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Abstract. This paper deals with the amount of disorder that is left
in a permutation after one of its elements has been selected with
quickselect with or without median-of-three pivoting. Five measures
of disorder are considered: inversions, cycles of length less than or
equal to some m, cycles of any length, expected cycle length, and
the distance to the identity permutation. “Grand averages” for each
measure of disorder for a permutation after one of its elements has
been selected with quickselect, where 1,2,...,n are the elements be-
ing permuted, are computed, as well as more specific results.

*Supported by NRF Grant 2053748.

I would like to dedicate this work to E. Sexauer, Neue Arbeit gGmbH. It
would not have been possible without his support.

Received: October 2003, Revised: April 2004

Key words and phrases: Cycles, disorder, inversions, permutations, quickse-
lect.


http://jirss.irstat.ir/article-1-111-en.html

Downloaded from jirss.irstat.ir at 3:42 +0330 on Tuesday December 11th 2018

220 Panholzer et al.

1 Introduction

Quickselect (sometimes called Hoare’s FIND algorithm) is an algo-
rithm that has been extensively studied and uses the principle be-
hind the quicksort algorithm to select one or more elements from a
permutation [4, 5, 7, 11]. The goal is to select an order statistic from
a permutation. The algorithm selects a pivot (this is either the first
element or the median of the first three elements in quickselect with
median-of-three pivoting) and splits the data into those elements that
are less than the pivot, those that are equal to the pivot and those
that are larger than the pivot. If the pivot is the statistic that we
wish to find, the algorithm halts. Otherwise it recursively selects the
desired order statistic from those elements that are less than, or those
that are larger than the pivot.

This paper treats the following question. What amount of dis-
order is left in a permutation after one of its elements has been se-
lected with quickselect or quickselect with median-of-three pivoting?
It seems clear that there should be less disorder than in a random
permutation. Those elements that were pivots are in place, and the
others are closer to their home position than before quickselect was
applied to the permutation. We consider five measures of disorder,
that seem to give a good impression of “what happens in the algo-
rithm”:

e Inversions. Two elements of a permutation such that the one
at the lower position is larger than the one a the higher position
constitute an inversion. The fewer inversions, the more ordered
the permutation.

e Cycles of length less than or equal to some m. The
value m = 1 is of particular interest, because it counts the
number of fixed points. The more cycles, the more ordered the
permutation.

e Cycles of any length. This is like the previous item, except
that now all cycles are counted. Once again, the more cycles,
the more ordered the permutation.

e Expected cycle length. Pick a random element of a random
permutation. It belongs to a cycle of some length k. We study
the expected value of k. This parameter should decrease after
processing by quickselect.
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e Distance to the identity permutation. Sum the absolute
value of the distance of each element to its correct position,
taken to some power p. We treat the case p = 2. The smaller
the distance, the more ordered the permutation.

The goal of this paper is to compute the “grand average” for
each measure of disorder for a permutation after one of its elements
has been selected with quickselect, where 1,2,...,n are the elements
being permuted. More specific results are obtained in the process
of computing these “grand averages.” The exact definitions of these
measures follow in Section 2 resp. in the references given there.

2 Random permutations

As probability model, we always use the random permutation model,
which means that all n! permutations of {1,2,...,n} are assumed to
appear equally likely as input data for the quickselect algorithm. In
order to compute the expected disorder (given by one of our measures
considered) after quickselect has been performed, we have to compute
first the expected value of each measure for random permutations of n
elements, because these expectations enter the computations, as will
become clear later. Then we can compare the value of this quantity
with the corresponding one after quickselect has been performed; this
will be summarized in Section 7. For the computations of the variance
as done in Section 6 we also need the second factorial moments for
these measures.

The random variable R,, will count—according to the measure
of disorder—either the number of inversions, the number of cycles
of length less than or equal to some m, the number of cycles of any
length, the expected cycle length, or the distance to the identity per-
mutation of a random permutation of length n.

