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Abstract. A large number of results in analysis of algorithms con-
tain fluctuations. A typical result might read “The expected number
of . . . for large n behaves like log2 n + constant + δ(log2 n), where
δ(x) is a periodic function of period one and mean zero.” Examples
include various trie parameters, approximate counting, probabilistic
counting, radix exchange sort, leader election, skip lists, adaptive
sampling. Often, there are huge cancellations to be noted, espe-
cially if one wants to compute variances. In order to see this, one
needs identities for the Fourier coefficients of the periodic functions
involved. There are several methods to derive such identities, which
belong to the realm of modular functions. The most flexible method
seems to be the calculus of residues. In some situations, Mellin trans-
forms help. Often, known identities can be employed. This survey
shows the various techniques by elaborating on the most important
examples from the literature.
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252 Prodinger

1 Introduction

A surprisingly large number of results in analysis of algorithms con-
tain fluctuations. A typical result might read “The expected number
of . . . for large n behaves like log2 n + constant + δ(log2 n), where
δ(x) is a periodic function of period one and mean zero.” Examples
include various trie parameters, approximate counting, probabilis-
tic counting, radix exchange sort, leader election, skip lists, adap-
tive sampling; see the classic books by Flajolet, Knuth, Mahmoud,
Sedgewick, Szpankowki [23, 16, 17, 18, 25] for background.

We use the name δ(x) in a generic sense; in concrete situations
we call them δ0(x), δ1(x), etc. An important set of such functions is

δj(x) :=
1
L

∑
k 6=0

Γ(j − χk)
j!

e2πikx,

where we use the standard abbreviations L = log 2 and χk = 2πik
L .

Figure 1: δ0(x) and δ20(x)

As one can see from the picture, δ0(x) has mean zero (the zeroth
Fourier coefficient is not there). On the other hand, δ20(x) is still
periodic with period 1, but its mean is not zero. Why should we
worry about a quantity apparently as small as ≈ 10−12?

The reason is the variance of such parameters, as it naturally
contains the term “−expectation2,” and as such also −δ2(x). That
might not be a sufficient motivation for a casual reader if it were
not the case that often substantial cancellations occur. In order to
identify them, one has to know more about δ2(x). If one ignores
these terms, one gets wrong results, and the results are not wrong by
≈ 10−12, but by an order of growth! Path length in tries, Patricia
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Periodic Oscillations in the Analysis of Algorithms 253

Figure 2: The functions δj(x) = 1
L

∑
k 6=0

Γ(j−χk)
j! e2πikx grow in am-

plitude

tries, and digital search trees [8, 15, 10] are such cases: the variance
is in reality of order n only, but ignoring the fluctuations would lead
to a (wrong) ≈ n2 result.

Questions like that occurred in several writings of this author
(together with various coauthors), as can be seen from the references.
The techniques are extremely interesting, as one has to dig deep into
classical analysis. So far, it seems that the calculus of residues is
the most versatile approach in this context. Another approach is to
use (modular) identities due to Dedekind, Ramanujan, Jacobi and
others (which can often be proved by Mellin transform techniques);
however, often they do not quite fit. The residue calculus approach
directly addresses the formula that is ultimately needed.

In this survey paper, we discuss all these methods by looking at
various examples. The paper has also a tutorial concern, as we want
to encourage the interested reader to prove his/her own identities
with the methods that are provided.

Oscillating functions are usually given as Fourier series f =∑
k 6=0 ake

2πikx, thus representing a periodic function of period 1, and
since the term a0 is missing, oscillating around zero. We often refer
to the coefficient ak by writing [f ]k.

Other cancellation phenomena concerning oscillations related to
Patricia tries and compositions (resp. words) were only discovered
recently and presented in [22], at analco04 (dedicated to Hosam
Mahmoud).

