Y(2))T is,

f(X,Y(1),Y(2)) (t;μ,Σ) = pφTTN (t;θ) + (1 − p)φTTN (t;θ∗) , t ∈ R
3

where φTTN (·; θ) is as in (11).

Corollary 3.2. Assume (18) holds. Then the following are true:

(i) The marginal cdf of Y(2) is given by

FY(2)
(t3;μ,Σ) = pΦSN (t3;θ3) + (1 − p) ΦSN (t3;θ∗3) , t3 ∈ R

where ΦSN (·;θ) is the cdf of SN (θ), and

θ3=
(
μY2 , c

TμY , σY2Y2 , c
TΣYYc, cTσY2Y

)
,

θ∗3 =
(
μY2 , c

TμY ∗ , σY2Y2, c
TΣYYc, cTσY2Y∗

)
.

(ii) The conditional cdf of X given
(
Y(1) = t2, Y(2) = t3

)
is given by

FX|(Y(1)=t2,Y(2)=t3) (t1;μ,Σ) = pΦ (t1;θ1.23) + (1 − p)Φ (t1;θ∗1.23) ,

where

θ1.23 =
(
μX + σTYXΣ−1

YY

(
t2 − μY1

t3 − μY 2

)
, σXX − σTYXΣ−1

YYσYX

)
,

θ∗1.23 =
(
μX + σTY∗XΣ−1

Y∗Y∗

(
t2 − μY2

t3 − μY1

)
, σXX − σTY∗XΣ−1

Y∗Y∗σY∗X

)
,

and the conditional mean of X given
(
Y(1) = t2, Y(2) = t3

)
is given

by

E
(
X | Y(1) = t2, Y(2) = t3

)
= p

(
μX + σTYXΣ−1

YY

(
t2 − μY1

t3 − μY 2

))

+ (1 − p)
(
μX + σTY∗XΣ−1

Y∗Y∗

(
t2 − μY2

t3 − μY1

))
.
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(iii) The conditional cdf of Y(1) given
(
X = t1, Y(2) = t3

)
is given by

FY(1)|(X=t1,Y(2)=t3) (t2;μ,Σ) = pΦTN (t2;θ2.13)+(1 − p)ΦTN (t2;θ∗2.13) ,

where ΦTN (·;θ) is the cdf of TN (θ),

θ2.13 = (μ2.13, σ22.13, (−∞, t3)) ,
θ∗2.13 = (μ∗2.13, σ

∗
22.13, (−∞, t3)) ,

and the conditional mean of Y(1) given
(
X = t1, Y(2) = t3

)
is given

by

E
(
Y(1) | X = t1, Y(2) = t3

)
= p

⎛
⎝μ2.13 −√

σ22.13

φ
(
t3−μ2.13√
σ22.13

)
Φ
(
t3−μ2.13√
σ22.13

)
⎞
⎠

+ (1 − p)

⎛
⎜⎜⎝μ∗2.13 −√σ∗22.13

φ

(
t3−μ∗2.13√
σ∗22.13

)

Φ
(
t3−μ∗2.13√
σ∗22.13

)
⎞
⎟⎟⎠ .

(iv) The conditional cdf of Y(2) given
(
X = t1, Y(1) = t2

)
is given by

FY(2)|X=t1,Y(1)=t2 (t3;μ,Σ) =pΦTN (t3;θ3.12) +(1 − p)ΦTN (t3;θ∗3.12) ,

where

θ3.12 = (μ3.12, σ33.12, (t2,∞)) ,
θ∗3.12 = (μ∗3.12, σ

∗
33.12, (t2,∞)) ,

and the conditional mean of Y(2) given
(
X = t1, Y(1) = t2

)
is given

by

E
(
Y(2) | X = t1, Y(1) = t2

)
= p

⎛
⎝μ3.12 +

√
σ33.12

φ
(
t2−μ3.12√
σ33.12

)
1 − Φ

(
t2−μ3.12√
σ33.12

)
⎞
⎠

+ (1 − p)

⎛
⎜⎜⎝μ∗3.12 +

√
σ∗33.12

φ

(
t2−μ∗3.12√
σ∗33.12

)