Let r,(v) be the probability generating function of R,, i. e.,

ra(v) =Y P{R, = k}v*. (1)

k>0

For convenience, we define 7o(v) = 1. We further define the bivariate
generating function

R(z,0) = ra(v)2", (2)

n>0
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and since it always holds that r,(1) = 1, we have R(z,1) = =-. Us-
ing these functions, the expectation and the second factorial moment
of R, is given via E(X,) = r,,(1) resp. E(X, (X, — 1)) = r}/(1) and
their generating functions via 3, -0 E(Xy)2" = %R(Z’U)‘vzl resp.
oo E(Xn(Xy — 1))2" = L5 R(2,0)| _,.

In order to extract coefficients, we will use the following identities
(see e. g. [3]):

[zn}(li)mﬂ tog - ! )= (” ;m> (Huim = Hn),  (3)
"}(1_;%11%2 (1:7)

_ (” + m> ((Hn+m — Hp)? - (HP,, - H,(,f))) :

m

[z

(4)

where H,, := >_; 1 resp. a? = > h_i 7z denote the first resp.
second order harmonic numbers. Throughout this paper, ‘log’ al-
ways denotes the natural logarithm. For our asymptotic study of the
respective parameters we will require the following expansions:

1 1 1
anlogn#—w—l-f—i%—(’)(—) and

2n  12n? n4
21 1 1
H(Q):i_f (9(7)
" 6 t o 2n? + n3

2.1 Measures for random permutations

We now list r,(v) resp. R(z,v) for the five measures under consider-
ation.

e Inversions. Here R, measures the number of inversions of a
random permutation. Since it holds for a random permutation
that the number of inversions of element £ is, independently of
the other elements, either 0,1, ...,n — k with equal probability
(see e. g. [1]), we obtain the following formulae for r,(v) resp.

R(z,v):
1 n nfkl 1n71 k l 1 1—v
= I = I = T

k=1 1=0 k=0 i=0 " k=0
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R(z,v) = ZTn(v)z” = Z M

' . M
= = nl(l — o)

where we used the notation (z;¢q), := (1 —z)(1 —zq)--- (1 —

g™ 1). The following relations
nn—1 nn—1)(n—2)(9n + 13
B(r,) = " E(R(r, 1) = MO DO D)
(5)
9] 1, P
%R(Z,U) - = ZZ ;n(n 1)2’ = 5@,
0? 23(10 — 2)
a2 =) =y
hold.

e Cycles of length less than or equal to some m. Here R,
measures the number of cycles of length < m for m > 1, and
one can use the decomposition of permutations into cycles to
translate this combinatorial decomposition into the following
equation for the bivariate generating function R(z,v) (see e. g.

11, p. 353f)):
U 1 T 2k
R(z,v)zexp(@Zk—i-Z k) = 1_Zexp<(v—1)2),
k=1 k=m+1 k=1
and thus
3
) R e
R = 2 3 6
SRG| it ©

We therefore obtain

" 2 m H, for n >m
E(R) = S (24 2 4o p ) = { = m,
(Ryp) [z]<z+2+ + > {

o H,, for n < m.

(7)

We note the special instance m = 1 (counting fixed points),
which gives

0
%R<Z,’U)

v=1
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Here one gets

E(R,) =1, for n>1, and E(R,(R,—1)) =1, for n>2.
(9)
Cycles of any length. Now R, measures the number of cy-

cles of any length in a random permutation. The generating
function R(z,v) can be found e. g. in [11, p. 351]:

1
R(Z,U) = m
This immediately gives

0 1 1

il - 1

(%R(z,v) ey 11—z 1

i 1 1)\?
i - 1
81}2R(Z’v) N 1—z<0g1—z> ’

and further

E(R,) = H, and E(R.(R,—1))=H2-H®Y. (10)

Expected cycle length. Here R, measures the expected
length of a cycle in a random permutation. In order to treat
this parameter via generating functions, it is easier to consider
the random variable “cycle length sum” R,, := nR,, of a random
permutation and the probability generating function

(V) == ZP{Rn = k}vk.

k>0

Since every cycle of length equal to k gives exactly k? as con-
tribution to the cycle length sum, we obtain for the bivariate
generating function R(z,v) := ), <, 7n(v)2z" the equation

k
R(z,v) = I,
(z,v) = exp (ZU . >
This leads to

9 -
%R(z,v) =—— and —5R(z0)
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Extracting coefficients gives