Here are some examples from the literature.
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254 Prodinger

Approximate counting [5, 11, 20, 21]

After n successive increments the average content Cn of the counter
satisfies:

Cn ∼ log2 n+
γ

L
− α+

1
2
− δ0(log2 n),

with

α =
∑
k≥1

1
2k − 1

and δ0(x) =
1
L

∑
k 6=0

Γ(−χk)e2πikx,

with L = log 2 and χk = 2πik
L . The identity that one needs is

[δ20 ]0 =
1
L2

∑
k 6=0

Γ(χk)Γ(−χk) =
π2

6L2
− 11

12
− 2
L

∑
h≥1

(−1)h−1

h (2h − 1)
. (1)

We will present various proofs of this identity, which will be our
running example, in the next sections. The methods are residue
calculus (Section 2), Mellin transform (Section 3), and identities of
Ramanujan (Section 4).

Maximum of a sample of n geometric random variables
[26, 13]

Assume thatX is a geometric random variable such that P{X = k} =
2−k (for simplicity, we only discuss this case, not the slightly more
general P{X = k} = (1− q)qk−1). We consider n independent trials
and look for their maximum. This is a natural parameter which is
also useful in the analysis of various algorithms (e. g., skiplists [14]).

The expected value is given by

En ∼ log2 n+
γ

L
+

1
2
− δ0 (log2 n)

with the same periodic function as before.

Tries [12, 8, 7]

The expected number of internal nodes in a trie built from n random
data is

ln =
n

L
+ nσ(log2 n) +O(1),

with
σ(x) =

1
L

∑
k 6=0

χkΓ(1− χk)e2πikx.
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Periodic Oscillations in the Analysis of Algorithms 255

The formula that one needs is

[σ2]0 = 3− 1
L
− 1
L2

+
2
L

∑
j≥2

(−1)jj

(j + 1)(j − 1)(2j − 1)
. (2)

Partial match queries in tries [9]

The average cost (defined in the paper [9]), for random tries con-
structed from n random data, is

ln =
√
n
(√

π
1 +

√
2

2L
+ τ

(
log2

√
n

))
+O(1),

where the fluctuating function τ(x) =
∑

k 6=0 τke
2kπix has the Fourier

coefficients

τk =
1

2L

(
1 +

√
2(−1)k

)
Γ
(−1− χk

2

)(−1 + χk

2

)
.

The formula one needs is

[τ2]0 =
3

4L
− π

4L2

(
3 + 2

√
2

)
+

3− 2
√

2
L

F (L) +
2
√

2
L

F
(L

2

)
(3)

with

F (x) =
∑
k≥1

e−kx

1 + e−2kx
.

2 Proofs by residue calculus

In this section we will show how to use residue calculus in order
to prove the relevant identities. As examples of the technique, we
concentrate on the identities (1), (2), and (4). However, after going
through these representative examples, the reader will surely be able
to prove his/her own identities, following the technique.

The following approach (“residue calculus”) to evaluate [δ2]0 seems
to be the easiest and most flexible. We start with the following ex-
ample:

δ0(x) =
1
L

∑
k 6=0

Γ(−χk)e2πikx.
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256 Prodinger

Figure 3: Path of integration; poles at χk are indicated, the double
pole at 0 by a double circle

Find a function F (z) so that [δ20 ]0 is (apart from a few extra terms)
the sum of the residues along the imaginary axis. Here, take

F (z) =
L

eLz − 1
Γ(−z)Γ(z).

If we set

I1 =
1

2πi

∫ 1
2
+i∞

1
2
−i∞

F (z)dz,

then by shifting and collecting residues,

I1 =
1

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

F (z)dz +
∑
k 6=0

Γ(−χk)Γ(χk)−
π2

6
− L2

12
.

