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Abstract. When using the K-nearest neighbours (KNN) method, one
often ignores the uncertainty in the choice of K. To account for such
uncertainty, Bayesian KNN (BKNN) has been proposed and studied
(Holmes and Adams 2002; Cucala et al. 2009). We present some evi-
dence to show that the pseudo-likelihood approach for BKNN, even after
being corrected by Cucala et al. (2009), still significantly underestimates
model uncertainty.
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1 Introduction

The K-nearest neighbours (KNN) method (e.g., Fix and Hodges 1951;
Cover and Hart 1967) is conceptually simple but flexible and useful in
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Figure 1: Simulated example illustrating KNN with K = 5. Training obser-
vations from class 0 are indicated by the symbol “⊕”, and those from class 1
are indicated by the symbol “•”. A and B are two test points.

practice. It can be used for both regression and classification. Like
Cucala et al. (2009), we focus on classification only.

Under the assumption that points close to one another should have
similar responses, KNN classifies a new observation according to the
class labels of its K nearest neighbours. In order to identify the neigh-
bours, one must decide how to measure proximity among points and
how to define the neighbourhood. The most commonly-used distance
metric is the Euclidean distance. The tuning parameter, K, is normally
chosen by cross-validation. Figure 1 illustrates how KNN works. Sup-
pose one takes K = 5. Then, the possible predicted probabilities are
{0/5, 1/5, · · · , 5/5}. Among those five nearest neighbours of test point
A, four out of five belong to class 0 (C0) and one out of five belongs to
class 1 (C1). Therefore, A is classified to class 0, and its class proba-
bilities are estimated to be P̂ (A ∈ C0) = 4/5 and P̂ (A ∈ C1) = 1/5.
Similarly, test point B is classified to class 1, and its class probabilities
are estimated to be P̂ (B ∈ C0) = 1/5 and P̂ (B ∈ C1) = 4/5.

While intuitive and easily implemented, KNN cannot be considered a
statistical model. The KNN algorithm lacks a probability model for the
observed classes, making inferential statements about parameters such
as K or uncertainty statements about predicted probabilities infeasible.
Holmes and Adams (2002) developed a pseudo-likelihood representation
for the data, enabling BKNN. Cucala et al. (2009) identified several
shortcomings in Holmes and Adam’s approach, proposing a more rig-
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orous probability model and several approximate MCMC techniques,
including one based on pseudo-likelihood.

Focusing on parameters that are of direct interest in practice, such as
θ ≡ Pr(y = 1|x), we study the inferential aspect of the pseudo-likelihood
approach from a frequentist point of view, that is, by conducting re-
peated experiments.

Before describing the experiments in Section 3 and results in Sec-
tion 4, we give a brief review of BKNN model and the pseudo-likelihood
approximation. The main result, in Section 4.2, indicates that the cov-
erage of posterior intervals for class probabilities are well below their
nominal levels, and the intervals themselves are too narrow. In compar-
ison, bootstrapped KNN gives reasonable coverage and correct interval
length. Conclusions in Section 5 offer some hope that the intervals
from the pseudo-likelihood approach may still capture some information
about uncertainty.

2 Bayesian KNN (BKNN) and a Pseudo-Likeli-
hood Approximation

Holmes and Adams (2002) pointed out that regular KNN does not ac-
count for the uncertainty in the choice of K. They presented a Bayesian
framework for KNN (BKNN), compared its performance with the reg-
ular KNN on several benchmark data sets and concluded that BKNN
outperformed KNN in terms of misclassification error.

Cucala et al. (2009) presented a more comprehensive treatment of the
BKNN model, discussing an exact method for simulation based on per-
fect sampling. To deal with the computational challenge of evaluating a
normalizing constant they propose several computationally feasible ap-
proximate simulation methods, including path sampling and Metropolis-
Hastings sampling based on a pseudo-likelihood approximation.