1 − Φ
(
t2−μ∗3.12√
σ∗33.12

)
⎞
⎟⎟⎠ ,
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where

μ2.13 = μY1 +
(
σXY1 σY2Y1

)( σXX σXY2

σY2X σY2Y2

)−1(
t1 − μX
t3 − μY2

)
,

μ∗2.13 = μY2 +
(
σXY 2 σY1Y 2

)( σXX σXY1

σY1X σY1Y1

)−1(
t1 − μX
t3 − μY1

)
,

σ22.13 = σY1Y1 −
(
σXY1 σY2Y1

)( σXX σXY2

σY2X σY2Y2

)−1(
σXY1

σY2Y1

)
,

σ∗22.13 = σY2Y2 −
(
σXY2 σY1Y2

)( σXX σXY1

σY1X σY1Y1

)−1(
σXY2

σY1Y2

)
,

and

μ3.12 = μY2 +
(
σXY2 σY1Y2

)( σXX σXY1

σY1X σY1Y1

)−1(
t1 − μX
t2 − μY1

)
,

μ∗3.12 = μY1 +
(
σXY1 σY2Y1

)( σXX σXY2

σY2X σY2Y2

)−1(
t1 − μX
t2 − μY2

)
,

σ33.12 = σY2Y2 −
(
σXY2 σY1Y2

)( σXX σXY1

σY1X σY1Y1

)−1(
σXY2

σY1Y2

)
,

σ∗33.12 = σY1Y1 −
(
σXY1 σY2Y1

)( σXX σXY2

σY2X σY2Y2

)−1(
σXY1

σY2Y1

)
.

3.1 An Exchangeable Case

Here, we consider the special case when⎛
⎝ X

Y1

Y2

⎞
⎠ ∼ N3

⎛
⎝
⎛
⎝ μ0

μ1

μ1

⎞
⎠ ,

⎛
⎝ σ2 ηστ ηστ

ηστ τ2 ρτ2

ηστ ρτ2 τ2

⎞
⎠
⎞
⎠ , (21)

where μ0, μ1 ∈ R, τ > 0, |ρ| < 1, |η| <
√

1+ρ
2 .Olkin and Viana (1995)

considered this case and derived the covariance matrix of (X,Y(1), Y(2))T ,
and then utilized it to obtain the best linear predictors of Y(1) given X,
Y(2) given X, and X given Y(1) and Y(2). Under the same set-up, Lop-
erfido (2008) derived the exact distribution of X | Y(2) and then an
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expression for the conditional mean E
(
X | Y(2)

)
.

From the mixture form in Theorem 1, we can easily obtain expressions
for the conditional meansE

(
X | (Y(1) = t2, Y(2) = t3)

)
, E
(
Y(1) | (X = t1,

Y(2) = t3)
)

and E
(
Y(2) | (X = t1, Y(1) = t2)

)
as follows.

Corollary 3.3. If (X,Y1, Y2)T is exchangeable as in (21), then

(i) E
(
X | Y(1) = t2, Y(2) = t3

)
= μ0 + ησ

τ(1+ρ) (t2 + t3 − 2μ1) ,

(ii) E
(
Y(1) | X = t1, Y(2) = t3

)
= μ2.13 −√

σ22.13

φ
(

t3−μ2.13√
σ22.13

)
Φ
(

t3−μ2.13√
σ22.13

) ,

(iii) E
(
Y(2) | X = t1, Y(1) = t2

)
= μ3.12 +

√
σ33.12

φ
(

t2−μ3.12√
σ33.12

)
1−Φ

(
t2−μ3.12√

σ33.12

) ,
where

μ2.13 = μ1 +
ητ (1 − ρ) (t1 − μ0) − σ

(
η2 − ρ

)
(t3 − μ1)

σ (1 − η2)
,

σ22.13 =
τ2

1 − η2

(
1 − 2η2 (1 − ρ) − ρ2

)
,

and

μ3.12 = μ1 +
ητ (1 − ρ) (t1 − μ0) − σ

(
η2 − ρ

)
(t2 − μ1)

σ (1 − η2)
,

σ33.12 =
τ2

1 − η2

(
1 − 2η2 (1 − ρ) − ρ2

)
.

4 Illustration With Visual Acuity Data

Fishman et al. (1993) evaluated 43 patients with Best’s vitelliform mac-
ular dystrophy for age X, visual acuity in left eye Y1 and visual acuity
in right eye Y2. Olkin and Viana (1995) applied the model in (21) to
these data and computed the maximum likelihood estimates (MLEs) of
the parameters follows: the mean and standard deviation of age and the
mean and standard deviation of vision in the eyes ** are respectively
μ̂0 = 28.833, μ̂1 = 0.424, σ̂ = 19.182, τ̂ = 0.386. Also, the correlation ρ
between vision on the eyes was estimated as ρ̂ = 0.496 and the MLE of
the correlation between age and either eye is η̂ = 0.581, then used the