What happens here is often called closing the box, compare Fig-
ure 3, see e. g. [25, 18]. One integrates along a rectangle with corners
±1

2 ± iM . One can evaluate it by collecting the residues inside the
rectangle. And one can let the parameter M go to infinity. In this
type of problems, the integrals along the horizontal lines disappear,
and we can express one integral along a vertical line by an integral
along another vertical line, plus a few residues. The justification that
these integrals along the horizontal lines disappear comes from the
fact that the Gamma function (which is always present in our ex-
amples) becames small extremely fast for large imaginary parts, see
[27]. Since all our examples are of that nature, we will perform the
relevant operations without further comments.
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Periodic Oscillations in the Analysis of Algorithms 257

The emphasis of this survey is to prove identities, and this is to
some extent a more algebraic than analytic endeavour.—

Now one writes

1
ez − 1

= −1− 1
e−z − 1

and gets, by a simple change of variable z := −z,

I1 = − 1
2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(−z)Γ(z)dz− I1 +
∑
k 6=0

Γ(−χk)Γ(χk)−
π2

6
− L2

12
.

The integral

I2 = − 1
2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(−z)Γ(z)dz

can be computed by collecting the negative residues right to the line
<z = −1

2 , viz.

I2 = − 1
2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(−z)Γ(z)dz =
∑
l≥1

(−1)l

l!
(l − 1)! = −L.

Altogether we have

2I1 = −L+
∑
k 6=0

Γ(−χk)Γ(χk)−
π2

6
− L2

12
.

On the other hand, integral I1 is also the sum of the negative residues
right of the line <z = 1

2 , i. e.,

I1 = −L
∑
l≥1

(−1)l

l!(2l − 1)
(l − 1)! = −L

∑
l≥1

(−1)l

l(2l − 1)
.

Combining these results, we get

−2L
∑
l≥1

(−1)l

l(2l − 1)
= −L+

∑
k 6=0

Γ(−χk)Γ(χk)−
π2

6
− L2

12
.

This is the identity we wanted.
With not much more effort one can also compute the coefficients

[δ20 ]k, for k 6= 0. For this, one works with the function

F (z) =
L

eLz − 1
Γ(−z − χk)Γ(z).

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:2

0 
+

03
30

 o
n 

T
ue

sd
ay

 D
ec

em
be

r 
11

th
 2

01
8

http://jirss.irstat.ir/article-1-112-en.html


258 Prodinger

One obtains

[δ20 ]k =
1
L2

∑
j 6=0, 6=k

Γ(−χj)Γ(−χk + χj)

=
2
L

∑
l≥1

(−1)lΓ(−χk + l)
l!(2l − 1)

+
2
L2

Γ(−χk)
(
ψ(−χk) + γ

)
.

We omit the details.
Guy Louchard, who is interested in higher moments, asked to

compute the coefficients [δ30 ]k. Here is the instance k = 0, the general
case is very involved and not too attractive:

[δ30 ]0 = −1− 2ζ(3)
L3

− 1
L

∑
l≥1

(−1)l

l(2l − 1)
+

6
L2

∑
l≥1

(−1)lHl−1

l(2l − 1)
+

2 log 3
L

+
2
L

∑
l,j≥1

(−1)l+j

(l + j)(2l − 1)

[
1

2j − 1
+

1
2j+l − 1

](
l + j

j

)
.

(In this formula, the harmonic numbers Hn :=
∑

1≤k≤n
1
k appear.)

This has been tested numerically as well and gives
9.42817763095796606421903× 10−25.

Let us straight ahead do another example (identity (2)), which
also occurs often:

σ(x) =
1
L

∑
k 6=0

χkΓ(−1− χk)e2πikx.

Here, we take

F (z) = − L

eLz − 1
z2Γ(−1− z)Γ(−1 + z).

Then

I1 =
1

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

F (z)dz +
∑
k 6=0

χk(−χk)Γ(−1− χk)Γ(−1 + χk) + 1

and
2I1 = LI2 +

∑
k 6=0

χk(−χk)Γ(−1− χk)Γ(−1 + χk) + 1

with

I2 =
1

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

z2Γ(−1− z)Γ(−1 + z)dz
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Periodic Oscillations in the Analysis of Algorithms 259

=
∑
l≥2

l2
(−1)l+1

(l + 1)!
(l − 2)! +

L

4

=
∑
l≥2

(−1)l+1l

(l + 1)(l − 1)
= −L+

1
4

+
1
4

= −L+
1
2
.

