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1 Introduction

Two continuous random variables X and Z, with respective survival
functions F = 1 − F and G = 1 −G, density functions f and g, the re-
versed hazard rate functions r̃X = f/F , r̃Z = g/G, respectively satisfy
the proportional reversed hazard rate (PRHR) model with the propor-
tionality parameter λ > 0, if r̃X(t) = λr̃Z(t), which is equivalent to the
case F (t) = Gλ(t). This model proposed by Gupta et al (1998) as a dual
of the well–known proportional hazard rate (PHR) model F (t) = G

λ(t).
The class of distributions of the form Gλ(.) is also known as the ex-
ponentiated class of distributions with baseline distribution function G.
In recent years, several standard distributions have been generalized via
exponentiation; for instance see Mudholkar and Hutson (1996), Nassar
and Eissa (2003), Nadarajah (2006) and Gupta and Kundu (2007).

Order statistics and statistics based on them play an important
role in different fields of statistics, especially reliability theory. Let
X1:n ≤X2:n ≤ ...≤Xn:n denote the order statistics of independent and
identically distributed (i.i.d.) random variables X1,X2, ...,Xn with com-
mon distribution function F . It is well known that, the lifetimes of paral-
lel and series systems are correspond to the Xn:n and X1:n, respectively.
However, in practice, systems are often made up of components whose
lifetimes are mutually independent but non-identically distributed. It is
of general interest to study the impact of heterogeneity among compo-
nents on the characteristics of a stochastic system.

There is an extensive literature on stochastic comparisons of order
statistics when the observations follow the exponential distribution with
different hazard rates. Important contributions in this area have been
made by Proschan and Sethuraman (1976), Kochar and Rojo (1996),
Dykstra et al. (1997), Khaledi and Kochar (2000), Kochar and Xu
(2007) and Mao and Hu (2010) among others. This paper, focuses
on stochastic comparisons of the extreme order statistics when under-
lying random variables follow the PRHR model. More precisely, let
X1, . . . ,Xn and Y1, . . . , Yn be two sets of mutually independent ran-
dom variables. Assume that for k ∈ {1, . . . , n}, Yk ∼ Gλk(x) and
Xk ∼ Gλ(x), where λ =

∑n
k=1 λk/n. In Section 3 we show that Y1:n

is less than X1:n whit respect to the likelihood ratio order and disper-
sive order. It is also showed that Yn:n − Y1:n is larger than Xn:n −X1:n,
while Y1:n/Yn:n is less than X1:n/Xn:n, whit respect to the usual stochas-
tic order. Another related topic which has attracted some attention in
the literature is the problem of comparing the relative degree of depen-



Stochastic and Dependence Comparisons Between .... 31

dence between order statistics. Khaledi and Kochar (2005) and Avérous,
et. al (2005) investigated the dependence between (generalized) order
statistics in the case of i.i.d. random variables. Dolati et al. (2008)
used the right tail increasing order to investigate the dependence be-
tween (X1:n,Xn:n) and (Y1:n, Yn:n) in the case of PHR model. Genest et
al. (2009) extended their result to the monotone regression dependence
order. In Section 4, we will show that similar result holds in the case of
PRHR model; that is the pair (X1:n,Xn:n) is more dependent than the
pair (Y1:n, Yn:n) whit respect to the monotone regression dependence or-
der. Some notions of stochastic ordering and dependence ordering which
are necessary for stating the main results are given in Section 2.

2 Preliminaries

Throughout this paper the term increasing (decreasing) is used for mono-
tone nondecreasing (non–increasing). The notation =d, denote the equal-
ity in distribution. We first recall some stochastic orders from Shaked
and Shanthikumar (2007) which will be used in the sequel. Let X and
Y be univariate random variables with the respective survival functions
F = 1 − F and G = 1 − G, density functions f and g, hazard rate
functions rF and rG, and reversed hazard rate functions r̃F and r̃G,
respectively.