To keep this review brief, we focus on the BKNN model of Cucala
et al. (2009) for Q classes, based on a joint likelihood for all training
observations:

p(Y|X, β,K) = exp

⎧⎨
⎩β

n∑
i=1

∑
j∈N(xi,K)

I(yj = yi)/K

⎫⎬
⎭ /Z(β,K). (1)

The indicator function I is 1 whenever its argument is true; the notation
“
∑

j∈N(xi,K)” indicates a sum over all observations xj that are K-nearest
neighbours of xi; Z(β,K) is a normalizing constant.
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The central component of (1) is summand I(yj = yi)/K, correspond-
ing to the KNN estimate of the probability that observation i takes class
yi. The parameter K controls the number of nearest neighbours and pa-
rameter β > 0 governs the strength of interaction between a data point
and its neighbours. A large β tends to enforce strong dependence be-
tween neighbours while β = 0 leads to complete independence. Both
Holmes and Adams (2002) and Cucala et al. (2009) consider models
with interaction parameter β.

Cucala et al. (2009) observe that predictive distributions for future
y involve integration of a posterior derived from (1). Direct evaluation
of such predictive distributions is generally intractable due to the nor-
malizing constant Z(β,K). Cucala et al. (2009) propose a number of
MCMC approximations to the posterior. One approximation involves
MCMC with a pseudo-likelihood function replacing (1). This approach
is similar to Holmes and Adams (2002), but as pointed out by Cucala
et al. (2009), the correct pseudo likelihood function should be

p(Y|X, β,K) =
n∏

i=1

p(yi|xi, β,K) =

n∏
i=1

exp
{

(β/K)
(∑

j∈N(xi,K) I(yj = yi) +
∑

i∈N(xj ,K) I(yi = yj)
)}

∑Q
q=1 exp

{
(β/K)

(∑
j∈N(xi,K) I(yj = q) +

∑
i∈N(xj ,K) I(q = yj)

)} .

(2)

The additional notation “
∑

i∈N(xj ,K)” indicates a sum over observations
xj that have xi as one of their K-nearest neighbours. This second term
was missing in Holmes and Adams (2002), but it is needed because the
neighbouring relationship between any two observations is generally not
symmetric; the fact that xj is the nearest neighbour of xi does not imply
xi is necessarily the nearest neighbour of xj (Cucala et al. 2009).

Unlike regular likelihood functions, the component for data point yi

depends on the class labels of other data points yj, for j �= i. Treating
β and K as random variables, the marginal predictive distribution for a
new data point (xn+1, yn+1) based on the training data (X,Y) is given
by

p(yn+1|xn+1,X,Y) =
∑
K

∫
p(yn+1|xn+1,X,Y, β,K)p(β,K|X,Y)dβ,

(3)
where p(β,K|X,Y) ∝ p(Y|X, β,K)p(β,K) is the posterior distribution
of (β,K). Holmes and Adams (2002) adopt uniform prior distributions
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for K and β. A random-walk Metropolis-Hastings algorithm is then
used to draw M samples from the posterior p(β,K|X,Y), so that (3)
can be evaluated. We stress that since pseudo-likelihood approximation
(2) is used, these samples are from an approximate posterior, not the
correct posterior. The next two sections study the impact of the pseudo-
likelihood approximation on predictive intervals.

3 Experiments

We now describe an experiment that shows the pseudo-likelihood ap-
proach still significantly underestimates model uncertainty. For the re-
minder of this article, the acronym “BKNN” will be strictly used to refer
to the pseudo-likelihood approach of Bayesian KNN.

The following experiment is repeated 100 times. Each time, we first
generate n = 250 pairs of training data from a known, two-class model
(details in Section 3.1). We then fit BKNN and regular KNN on the
training data, and let them make predictions at a set of 160 pre-selected
test points (details in Section 3.2). For each test point, say (xn+1, yn+1),
our parameter of interest is

θn+1 ≡ Pr(yn+1 = 1|xn+1). (4)

We construct both point estimates (Section 4.1) and interval estimates
(Section 4.2) of θn+1: θ̂n+1 and În+1.