Therefore

2I1 = −L2 +
L

2
+

∑
k 6=0

χk(−χk)Γ(−1− χk)Γ(−1 + χk) + 1.

But I1 is also

I1 = −L
4

+ L2 + L
∑
l≥2

l2

2l − 1
(−1)l+1

(l + 1)!
(l − 2)!

= −L
4

+ L2 + L
∑
l≥2

(−1)l+1l

(2l − 1)(l + 1)(l − 1)
.

Putting things together, we find

2I1 = −L2 +
L

2
+

∑
k 6=0

χk(−χk)Γ(−1− χk)Γ(−1 + χk)

= −L
2

+ 2L2 + 2L
∑
l≥2

(−1)l+1l

(2l − 1)(l + 1)(l − 1)
+ 1,

or ∑
k 6=0

χk(−χk)Γ(−1− χk)Γ(−1 + χk)

= −1− L+ 3L2 + 2L
∑
l≥2

(−1)l+1l

(2l − 1)(l + 1)(l − 1)
,

which is the identity in question, as it expresses the quantity L2[σ2]0
in two different ways.

Here is a third example, dealing with the function

1
L

∑
k 6=0

Γ(j − χk)e2πikx,
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260 Prodinger

for j ≥ 1, and the computation of the constant term of its square.
The technique should be familiar by now. Consider the function

L
Γ(j + z)Γ(j − z)

eLz − 1
.

Therefore we have∑
k 6=0

Γ(j + χk)Γ(j − χk) =
L

2πi

∫ 1
2
+i∞

1
2
−i∞

Γ(j + z)Γ(j − z)
eLz − 1

dz

− L

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(j + z)Γ(j − z)
eLz − 1

dz − Γ(j)2.

(Γ(j)2 is the residue at z = 0.)
Now we use again the decomposition

1
eLz − 1

= −1− 1
e−Lz − 1

for the second integral and get

− L

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(j + z)Γ(j − z)
eLz − 1

dz

=
L

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(j + z)Γ(j − z)dz

+
L

2πi

∫ − 1
2
+i∞

− 1
2
−i∞

Γ(j + z)Γ(j − z)
e−Lz − 1

dz

=
L

2πi

∫ i∞

−i∞
Γ(j + z)Γ(j − z)dz

+
L

2πi

∫ 1
2
+i∞

1
2
−i∞

Γ(j − z)Γ(j + z)
eLz − 1

dz.

Therefore∑
k 6=0

∣∣Γ(j + χk)
∣∣2

=
2L
2πi

∫ 1
2
+i∞

1
2
−i∞

Γ(j + z)Γ(j − z)
eLz − 1

dz

+
L

2πi

∫ i∞

−i∞
Γ(j + z)Γ(j − z)dz − Γ(j)2
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= I1 + I2 − Γ(j)2.

Integral I1 is evaluated by shifting the contour to the right and col-
lecting the negative residues, which gives

I1 = −2L
∑
m≥j

Γ(j +m)
eLm − 1

(−1)j−m+1

(m− j)!

and with m = h+ j

= 2L
∑
h≥0

(h+ 2j − 1)!(−1)h

h!
1

2h+j − 1

= 2L(2j − 1)!
∑
h≥0

(
−2j
h

)
1

2h+j − 1
.

Integral I2 is of interest for itself and appears already in early ref-
erences to the Mellin transform technique as by Nielsen [19, p. 224].
(It could, however, by computed as in the previous examples.)

We start with the function

f(x) =
xj

(1 + x)2j

and perform its Mellin transform (see, e.g., [6] for definitions)

f∗(s) =
∫ ∞

0
f(x)xs−1dx = B(j + s, j − s) =

Γ(j + s)Γ(j − s)
Γ(2j)

with the Beta function B(z, w) (compare [1]). The fundamental strip
is 〈−j, j〉. Therefore the inversion formula for the Mellin transform
gives

f(x) =
1

2πi

∫ i∞

−i∞

Γ(j + s)Γ(j − s)
Γ(2j)

x−sds.