Definition 2.1. The random variable X is said to be smaller than
the random variable Y in the
(i) usual stochastic order (denoted by X ≺st Y ) if F (x) ≤ G(x) for all
x;
(ii) hazard rate order (denoted by X ≺hr Y ) if rF (x) ≥ rG(x) for all x;
(iii) reverse hazard rate order (denoted by X ≺rh Y ) if r̃F (x) ≤ r̃G(x)
for all x;
(iv) likelihood ratio order (denoted byX ≺lr Y ) if g(x)/f(x) is increasing
in x;
(v) dispersive order (denoted by X ≺Disp Y ) if F−1(v) − F−1(u) ≤
G−1(v) −G−1(u), for all 0<u<v<1.

It is well known that

X ≺lr Y ⇒ X ≺hr(rh) Y ⇒ X ≺st Y.

To compare the relative degree of dependence between random vari-
ables, we need the notions of dependence ordering including: positive
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quadrant dependence (PQD) order, right-tail increasing (RTI) order,
left-tail decreasing (LTD) order and monotone regression dependence
(MRD) order. By analogy with the univariate notion of stochastic domi-
nance, the pair (S1, T1) is said to be less dependent than the pair (S2, T2),
in PQD ordering, denoted by (S1, T1) ≺PQD (S2, T2), if and only if,

C1(u, v) ≤ C2(u, v), u, v ∈ (0, 1),

where for i = 1, 2, Ci is the copula of (Si, Ti); i.e., the joint distribu-
tion function of the pair (Fi(Si), Gi(Ti)); see, e.g., Nelsen (2006). The
stronger orderings RTI, LTD and MRD are defined in terms of condi-
tional distributions and their (right continuous) inverses as follows. We
refer to Avérous and Dortet-Bernadet (2000) for details. For i = 1, 2,
write HL

i[s](t) = P (Ti ≤ t|Si ≤ s), HR
i[s](t) = P (Ti ≤ t|Si ≥ s) and

Hi[s](t) = P (Ti ≤ t|Si = s). We denote by ζpi = F−1
i (pi) the pth

i quan-
tile of the marginal distribution of Si. Then:

Definition 2.2. The pair (S2, T2) is said to be more dependent than
the pair (S1, T1) in
(i) RTI order, denotes by (T1|S1) ≺ RTI(T2|S2), if and only if, for all
w ∈ (0, 1),

0 < p ≤ q < 1 ⇒ HR
2[ζq] ◦ (HR

2[ζp])
−1(w) ≤ HR

1[ζq] ◦ (HR
1[ζp])

−1(w); (1)

(ii) LTD order, denotes by (T1|S1) ≺ LTD(T2|S2), if and only if, for all
w ∈ (0, 1),

0 < p ≤ q < 1 ⇒ HL
2[ζq] ◦ (HL

2[ζp])
−1(w) ≤ HL

1[ζq] ◦ (HL
1[ζp])

−1(w); (2)

(iii) MRD order, denotes by (T1|S1)≺MRD(T2|S2), if and only if, for all
w ∈ (0, 1),

0 < p ≤ q < 1 ⇒ H2[ζq] ◦H−1
2[ζp](w) ≤ H1[ζq] ◦H−1

1[ζp](w). (3)

The following chain of implications is known from Avérous and Dortet-
Bernadet (2000)

(T1|S1)≺MRD(T2|S2) ⇒ (T1|S1)≺LTD(T2|S2)
(T1|S1)≺RTI(T2|S2)

⇒ (S1, T1)≺PQD(S2, T2),

which in turn implies that

κ(S1, T1) ≤ κ(S2, T2), (4)

where κ(S, T ), represents Spearman’s ρ, Kendall’s τ , Gini’s coefficient,
or indeed any other copula–based measure of concordance satisfying the
axioms of Scarsini (1984).
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3 Stochastic Comparisons