To fit BKNN, we use the Matlab code provided by Holmes and
Adams (2002) — except we use the corrected expression for p(Y|X, β,K);
see (2). To fit regular KNN, we use the knn function in R.

3.1 Simulation Model

Both Holmes and Adams (2002) and Cucala et al. (2009) made heavy
use of a synthetic dataset consisting of 250 training and 1000 test points,
taken from http://www.stats.ox.ac.uk/pub/PRNN. These data were
originally generated from two classes, each being an equal mixture of two
bivariate normal (BVN) distributions. In order to be able to generate
slightly different training data every time we repeat our experiment, we
imitate this synthetic data set by assuming the underlying distributions
of class 1 (C1) and class 0 (C0) to be:

x|C1 ∼ f1(x) = 0.5BVN (µ11,Σ) + 0.5BVN (µ12,Σ)
x|C0 ∼ f0(x) = 0.5BVN (µ01,Σ) + 0.5BVN (µ02,Σ) ,
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Figure 2: (a) Training data from one experiment, and the decision boundary
given by (5). (b) The fixed set of test points, and the true probability contour.

with

µ11 =
( −0.3

0.7

)
, µ12 =

(
0.4
0.7

)
, µ01 =

( −0.7
0.3

)
, µ02 =

(
0.3
0.3

)

and

Σ =
(

0.03 0
0 0.03

)
.

The prior class probabilities are taken to be equal, i.e., Pr(y = 1) =
Pr(y = 0) = 0.5. Given any data point x, its posterior probability of
being in C1 can be calculated by Bayes’ rule

Pr(y = 1|x) =
0.5f1(x)

0.5f1(x) + 0.5f0(x)
. (5)

Figure 2(a) shows the training data from one experiment and the true
decision boundary.

The model from which the data are simulated is different from BKNN
model (2). Direct simulation from the BKNN model is not possible, since
p(yi|xi, β,K) depends on the labels of neighbouring points yj. That is,
without any y values, new y values cannot be simulated.

3.2 Test Points

Instead of focusing on the total misclassification error, we focus on pre-
dictions made at a fixed set of 160 test points. The test points are chosen
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to cover the critical part of the true posterior probability contour as in-
dicated in Figure 2(b). We shall refer to θn+1 as the key parameter of
interest, but it should be understood that the subscript “n + 1” is used
to refer to any of the 160 test points.

4 Results

We now compare both point estimates and interval estimates produced
by the ordinary KNN method and the Bayesian KNN method (using the
pseudo-likelihood approach).

4.1 Point Estimates of θn+1

We begin with point estimates. For BKNN, the point estimate of θn+1 ≡
Pr(yn+1 = 1|xn+1) is the posterior mean:

θ̂BKNN
n+1 =

1
M

M∑
j=1

Pr(yn+1 = 1|xn+1,X,Y, β(j),K(j)),

where (K(j), β(j)) are samples drawn from the posterior distribution,
p(K,β|X,Y). For regular KNN, one chooses the parameter K by cross-
validation, and normally uses the original KNN score

θ̃KNN
n+1 =

1
K

∑
j∈N(xn+1,K)

I(yj = 1) (6)

as the point estimate.
Through experimentation in this example we discovered that the

KNN scores (6) were not well-calibrated probability estimates, and the
use of a logistic transformation improved this accuracy. Thus we report

θ̂KNN
n+1 =

exp{α̂ + β̂θ̃KNN
n+1 }

1 + exp{α̂ + β̂θ̃KNN
n+1 } (7)

as the point estimate of regular KNN. Let

g(yi) =
1
K

∑
j∈N(xi,K)

I(yj = yi), (8)

be the output of KNN. In (7), α̂ and β̂ are obtained by running a logistic
regression of yi onto g(yi) using the training data. Notice that the
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Figure 3: Average of 100 point estimates versus the true parameter value, for
all 160 test points. A 45-degree reference line going through the origin is also
displayed.

calibrated KNN estimate given by (7) above is also more comparable to
the one given by (2). The logistic form (7) is slightly superior to simply
using KNN output g(yi).