E(R,) = (n;1> and E(Rn(}?n—l)):7<”z2)’

which leads finally to

- 41 TN
(12)

e Distance to the identity permutation. Now 2, ;, measures
the distance to the identity permutation, where we define for
p > 1 the distance d,(m) for a permutation mm...m, € S, of

size n by
dp(m) = |k — milP. (13)
k=1
We have .
B(Rup) =~ > [k—al (14a)
1<k, a<n
and
B =L Y P S kaPliobp.
P n(n —1)
1<k,a<n 1<k,l,a,b<n
- k#l,a7#b
(14b)

These formulee can be obtained by averaging equation (13):

E(Rup) = 3 dplm) = 0 3 3 k= mil?

TESn " wES, k=1
I = 1
=20 > k—aP=— Y Jk—aP
n! n
k=1a=17w€S,,mr=a 1<k,a<n

and

B(R2,) = 3 &)

TESRK
1 n
— S (ShemP e S k- ap)
n mESy k=1 1<k,i<n

k#
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D MR R DD DR L

1<k,a<n T 1<k,<n = 7wE€Sp
- - k#l T=a,m=b

1 1
S k—al®+ ——— k—alP|l — bJP.
D S D L

1<k, a<n 1<k,l,a,b<n
- = k#l,a#b

3

We denote by 7, ,(v) the probability generating function of the
random variable R,, ,, and obtain from (14a)

n—1
E(Rnp) = hp(1) = = K (n— ). (15)
k=1

Recall that the sums appearing can be expressed with the
Bernoulli polynomials By(n) (see e. g. [2]):

z”: kP = L(Bp+1(n) — By11(0)).

o p+1

Throughout this paper, we restrict ourselves to the parameter
p =2 (thus R, := Ry, 2 and r,,(v) := ryp2(v)), which gives

E(Rn):%n(n—l)(n+l) and E(R2) = —nd(n—1)(n+1)2.

~ 36"
(16)
We also get

0 n+1 P

5 (z,v) . nz>0< 5 >z L an

2 2(r.3 2
iR(z,v) _ 27 (527 + 13z +39z +3)
ov? vt 3(1—2)7

3 Recurrence relations

Next we will study the random variables @, ; that measure the disor-
der (measured by one of the five parameters considered in this paper)
of the resulting permutation after the element j has been selected
from a random permutation of size n via quickselect (1 < j <mn). We
introduce by

Gnj(v) = ) _P{Qn,; = k}o* (17)

k>0
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the probability generating function of @, ;. In the instance where
the expected cycle length is considered, it is advantageous for a gen-
erating functions approach to introduce the random variable anj =
nQn,; and the probability generating function ¢, ; := > P{Qn,j =
kYok,

3.1 Ordinary quickselect algorithm

We will now translate the recursive nature of the quickselect algo-
rithm into a recurrence for the functions g, ;(v). The probability
that p with 1 < p < n is chosen as pivot element in the partitioning
phase is %, independently of p. Since after the partitioning phase, p is
at its correct position, the contribution of p to the measures inversions
and distance to the identity permutation is 0, but its contribution is
1 to the measures fixed points and cycles, and it also contributes 1 to
the sum of the cycle lengths. Distinguishing for 1 <j<nandn >1
the cases j = p, j < p and j > p, we immediately get the following
recurrences.

e Inversions and distance to the identity permutation:

141 1
Gn,j(v) = —~ D -1 (0)an—p,j—p(v) + -1 ()5 (v)
=1

n

1 .
+ - ZH Qp—1,j(V)rn—p(v), with g11(v) =1. (18a)
p=j

¢ Fixed points and cycles:

j—1
v v
n,j(v) = - er,l(v)qn,p,j,p(v) + Erjfl(v)rnfj(v)
p=1
v n
T Z;rqu—Lj(U)rn—p('U)a with qi1(v) =v.  (18b)
p=j

¢ Expected cycle length:

1

<.
|

n,; (v) = pfl(v)gnfp,jfp(v) + n

I\

p

= L

1) ~ fod . ~
+ n Z;rl Gp—1,;(V)Tn_p(v), with Gi1(v) =v. (18c¢)
p=j
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3.2 Quickselect with median-of-three pivoting