First we state and prove the results of comparisons of smallest order
statistics. Before giving the main result, we recall that

X ≺hr Y ⇒ ψ(X) 	rh ψ(Y ) and X ≺rh Y ⇒ ψ(X) 	hr ψ(Y), (5)

and
X ≺lr Y ⇒ ψ(X) 	lr ψ(Y ), (6)

for all decreasing function ψ. Note also that if X ≺st Y , then

X ≺Disp Y ⇒ ψ(X) 	Disp ψ(Y ), (7)

for all decreasing convex function ψ. For detail see Theorems 1.B.41,
1.C.8 and 3.B.10. in Shaked and Shanthikumar (2007).

Proposition 3.1. Let X1, . . . ,Xn and Y1, . . . , Yn be two sets of mu-
tually independent random variables. Assume that for k ∈ {1, . . . , n},
Yk ∼ Gλk(x) and Xk ∼ Gλ(x) where λ =

∑n
k=1 λk/n. Then

(i) Y1:n ≺lr X1:n;
(ii) Y1:n ≺Disp X1:n if G is of decreasing hazard rate (DHR).

Proof. Let H(t) = −logG(t), t > 0, be the cumulative reversed hazard
rate of G. Denoting by Y ∗

k = H(Yk), we notice that Y ∗
k is exponentially

distributed with hazard rate λk for k = 1, ..., n. Similarly, X∗
k = H(Xk),

is exponentially distributed with hazard rate λ for k = 1, ..., n. Let also
Y ∗

1:n≤ ...≤Y ∗
n:n and X∗

1:n≤ ...≤X∗
n:n be the order statistics corresponding

to the new sets of variables. It is easy to see that

Y ∗
n:n =d H(Y1:n), Y ∗

1:n =d H(Yn:n) (8)

and
X∗

n:n =d H(X1:n), X∗
1:n =d H(Xn:n). (9)

For proof of part (i), it follows from Kochar and Xu (2007), that

X∗
n:n ≺lr Y

∗
n:n,

that is,
H(X1:n) ≺lr H(Y1:n).

Since H−1(t) = G−1(e−t), is decreasing in t, the required result follows
from (6). To establish (ii), from Dykstra et al. (1997) , we know that,

H(X1:n) = X∗
n:n ≺Disp Y

∗
n:n = H(Y1:n).
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The assumption that G has DHR, i.e., G is log concave, implies that
H−1(t) = G−1(e−t) is a decreasing convex function in t. From this fact
and that underlying random variables ordered in the usual stochastic
order, the result follows from (7).

Remark 3.1. For x ≥ 0, the distribution function of Y1:n is given by

FY1:n(x) = 1 −
n∏

k=1

(
1 −Gλk(x)

)
, (10)

with the density function

fY1:n(x) =
n∏

k=1

(
1 −Gλk(x)

) n∑
k=1

λkg(x)Gλk−1(x)
1 −Gλk(x)

, (11)

where g is the density function of G. Similarly, the distribution function
and the density function of X1:n are

FX1:n(x) = 1 − {1 −Gλ(x)}n, (12)

and
fX1:n(x) = nλg(x)Gλ−1(x){1 −Gλ(x)}n−1, (13)

respectively. Notice that the distribution function of X1:n, belongs to
the general family of distributions defined by

F (x) = 1 − {1 −Ga(x)}b, x > 0, a, b > 0,

which is known as the Kumaraswamy’s distribution; see, e.g., Cordeiro
and de Castro (2010).

Using the results of Proposition 3.1 and above remark, we have the
following bounds on the (reversed) hazard rate function and variance of
Y1:n in terms of that of X1:n.