After repeating the experiment 100 times, we obtain 100 slightly
different point estimates at each xn+1. Figure 3 plots the average of these
100 point estimates against the true value for all 160 test points. We see
that both BKNN and regular KNN give very similar point estimates.

4.2 Interval Estimates of θn+1

The main focus of our experiments is interval estimation. In particular,
we are interested in the question of whether these interval estimates
adequately capture model uncertainty.

For BKNN, we use the 95% posterior (or credible) interval as our
interval estimate, ÎBKNN

n+1 . This is constructed by finding the 2.5th and
97.5th percentiles of the posterior samples. To obtain an interval esti-
mate for regular KNN, ÎKNN

n+1 , we resort to Efron’s bootstrap. Given a
training set, D, we generate 500 bootstrap samples, D∗

1,D∗
2 , · · · ,D∗

500,
and repeat the entire KNN model building process — that is, choosing
K by cross-validation and calculating θ̂n+1,b according to (7) — for every
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Figure 4: Estimated coverage probabilities of (a) ÎBKNN
n+1 and (b) ÎKNN

n+1 , for
all 160 test points.

D∗
b , b = 1, 2, · · · , 500. The interval estimate of θn+1 is constructed by

taking the 2.5th and 97.5th percentiles of the set, {θ̂n+1,1, · · · , θ̂n+1,500}.
Our first question of interest is: What are the coverage probabili-

ties of ÎKNN
n+1 and ÎBKNN

n+1 ? After repeating the experiment 100 times,
we obtain 100 slightly different interval estimates, produced from 100
slightly different training sets. The coverage probability of ÎBKNN

n+1 (and
that of ÎKNN

n+1 ) can be estimated easily by counting the number of times
θn+1 is included in the interval over the 100 experiments. Histograms of
the estimated coverage probabilities for all 160 test points are shown in
Figure 4. The posterior intervals produced by BKNN can easily be seen
to have fairly poor coverage overall.

For each interval estimate, we also calculate its length, e.g.,

lengthBKNN
n+1 =

∣∣∣θ̂BKNN,97.5%
n+1 − θ̂BKNN,2.5%

n+1

∣∣∣ ,
lengthKNN

n+1 =
∣∣∣θ̂KNN,97.5%

n+1 − θ̂KNN,2.5%
n+1

∣∣∣ .
Let

lengthBKNN
n+1 and lengthKNN

n+1

be the average lengths of these 100 interval estimates. Our next question
of interest is: Are they too long, too short, or just right? In order to
answer this question, we need a “gold standard”.

The very reason for using these interval estimates is to reflect that
there is uncertainty in our estimate of the underlying parameter, θn+1.
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This uncertainty is easy to assess directly when one can repeatedly gen-
erate different sets of training data and repeatedly estimate the param-
eter, which is exactly what we have done. The standard deviations of
the 100 point estimates (Section 4.1), which we write as

std(θ̂BKNN
n+1 ) and std(θ̂KNN

n+1 ),

give us a direct assessment of this uncertainty.
If the point estimates, θ̂BKNN

n+1 and θ̂KNN
n+1 , are approximately nor-

mally distributed, then the correct lengths of the corresponding interval
estimates should be roughly 4 times the aforementioned standard devi-
ation, that is,

lengthBKNN
n+1 ≈ 4 × std(θ̂BKNN

n+1 ), (9)

lengthKNN
n+1 ≈ 4 × std(θ̂KNN

n+1 ). (10)

We use (9)-(10) as heuristic guidelines to assess how well the interval
estimates can capture model uncertainty, despite lack of formal justi-
fication for the normal approximation. Figure 5 provides a schematic
illustration of our assessment protocol.