Now we may evaluate at x = 1 and get the formula

1
2πi

∫ i∞

−i∞
Γ(j + s)Γ(j − s)ds = Γ(2j)2−2j .

This produces the formula∑
k 6=0

Γ(j + χk)Γ(j − χk)

D
ow

nl
oa

de
d 

fr
om

 ji
rs

s.
irs

ta
t.i

r 
at

 4
:2

0 
+

03
30

 o
n 

T
ue

sd
ay

 D
ec

em
be

r 
11

th
 2

01
8

http://jirss.irstat.ir/article-1-112-en.html


262 Prodinger

= 2L(2j − 1)!
∑
h≥0

(
−2j
h

)
1

2h+j − 1
+ L(2j − 1)!2−2j − (j − 1)!2.

(4)

This formula was essential in the paper [13].

Remark. The computation of the integral I2 (as in the examples
above) sometimes leads to series like∑

l≥1

(−1)ll.

There is nothing wrong here. The correct interpretation is as an Abel
limit

lim
t→1−

∑
l≥1

(−1)lltl = lim
t→1−

−t
(1 + t)2

= −1
4
.

3 Using the Mellin transform to prove iden-
tities

Let us start with our running example (1) and show how this can
be proved using the Mellin transform. The Mellin transform is very
prominent in the analysis of algorithms, and we refer to [6] for a nice
survey.

We will treat again our identity (1) and might for instance start
with the series ∑

h≥1

(−1)h−1

h (2h − 1)

and interpret it as g(log 2) with

g(x) :=
∑
h≥1

(−1)h−1

h (ehx − 1)
=

∑
h,k≥1

(−1)h−1

h
e−hkx.

Now one computes the Mellin transform g∗(s):

g∗(s) =
∑

h,k≥1

(−1)h−1

h
e−hkx =

∑
h,k≥1

(−1)h−1

h
h−sk−sΓ(s)

= (1− 2−s)ζ(s+ 1)ζ(s)Γ(s).
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The Mellin transform exists in the fundamental strip 〈1,∞〉; whence
we can invoke the inversion formula for the Mellin transform. We
may choose e. g. the line <z = 3

2 since 3
2 lies in the fundamental

strip. So we get

g(x) =
1

2πi

∫ 3
2
+i∞

3
2
−i∞

(1− 2−s)ζ(s+ 1)ζ(s)Γ(s)x−sds

=
π2

12x
− L

2
+

x

24
+

1
2πi

∫ − 3
2
+i∞

− 3
2
−i∞

(1− 2−s)ζ(s+ 1)ζ(s)Γ(s)x−sds

=
π2

12x
− L

2
+

x

24

+
1

2πi

− 3
2
+i∞∫

− 3
2
−i∞

(2s − 1)ζ(s+ 1)ζ(s)
1

2
√
π

Γ
(s

2

)
Γ
(s+ 1

2

)
x−sds.

This form was obtained by taking 3 residues out and invoking the
duplication formula of the Γ-function. (Observe that the exponential
smallness of the Γ-function along vertical lines justifies the shifting
of the line integral.) We now use the functional equation for ζ(s),
namely

Γ
(s

2

)
ζ(s) = πs− 1

2 Γ
(1− s

2

)
ζ(1− s), (5)

and continue:

g(x) =
π2

12x
− L

2
+

x

24

+
1

2πi

− 3
2
+i∞∫

− 3
2
−i∞

(2s − 1)
1
2
π2s− 1

2 Γ
(1− s

2

)
ζ(1− s)Γ

(−s
2

)
ζ(−s)x−sds

=
π2

12x
− L

2
+

x

24

+
1

2πi

∫ 3
2
+i∞

3
2
−i∞

(2−s − 1)
1
2
π−2s− 1

2 Γ
(1 + s

2

)
ζ(1 + s)Γ

(s
2

)
ζ(s)xsds

=
π2

12x
− L

2
+

x

24

− 1
2πi

∫ 3
2
+i∞

3
2
−i∞

(1− 2−s)π−2sζ(1 + s)ζ(s)Γ(s)xs2−sds,
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264 Prodinger

and so

g(x) =
π2

12x
− L

2
+

x

24
− g

(2π2

x

)
. (6)