Corollary 3.2. Under the conditions of Proposition 3.1,
(i) the hazard rate rY1:n and the reversed hazard rate r̃Y1:n of Y1:n satisfy

rY1:n(x) ≥ ng(x)λGλ−1(x)

1 −Gλ(x)

and

r̃Y1:n(x) ≤ ng(x)λGλ−1(x){1 −Gλ(x)}n−1

1 − {1 −Gλ(x)}n
;
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(ii) Var(Y1:n) ≤ Var{G−1(1 − U)
1

λ }, where U ∼ F (x) = xn, 0 < x < 1.

Under the weaker condition that if Y ∗
1 , . . . , Y

∗
n are independent expo-

nential random variables with Y ∗
k having hazard rate λk, k = 1, ..., n and

Z1, ..., Z
∗
n is a random sample of size n from an exponential distribution

with common hazard rate λ̃ = (
∏n

k=1 λk)
1
n , the geometric mean of λi’s,

Khaledi and Kochar (2000) proved that

Z∗
n:n ≺hr Y

∗
n:n and Z∗

n:n ≺Disp Y
∗
n:n. (14)

The following proposition which follows from (14) to gather with (5) and
(6), gives the corresponding result for the PRHR model.

Proposition 3.3. Let Z1, . . . , Zn and Y1, . . . , Yn be two sets of mu-
tually independent random variables. Assume that for k ∈ {1, . . . , n},
Yk ∼ Gλk(x) and Zk ∼ Gλ̃(x) where λ̃ = (

∏n
k=1 λk)

1
n . Then

(i) Y1:n ≺rh Z1:n;
(ii) Y1:n ≺Disp Z1:n if G is of decreasing hazard rate (DHR).

The following example shows that above result can not be strength-
ened from the reversed hazard rate order to the likelihood ratio order.

Example 3.1. Let Y1, . . . , Yn be independent random variables with
Yk ∼ Fk(x) = xλk , 0 < x < 1, k = 1, ..., n, and let Z1, ..., Zn be a random
sample from F (x) = xλ̃, 0 < x < 1. Then using (10)–(13), the hazard
rate of Y1:n and Z1:n are given by

rY1:n(x) =
1
x

n∑
k=1

λkx
λk

1 − xλk
,

and

rZ1:n(x) =
1
x

nλ̃xλ̃

1 − xλ̃
.

Let n = 3, λ1 = λ2 = 1 and λ3 = 3, then

rY1:n(0.5) ≈ 4.857 < rZ1:n(0.5) � 5.038;

i.e., Y1:n is not less than Z1:n in hazard rate order and hence in likelihood
ratio order.

Another interesting problem is the comparison of the sample ranges.
This topic followed by Kochar and Rajo (1996) where they showed that
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if Y ∗
1 , . . . , Y

∗
n are independent exponential random variables with Y ∗

k

having hazard rate λk, k = 1, ..., n and X∗
1 , . . . ,X

∗
n is a random sample

of size n from an exponential distribution with common hazard rate λ,
then

X∗
n:n −X∗

1:n ≺st Y
∗
n:n − Y ∗

1:n. (15)

Kochar and Xu (2007) strengthened this result to

X∗
n:n −X∗

1:n ≺rh Y
∗
n:n − Y ∗

1:n. (16)

Recently, Genest et al. (2009) extended above result to the likelihood
ratio order,

X∗
n:n −X∗

1:n ≺lr Y
∗
n:n − Y ∗

1:n. (17)

The following proposition provides a result for the sample ranges and
sample ratios of the PRHR model.

Proposition 3.4. Let X1, . . . ,Xn and Y1, . . . , Yn be two sets of mu-
tually independent random variables. Assume that for k ∈ {1, . . . , n},
Yk ∼ Gλk(x) and Xk ∼ Gλ(x) where λ =

∑n
k=1 λk/n. Then

(i) Xn:n −X1:n ≺st Yn:n − Y1:n;
(ii) Y1:n

Yn:n
≺st

X1:n
Xn:n

,

Proof. Denote by RY = Yn:n − Y1:n and RX = Xn:n − X1:n and let
R∗

Y = Y ∗
n:n − Y ∗

1:n and R∗
X = X∗

n:n −X∗
1:n, be the sample ranges of the

heterogenous and homogenous exponential random variables Y ∗
i ’s and

X∗
i ’s, respectively. Using the transformations (8), we know that

−log
G(Y1:n)
G(Yn:n)