The only difference to ordinary quickselect is, that for n > 3, the
probability of p being selected as the pivot element is (g)_l(p -
1)(n — p). Furthermore we assume, that for small subfiles n < 2, the
ordinary quickselect algorithm is applied to get the required order
statistic. This leads for 1 < j < n and n > 3, again by distinguishing
the position p relative to j, to the following recurrences.

e Inversions and distance to the identity permutation:

n -1 j-1
5@ = () 0= Vs (0= Pl

p=1

. <§> - D) - s

i (7;)_ Z (P = Dap—1,5(v)(n = p)ra—p(v), (19a)

p=j+1
with ¢1,1(v) =1, ¢2,1(v) = g2(v) = 1.

¢ Fixed points and cycles:

n -1 Jj—1
i@ =0 () X Vs ()= D)0

p=1

Y @ (= rjoa ()0 — ) (0)

-1
+v <Z> p;rl(p —1)gp—1,;(v)(n — p)rn_p(v),  (19b)
with q1,1(v) = v, 42,1 (v) = @22(v) = v*.

¢ Expected cycle length:

s =0 (2) " S0 00 D)

p=1

to <g> o (G — DFj—1(v)(n — 5)Fn—j(v)

-1 n
+wv <3> pzzj;ﬂ(p —1D)gp—1,j(v)(n = p)Fn—p(v),  (19c)

with G11(v) = v, Go1(v) = Ga2(v) = v*.
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4 'Trivariate generating function

To get our results for the parameters @), ; considered here, we will
use a generating functions approach. We will introduce trivariate
generating functions

F(z,u,v) Z Z Gn.j(V)u? 2" resp.

n>11<j<n

F(z,u,v) ZanJ

n>11<5<n

from which the recurrence relations (18) will translate into ordinary
differential equations.
Recall that g, j(1) = ¢, (1) = 1 and hence

F(z,u,1) = F(z,u,1)
=D =13 Z(Z“)J T =21 zu)

1<j<n 1<

4.1 Ordinary quickselect

From the recurrence relations (18) we get the following first-order
linear differential equations.

e Inversions and distance to the identity permutation:

2F(z u,v) = uR(zu,v)F(z,u,v)

0z (20a)
+ uR(zu,v)R(z,v) + R(z,v)F(z,u,v).
¢ Fixed points and cycles:
0 F(z,u,v) = uv R(zu,v)F(z,u,v)
az » - 9 )y “y (20b)

+wv R(zu,v)R(z,v) + v R(z,v)F(z,u,v).

e Expected cycle length:

a ~ ~ ~
%F(% u, v) = w R(zu, v)F(Z, U, U) (20c¢)

+ uv R(zu, v)R(z,v) + v R(z,0)F(z,u,v).
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In order to get the expected value of our parameters, we differen-
tiate the functions F'(z,u,v) resp. F(z,u,v) w. r. t. v and evaluate
at v = 1. We define the functions

G(z,u) = (;}F(z,u,v)) resp. G(z,u) = <2F(z,u,v))

v=1 v 1}:17
(21)
and obtain E(Qn ;) = [z"u/]G(z,u) for all parameters considered

except the expected cycle length, where we obtain E(Qp ;)
LE(Qny) = Lm0 ]Cz, ).

Using also the equations for R(z,v) and R(z,v) of Section 2, we
obtain first-order differential equations for G(z,u) resp. G(z,u) with

initial values G(0,u) = 0 resp. G(0,u) = 0, that are given in Table 1.

Table 1: Differential equations for G(z,u) resp. G(z,u).