This is the formula we need, since we can also rewrite the left side of
(1) in terms of this g(x) function:

[δ20 ]0 =
1
L2

∑
k 6=0

Γ(χk)Γ(−χk)

=
1
L

∑
k≥1

1
k sinh(2kπ2/L)

=
2
L

∑
k≥1

ekz

k(e2kz − 1)
,

with z = 2π2/L. But∑
k≥1

ekz

k(e2kz − 1)
=

∑
k≥1, j≥0

1
k
e−k(2j+1)z

=
∑

k≥1, j≥1

1
k
e−kjz − 2

∑
k≥1, j≥1

1
2k
e−2kjz

=
∑

k≥1, j≥1

(−1)k−1

k
e−kjz =

∑
k≥1

(−1)k−1

k(ekz − 1)
= g(z),

and so

[δ20 ]0 =
2
L
g
(2π2

L

)
.

Let us do a more complicated example in the same style: We want
to rewrite [τ2]0, to get identity (3). Note that

[τ2]0 = 2
∑
k≥1

τkτ−k =
2

4L2

∑
k≥1

(
3 + 2

√
2(−1)k

)
Γ
(1− χk

2

)
Γ
(1 + χk

2

)
.

Now we use the formula (equivalent to the reflection formula for the
Gamma function, cf. [1]) Γ(z)Γ(1− z) = π/ sinπz and obtain

Γ
(1− χk

2

)
Γ
(1 + χk

2

)
=

π

sin(π/2 + ikπ2/L)
=

π

cos(ikπ2/L)

=
π

cosh(kπ2/L)
= 2π

e−kπ2/L

1 + e−2kπ2/L
,

so that

[τ2]0 =
π

L2

∑
k≥1

(
3 + 2

√
2(−1)k

) e−kπ2/L

1 + e−2kπ2/L
. (7)
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Let us define two new functions

F (x) =
∑
k≥1

e−kx

1 + e−2kx
and G(x) =

∑
k≥1

(−1)k−1e−kx

1 + e−2kx
.

Then, (7) in terms of F (x) and G(x) becomes

[τ2]0 =
3π
L2
F

(π2

L

)
− 2

√
2π

L2
G

(π2

L

)
. (8)

We use a series transformation for F (x) and G(x). We start with

F (x) =
∑
j≥0

(−1)j
∑
k≥1

e−k(2j+1)x =
∑
j≥0

χ(j)
1

ejx − 1

where

χ(j) =


0, for j even;
1, for j ≡ 1 mod 4;
−1, for j ≡ 3 mod 4.

Once we know that

F (x) =
π

4x
− 1

4
+
π

x
F

(π2

x

)
, (9)

for x > 0, as we shall show soon, then G(x) = F (x)− 2F (2x), hence

G(x) =
1
4

+
π

x
F

(π2

x

)
− π

x
F

(π2

2x

)
.

Applying the above to (8) we finally obtain

[τ2]0 =
3

4L
− π

4L2

(
3 + 2

√
2

)
+

3− 2
√

2
L

F (L) +
2
√

2
L

F
(L

2

)
.

To prove (9) we proceed as follows. Let

β(s) =
∑
j≥0

(−1)j 1
(2j + 1)s

.

We have

F (x) =
∑
k≥1

e−kx

1 + e−2kx
=

∑
j≥0

(−1)j
∑
k≥1

e−k(2j+1)x,
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so that the Mellin transform F ∗(s) =
∫∞
0 F (x)xs−1dx of F (x) be-

comes F ∗(s) = Γ(s)ζ(s)β(s). By the Mellin inversion formula this
yields

F (x) =
1

2πi

∫ 3
2
+i∞

3
2
−i∞

Γ(s)ζ(s)β(s)x−sds.