Figure 6 plots the average lengths of these 100 interval estimates
against 4 times the standard deviations of the corresponding point esti-
mates — that is, lengthBKNN

n+1 against 4 × std(θ̂BKNN
n+1 ) and lengthKNN

n+1

against 4 × std(θ̂KNN
n+1 ) — for all 160 test points. Here, it is easy to see

that the Bayesian posterior intervals are apparently too short, whereas
bootstrapping regular KNN gives a more accurate and slightly more con-
servative assessment of the amount of uncertainty in the point estimate.

5 Discussion

The results in Section 4 complement the findings of Cucala et al. (2009),
who observe that MCMC based on pseudo-likelihood delivers inferior in-
ferences for K and β. We demonstrate that this problem is also manifest
in intervals for class probabilities, with the intervals being too narrow
and providing coverage below the nominal level.

Why does the pseudo-likelihood approach underestimate uncertainty?
We believe it may be because the model only accounts for the uncertainty
in the number of neighbours (i.e., the parameter K), but it is unable to
account for the uncertainty in the spatial locations of these neighbours.
When the same model (fit via a combination of maximum likelihood
and cross-validation) is bootstrapped, spatial locations are made part of
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Figure 5: Schematic illustration of our assessment protocol. Variation over
100 point estimates is used as a benchmark to assess the quality of the corre-
sponding interval estimates.

the sampling distribution, and resultant inferences seem more plausible.
Perhaps the less tractable correct likelihood (1), by simultaneously con-
sidering all training cases, more accurately captures spatial information.
Superior results for methods that Cucala et al. (2009) characterize as
better approximations of (1) hint that this may be the case.

The inability to assess spatial uncertainty is a general phenomenon
associated with pseudo-likelihood functions. Pseudo-likelihood functions
were first introduced by Besag (1974, 1975) to model spatial interactions
in lattice systems. Since then, they have been widely used in image pro-
cessing (e.g., Besag 1986) and network tomography (e.g., Strauss and
Ikeda 1990; Liang and Yu 2003; Robins et al. 2007). However, statisti-
cal inference based on pseudo-likelihood functions is still in its infancy.
Some researchers argue that pseudo-likelihood inference can be problem-
atic since it ignores at least part of the dependence structure in the data.
In applications to model social networks, a number of researchers, such
as Wasserman and Robins (2005) and Snijders (2002), have pointed out
that maximum pseudo-likelihood estimates are substantially biased and
the standard errors of the parameters are generally underestimated. For
BKNN, the pseudo-likelihood function (2) clearly ignores the fact that
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Figure 6: Average length of 100 interval estimates versus 4 times the standard
deviation of the corresponding point estimate, for all 160 test points. Two
reference lines – both going through the origin, one with slope=1 and another
with slope=1/2 — are also displayed.

the locations of one’s neighbours are also random, not just the number
of neighbours.

One interesting observation from Figure 6 is the fact that

lengthBKNN
n+1 ≈ 2 × std(θ̂BKNN

n+1 ).

If we continue to use 4 × std(θ̂BKNN
n+1 ) as the “gold standard”, then

these Bayesian posterior intervals are about half as long as they should
be. We have observed this phenomenon on other examples, too, but do
not yet have an explanation for it. However, this suggests that it may
be possible to make simple corrections to the standard error estimates
produced by the pseudo-likelihood.

Despite the fact that BKNN seems to underestimate overall uncer-
tainty, that lengthBKNN

n+1 is still approximately proportional to
std(θ̂BKNN

n+1 ) suggests that we can still rely on it to assess the relative
uncertainty of its predictions. For many practical problems, this is still
very useful. For example, if two accounts, A and B, are both predicted
to be fraudulent with a high probability of 0.9 but the posterior inter-
val of A is twice as long as that of B, then it is natural for a financial
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institution to spend its limited resources investigating account B rather
than account A.
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