=d R∗
Y , and − log

G(X1:n)
G(Xn:n)

=d R∗
X . (18)

Since for the independent exponential random variables, the sample
range and the smallest order statistics are independent, then one would
get

FRY
(x) = P (Yn:n − Y1:n > x)

=
∫ ∞

x
P (Y1:n ≤ y − x|Yn:n = y)fYn:n(y)dy

=
∫ ∞

x
P

(
RY ∗ ≥ −log

G(y − x)
G(y)

|Y ∗
1:n = −logG(y)

)
fYn:n(y)dy

=
∫ ∞

0
FR∗

Y

(
log

G(x+ t)
G(t)

)
fYn:n(x+ t)dt, (19)
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where
fYn:n(y) = nλg(y)Gnλ−1(y), y > 0.

Similarly, the survival function of RX , for x > 0 is,

FRX
(x) =

∫ ∞

0
FR∗

X

(
log

G(x+ t)
G(t)

)
fXn:n(x+ t)dt. (20)

From (15) we have that FR∗
X

(x) ≤ FR∗
Y
(x) all x > 0. Since fYn:n(y) =

fXn:n(y), the expressions (19) and (20) give the required result FRX
(x) ≤

FRY
(x), which proves part (i). Similarly, part (ii) follows from (15) and

that the survival functions of WY = Y1:n/Yn:n and WX = X1:n/Xn:n,
are given by

FWY
(x) =

∫ ∞

0
FR∗

Y

(
log

G(y)
G(xy)

)
fYn:n(y)dy,

and
FWX

(x) =
∫ ∞

0
FR∗

X

(
log

G(y)
G(xy)

)
fYn:n(y)dy,

respectively, for 0 < x < 1.

Remark 3.2. At this point, whether the statements of the Proposition
3.4 could be established for (reversed) hazard rate order, likelihood ratio
order or dispersive order remain unsolved.

4 Main Results on Dependence Comparisons

Given a random sample X1, ...,Xn, it is easy to see that the smallest
and the largest order statistics satisfy the relation

P
1
n (X1:n>t) + P

1
n (Xn:n≤ t) = 1 for all t.

This observation illustrates a form of dependence between the extreme
order statistics X1:n and Xn:n. Some general results on the dependence
structure of order statistics of a random sample could be found in Boland
et al. (1996), Schmitz (2004), Khaledi & Kochar (2005) and Avérous et
al. (2005). However when the system is consists of independent compo-
nents whose distributions are different, then this dependence structure
is not tractable. A suitable approach for studying such a system is to
compare it with a simpler one having i.i.d. components. Dolati et al.
(2008) proved that

(Y ∗
n:n|Y ∗

1:n) ≺RTI (X∗
n:n|X∗

1:n). (21)
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where Y ∗
1 , ..., Y

∗
n are independent random variables with Y ∗

k following
PHR model Gλk(.), k = 1, ..., n and X∗

1 , ...,X
∗
n is a random sample from

G
λ(.), λ =

∑n
k=1 λk/n. In this section, we consider the above topic in

the case of PRHR model. Before giving the result for PRHR model, we
recall the relation between RTI and LTD order from Colangelo, et al.
(2006). For two pairs (T1, S1) and (T2, S2) we have that

(T1|S1) ≺RTI (T2|S2) ⇒ (ψ(T1)|ψ(S1)) ≺LTD (ψ(T2)|ψ(S2)), (22)

for all decreasing function ψ.
In view of the decreasing transformations defined by (8), it follows

that for the PRHR model the RTI order changes to LTD order. The
following result provides an equivalent characterization of the LTD order
and dispersive ordering of smallest order statistics.