Now we take the two residues s = 1 and s = 0 out from the above
integral (observe that β(0) = 1/2 and β(1) = π/4, cf. [1]) and apply
the duplication formula for Γ(s) to obtain

F (x) =
π

4x
−1

4
+

1
2πi

∫ − 1
2
+i∞

− 1
2
−i∞

1√
π

2s−1Γ
(s

2

)
Γ
(s+ 1

2

)
x−sζ(s)β(s)ds.

We now use the functional equations for ζ(s) and β(s), namely

Γ
(s

2

)
ζ(s) = πs− 1

2 Γ
(1− s

2

)
ζ(1− s)

and

β(1− s)Γ
(
1− s

2

)
= 22s−1π−s+ 1

2 Γ
(s+ 1

2

)
β(s).

The first identity is Riemann’s functional equation for ζ(s), and the
second is an immediate consequence of the functional equation for
Hurwitz’s ζ-function ζ(s, a) (cf. [2]), and the fact that

β(s) = 4−s
[
ζ
(
s, 1

4

)
− ζ

(
s, 3

4

)]
.

Substituting 1− s = u, we get

F (x) =
π

4x
− 1

4
+

1
2πi

∫ 3
2
+i∞

3
2
−i∞

π1−2uΓ(u)xu−1ζ(u)β(u)du,

which proves (9).
Using the above scheme, several other identities which one needs

in the analysis of algorithms can be proved. We refer to Szpankowski’s
book [25].

4 Modular identities

Formulæ like (6) belong to the realm of modular functions. Many of
them can be found in the literature, and are due to Jacobi, Dedekind,
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Ramanujan and others. Berndt’s book [4] contains a wealth of infor-
mation about the subject, compare also [3].

Here is a little bit of background: Let H be the upper complex
halfplane {z ∈ C | =z > 0}. Then the Dedekind η function is defined
by

η(τ) = eπiτ/12
∏
n≥1

(
1− e2πinτ

)
, τ ∈ H;

there is a transformation formula:

η
(
−1
τ

)
= (−iτ)1/2η(τ).

C. L. Siegel [24] gave an elegant proof of this transformation for-
mula using residue calculus.

Ramanujan considered series

f(z) :=
∑
k≥1

km

e2kz − 1
, m an odd integer,

and could relate them to f(π2/z). For the reader’s convenience, we
give these formulæ here:

Set m = 2N + 1 and N ∈ N, α, β > 0, and αβ = π2, then

α−N

{
1
2
ζ(2N + 1) +

∑
k≥1

k−2N−1

e2αk − 1

}

= (−β)−N

{
1
2
ζ(2N + 1) +

∑
k≥1

k−2N−1

e2βk − 1

}

− 22N
N+1∑
k=0

(−1)k B2k

(2k)!
B2N+2−2k

(2N + 2− 2k)!
αN+1−kβk

(this covers the exponents −3,−5, . . . ); the Bk’s are the Bernoulli
numbers. Then∑

k≥1

1
k(e2αk − 1)

− 1
4

logα+
α

12
=

∑
k≥1

1
k(e2βk − 1)

− 1
4

log β +
β

12
,

which covers the exponent −1. Furthermore,

α
∑
k≥1

k

e2αk − 1
+ β

∑
k≥1

k

e2βk − 1
=
α+ β

24
− 1

4
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which covers the exponent 1, and finally for N ≥ 2,

αN
∑
k≥1

k2N−1

e2αk − 1
− (−β)N

∑
k≥1

k2N−1

e2βk − 1
=

(
αN − (−β)N

)B2N

4N
,

which covers the exponents 3, 5, . . . .
The instance m = −1 is equivalent to the functional equation for

Dedekind’s eta function.
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