: 9 1.2 A
Inversions 5:G(z,u) = suz A=z0) (1=2)"

paliEn (el Gl
_ u(l4+2+uz—3uz?)
T (1—2u)2(1-2)2

gl (G Gl

Cycles of length < m %G(z, u) = W > ket %
m uz k
+ T T

U—’Lt222

+ (1—2u)2(1—2)2

+ (ll—tz)_(%zfz) G(Z’ u)

Cycles %G(z,u) = W logi

Fixed points %G(z, u)

1
+ (1fzu)u2(lfz) log 1—zu
252
T T2

+ (11_4;2)_(2122;) G(z,u)

Expected cycle length %G(z, u) = —u(l_z)féif_zw

+ (11_21)‘(_12_?11) G(z,u)

Distance to identity %G(z,u) = %G(Au)

2 A
+ uz (1—zu)53(1—z)5
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The quantities A;, Ao, Az are defined as 41 = 1 — 3uz — 3u?z +
6u?z? — w22’ — P2 + u?, Ay = 020 — 20325 — 222® + 203t +
3uzt 4 2uz? — 3u?23 — 3uzd — u?2? +3u2? — 22 +uz+ 2 —1 and
Ag = u*z* + w22t — 4u32% — 4223 + 120222 — 4wz — duz +u? + 1.

Solving these equations gives the expressions for G(z,u) resp.
G(z,u), that are summarized in Table 2.

Table 2: Solutions for G(z,u) resp. G(z,u).

Inversions G(z,u) = %m log -
1 1 1
+3 (1-2)(1—2zu) log 1—zu
1 Ay
R el (= (=D
Fixed points G(z,u) = (17zu1;(1 ) log —
1 1
+2 (1—zu)(1—2) log 1—zu
3 (1—ziiu(1—z)
Cycles of length <m | G(z,u) = (1+ H,,) m log -
+ (1 + Hm) (1—zu1(1—z) log 1—12u
- ((1 +2H,,)zu
+ ZZIZQ (Hmek,ll)C(uszrukzk))
1
X (1—2zu)(1—2)
ulog2 %zqtlog2 fzu
Cycles G(z,u) = 2(117”)(17;)
_ zu
(1—zu)(1—=2)
u log 1lz—i-log Tu
(1—2zu)(1—=2)

The abbreviations are Ay = 3z3u? + 323u — 22%u? — 122%u — 222 +
Tou+ Tz — 4, As = =222 + 523u? + 523u — 22202 — 122%u — 222 +
Szu+ 5z — 2, Ag = u323 + u?23 — 6u?2? + 3u?z + 3uz —u? — 1.

With the approach presented here that leads to explicit solutions,
we can treat parameters that satisfy the general recursive structure

j—1 n

Ny, j = Ty j + § Qp—k j—k + E k1,5
k=1 k=j+1
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u 1

Expected cycle length | G(z,u) = (BB log =

+ (172)(1172u) log 1—12u

1 A
T 3P

3 Ag
(1—2w)f(1—2)%

Distance to identity | G(z,u) = —3uz

with toll functions T, ; = fi(n) + f2(j) + f3(n — j), where f;(m)
are linear combinations of terms m?H,, and m? with nonnegative
integers p. This recurrence with such “harmonic” toll functions fi(n)
(but fa(j) = f3(n —j) = 0) was studied in [10].

4.2 Quickselect with median-of-three pivoting

From the recurrence relations (19) we get the following third-
order linear differential equations, where we use the abbreviations
R'(z,v) := %R(z,v), resp. R'(z,v) := %R(z,v).

e Inversions and distance to the identity permutation:

3
8—F(z, u,v) = 6u*R'(zu, U)QF(Z, u,v)
923 0z (22a)
+ 6u?R/ (zu,v) R (2,v) + 6R/(z, v)aa F(z,u,v).
z
¢ Fixed points and cycles:
a—BF(z u,v) = 6u*v R/ (zu U)QF(Z u,v) (22b)
823 ) 9 - ) 82 »
+ 6uv R (zu,v) R/ (2,v) + 6vR/(z, v)aaF(z, u, ).
z

¢ Expected cycle length:

63 n 2., D! J -
@F(z, u,v) = 6uvR (zu, v)&F(z,u,v) (22¢)

+ 6u*v R (zu,v) R (2,v) + 6vR/(z, v)aaF(z, u,v).
2

In order to get the expected value of our parameters, we differen-
tiate the functions F(z,u,v) resp. F(z,u,v) w. r. t. v and evaluate
at v = 1. Here we define the functions

- 0
D(z,u) = %aF(Z,u,v) Ly resp. O(z,u) = %%F(z,u,v) .
(


http://jirss.irstat.ir/article-1-111-en.html

Downloaded from jirss.irstat.ir at 3:42 +0330 on Tuesday December 11th 2018

Measuring Post—Quickselect Disorder 233

and obtain E(Qn;) = L[z"'u/]®(z,u) for all parameters except
the expected cycle length, where we obtain E(Q ;) = %E(Qn]) =
n—lg[z"_luj]@(z,u).