Proposition 4.1. Let X1, . . . ,Xn and Y1, . . . , Yn be two sets of mu-
tually independent random variables. Assume that for k ∈ {1, . . . , n},
Yk ∼ Gλk(.) and Xk ∼ Gλ(.), where λ =

∑n
k=1 λk/n, and G is a contin-

uous distribution function of DHR. Then the followings are equivalent
(i) (Y1:n|Yn:n) ≺LTD (X1:n|Xn:n);
(ii) Y1:n ≺Disp X1:n.

Proof. Using the transformed variables defined by (8) for y >x ≥ 0,
the conditional distribution of Y1:n given Yn:n ≤ y, is

HL
1[y](x) = P (Y1:n ≤ x|Yn:n ≤ y)

=
P (Yn:n ≤ y) − P (x ≤ Yk ≤ y, k = 1, ..., n)

P (Yk ≤ y, k = 1, ..., n)

= 1 − P (−logG(y) ≤ Y ∗
k ≤ −logG(x), k = 1, ..., n)

P (Y ∗
k ≥ −logG(y), k = 1, ..., n)

= 1 −
n∏

k=1

[
1 −

(
G(x)
G(y)

)λk
]

= F Y ∗
n:n

(
log

G(y)
G(x)

)
,

where

F Y ∗
n:n

(x) = 1 −
n∏

k=1

{1 − eλkx},

is the survival function of Y ∗
n:n. If ζp is the pth quantile of the common
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distribution of Xn:n and Yn:n, then for 0 < p ≤ q < 1 and 0 < u < 1,

HL
1[ζq] ◦ (HL

1[ζp])
−1(u) = F Y ∗

n:n

(
F

−1
Y ∗

n:n
(u) + log

G(ζq)
G(ζp)

)
.

Similarly, for HL
2[y](x), the conditional distribution of X1:n given Xn:n ≤

y, we have

HL
2[ζq] ◦ (HL

2[ζp])
−1(u) = FX∗

n:n

(
F

−1
X∗

n:n
(u) + log

G(ζq)
G(ζp)

)
.

According to the definition, (Y1:n|Yn:n) ≺LTD (X1:n|Xn:n) holds, if and
only if,

FX∗
n:n

(
F

−1
X∗

n:n
(u) + c

)
≤ F Y ∗

n:n

(
F

−1
Y ∗

n:n
(u) + c

)
, (23)

for all 0< u <1 and c > 0; that is

X∗
n:n ≺Disp Y

∗
n:n;

see, inequality 3.B.4 in Shaked and Shanthikumar (2007). However,
under the assumption that G is of DHR, from Proposition 3.1 (ii), the
above condition holds if and only if, Y1:n ≺Disp X1:n. This completes the
proof.

The flowing result shows that the LTD order between the smallest
and the largest order statistics may be generalized to the MRD order.

Proposition 4.2. Let X1, . . . ,Xn and Y1, . . . , Yn be two sets of mu-
tually independent random variables. Assume that for k ∈ {1, . . . , n},
Yk ∼ Gλk(.) and Xk ∼ Gλ(.), where λ =

∑n
k=1 λk/n. Then

(Y1:n|Yn:n) ≺MRD (X1:n|Xn:n). (24)

Proof. For y>x ≥ 0, by the same argument as before, the conditional
distribution of Y1:n given Yn:n = y, is given by

H1[y](x) = P (Y1:n ≤ x|Yn:n = y) = FR∗
Y

(
log

G(y)
G(x)

)
.