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:1

1 
+

04
30

 o
n 

S
at

ur
da

y 
A

ug
us

t 1
9t

h 
20

17

http://jirss.irstat.ir/article-1-174-en.html


Prediction in a Trivariate Normal Distribution via... 53

covariance structure of (X,Y(1), Y(2))T , along with the estimated first
and second moments of X,Y(1) and Y(2), they compute the best linear
predictor of Y(1) based on X,Y(2) as well as best linear predictor of Y(2)

based on X,Y(1) as

E
(
Y(1) | X = t1, Y(2) = t3

)
= −0.21 + 0.6351t3 + 0.0042t1,

E
(
Y(2) | X = t1, Y(1) = t2

)
= 0.28 + 0.6351t2 + 0.0042t1.

By Corollary 4, we can easily obtain the (estimated) conditional mean
of X given

(
Y(1), Y(2)

)
as

E
(
X | Y(1) = t2, Y(2) = t3

)
= 12.47 + 19.3(t2 + t3),

which is exactly the same predictor as obtained by Olkin and Viana(1995).
Further, under the exchangeable model in (21), the best (nonlinear) pre-
dictor Y(1) based on

(
X,Y(2)

)
, and Y(2) based on

(
X,Y(1)

)
, are

E
(
Y(1) | X = t1, Y(2) = t3

)
= μ2.13 −

√
0.093

φ
(
t3−μ2.13√

0.093

)
Φ
(
t3−μ2.13√

0.093

) ,

E
(
Y(2) | X = t1, Y(1) = t2

)
= μ3.12 +

√
0.093

φ
(
t2−μ3.12√

0.092

)
1 − Φ

(
t2−μ3.12√

0.093

) ,
respectively, where

μ2.13 =
0.113t1 + 3.04t3 + 0.84

12.71
,

μ3.12 =
0.113t1 + 3.04t2 + 0.84

12.71
.

If we consider the full model in (18) for these data then the estimated
mean vector and covariance matrix of (X,Y1, Y2)

T are [ see Fishman et
al. (1993)]

(μ̂X , μ̂1, μ̂2)
T = (28.833, 0.412, 0.437)T ,Σ̂ =

⎛
⎝ 367.996 4.419 4.200

4.419 0.135 0.074
4.200 0.074 0.163

⎞
⎠ .
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Now, under the full model in (18), using the results in Corollary 2,
the best predictor of X based on

(
Y(1), Y(2)

)T , Y(1) based on
(
X,Y(2)

)T
and Y(2) based on

(
X,Y(1)

)T can be easily obtained as

E
(
X | Y(1) = t2, Y(2) = t3

)
= 12.317 + 21.553t2 + 17.577t3,

E
(
Y(1) | X = t1, Y(2) = t3

)
= 0.57

⎛
⎝μ2.13 −

√
0.077

φ
(
t3−μ2.13√

0.077

)
Φ
(
t3−μ2.13√

0.077

)
⎞
⎠

+0.43

⎛
⎝μ∗2.13 −√

0.109
φ
(
t3−μ∗2.13√

0.109

)
Φ
(
t3−μ∗2.13√

0.109

)
⎞
⎠ ,

E
(
Y(2) | X = t1, Y(1) = t2

)
= 0.57

⎛
⎝μ3.12 +

√
0.109

φ
(
t2−μ3.12√

0.109

)
1 − Φ

(
t2−μ3.12√

0.109

)
⎞
⎠

+0.43

⎛
⎝μ∗3.12 +

√
0.077

φ
(
t2−μ∗3.12√

0.077

)
1 − Φ

(
t2−μ∗3.12√

0.077

)
⎞
⎠ ,

where

μ2.13 = 0.044 + 0.010t1 + 0.204t3,
μ∗2.13 = 0.089 + 0.009t1 + 0.226t3,

and

μ3.12 = 0.089 + 0.009t1 + 0.226t2,
μ∗3.12 = 0.044 + 0.010t1 + 0.204t2.

5 Concluding Remarks

In this paper, we have derived the exact joint distribution of (X,Y(1),

Y(2))T , when X is a covariate and Y(2) =
(
Y(1), Y(2)

)T is the vector
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of order statistics from Y = (Y1, Y2)
T , in the case when (X,Y1, Y2)

T ∼
N3(μ,Σ). All the results established in this paper can be extended to the
case when (X,Y1, Y2)

T ∼ EC3(μ,Σ,h(3)), a trivariate elliptical distribu-
tion with location parameter μ ∈R

3, positive definite dispersion matrix
Σ3×3, and density generator h(3). Work is currently under progress on
these issues, and we hope to report our findings in a future paper.
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