Let ζp denote the pth quantile of the common distribution of Xn:n and
Yn:n, i.e., Gnλ(x). Therefore, for 0 < u < 1,

H−1
1[ζp](u) = G−1

(
G(ζp)e

−F
−1
R∗

Y
(u)
)
,
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and for 0 < p ≤ q < 1,

H1[ζq] ◦H−1
1[ζp](u) = FR∗

Y

(
F

−1
R∗

Y
(u) + log

G(ζq)
G(ζp)

)
. (25)

Similarly, for H2[y](x), the conditional distribution of X1:n given Xn:n =
y, we have

H2[ζq] ◦H−1
2[ζp](u) = FR∗

X

(
F

−1
R∗

X
(u) + log

G(ζq)
G(ζp)

)
. (26)

Since c = logG(ζq)
G(ζp) > 0, for all 0 < p ≤ q < 1, according to the definition,

one can see that (24) holds if and only if

FR∗
X

(
F

−1
R∗

X
(u) + c

)
≤ FR∗

Y

(
F

−1
R∗

Y
(u) + c

)
, (27)

for all 0 < u < 1 and c > 0. However, in view of condition 3.B.4 in
Shaked and Shanthikumar (2007), the inequality (27) amounts to the
statement that

R∗
X �Disp R

∗
Y , (28)

a fact that was proved in Genest et al. (2009). This completes the proof.

It is of interest to quantify the amount of dependence in the pair
(Y1:n, Yn:n). Note that the pair (Y1:n, Yn:n) is monotone regression de-
pendent, i.e., it is more regression dependence than any pair (S, T ) of
independent continuous random variables. To this end, using (25) one
must show that

H1[ζq] ◦H−1
1[ζp](u) ≤ u,

for all 0<p≤q<1 and u ∈ (0, 1) or equivalently,

FR∗
Y

(
F

−1
R∗

Y
(u) + log

G(ζq)
G(ζp)

)
≤ u,

which is an immediate the fact that ζp ≤ ζq. In the light of Theorem
3.4 of Boland et al. (1996), it follows that κ(Y1:nYn:n) ≥ 0, for any
concordance measure and any heterogenous sample of observations. But
the expression for the measures of concordance such as Kendall’s τ and
Spearman’s ρ associated with the pair (Y1:n, Yn:n), is not algebraically
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closed, in view of the heterogeneity. For instance using (4), as a result
of Proposition 4.2, one would get

τ(Y1:n, Yn:n) ≤ 1
2n − 1

,

as per Theorem 5 in Schmitz (2004).

The following result shows that the degree of dependence between
extreme order statistics of a PRHR model is equal to that of a PHR
model.

Proposition 4.3. Let Y1, . . . , Yn and V1, ..., Vn, be two sets of mutually
independent random variables, with Yk ∼ Gλk(.) and Vk ∼ G

λk(.), k =
1, ..., n, where G is a continuous distribution function and Ḡ = 1 −
G. Then for any copula–based measure of concordance κ, satisfying the
axioms of Scarsini (1984), we have

κ(Y1:n, Yn:n) = κ(V1:n, Vn:n).

Proof. Let H ′(t) = −logG(t), t > 0, be the cumulative hazard rate
of G. Denoting by V ∗

k = H ′(Vk), we notice that V ∗
k is exponentially

distributed with hazard rate λk for k = 1, ..., n. It is easy to see that

H ′(V1:n) =d V ∗
1:n and H ′(Vn:n) =d V ∗

n:n. (29)

Recall from (8) that, under the transformation H(t) = −logG(t),

H(Yn:n) =d V ∗
1:n and H(Y1:n) =d V ∗

n:n.

Now, since H ′(t) is an increasing function and H(t) is a decreasing func-
tion in t, from Theorem 2.2.4 of Nelsen (2006), the pairs (V1:n, Vn:n)
and (V ∗

1:n, Y
∗
n:n) have the same copula structure, while the copula of

(Y1:n, Yn:n) coincides with the copula of (−V ∗
1:n,−V ∗

n:n). The desired
result follows from this fact that for a copula–based measure of concor-
dance κ, satisfying Scarsini’s axioms and any pair of continuous random
variables (T, S), one has κ(T, S) = κ(−T,−S).
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