This leads to second-order linear differential equations for ®(z, u)
(resp. ®(z,u)), where the functions R'(z, 1)‘1}:1 (resp. R/(z, 1)’11:1)
appearing are obtained by differentiating the equations of Section 2.
These differential equations are given as Table 3. The initial values
are given by ®(0,u) = 0 and %(I)(z,u)],zzo = 0 for the inversions
and the distance to the identity permutation, by ®(0,u) = u and

%@(z, )| ,—0 = 4u+4u? for fixed points and cycles, and by ®(0,u) =
u and %@(z, u)|,—0 = 4u + 4u? for the expected cycle length.

Table 3: Differential equations for ®(z,u) resp. ®(z,u).

Inversions g—;@(z,u) = 32161(72;?3()1(:;?2) + (121)2@(2,10
(B e B i
+ S 6oz, u)
Fixed points %@(z,u) = (11321()14@{22 + (12121)2‘1)('27“)

+ (1—zi)82u(21—z)2 + (11—235;2_&2—12)4
+ ﬁ@(z, w)

Cycles %fb(z,u) = %
+ (16};%4_(?2}2))2 log =,
) +
+ (172131;?172)2 log =,
+ e 108 T
+ % log i —I—ﬁq)(z,u)

To solve the differential equation

0? 1 u?
@(I)(z,u) -6 ((1 —2 + = zu)Q) D(z,u) = g(z,u)

with different g(z,u)’s according to the parameter under considera~
tion, we can transform it into a hypergeometric differential equation
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6u?(u—=22u?)
~ 0= (12
u? 2u) (u—2z2u? w2 F
+ 6u? 6u?(14+2zu)
(1—2u)2(1—2)2 (1—2u)¥(1—2)2
6u’ (1422 6(u—2z2u?
- (l—zu()2(1—)z)4 + (1_(zu)2(1_)z)4
2) (u—2%u? =
+ 683)2%1—%)2) + o ®(2,u)

Expected 53—;2@(,2, u)

cycle length +

. 4 _ .2
Distance g—;@(z,u) = 122(1‘17(;)2;?1(712; w4 (121)2@(2,10
4 2
to identity (1132)(51(322 + (11—255)2((1;22)5

zZUu z _ZZU/
+ 12(17(22_)2)((1172)7 ) + (1,62)2(I)(Z’u)

{1 — t)g;G(t, ) — 4(1 — 2t)§tG(t, ) — 8G(t,u)
_ - tz;(l - u)69(1 Ly ),
There we used the substitutions
B(z,u) = ! Bz u),

(1—2)2(1 — zu)?

z =1+ 2" and G(t,u) = B(1 + 1=%¢,u). This procedure was also
used in [6].

The corresponding homogeneous differential equation has the so-
lution

GO u) = k() (1~ 20) + k()1 (1~ 21 + 170t2 - %t ).
Solving the inhomogeneous differential equations by variation of the
constants, we obtain after back substituting the solutions of the func-
tions ®(z, u) resp. ®(z,u)." Since these solutions are very lengthy, we
refrain from printing them here. We only give the structure of ®(z)
in the instance of cycles (the structure is very similar for the other
parameters):

_ Pi(z.u) " log s
P(2) = (1— 2)2(11— w)7(1 — uz)? /tU 1 —lut dt

!This technique is described in more detail in [9]. The paper [10] is also of
relevance here.
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P(z,u 1
+(1@%3(m%1u@2b§12 (24)
Ps(z,u) 1
+ﬂ—¢ﬂﬂiuyﬂ—u@ﬂ%l—z
Py(z,u) log? 1
(1—2)2(1 —u)"(1 — uz)? 81wz
Ps(z,u) 1
+ (1-— 2)2(157 w)(1 — uz)? log 1—uz
FPs(z,u 1 1
+ (1-— u()i7((1 )uz)2 log 1—2 log 1—uz
Pr(z,u)

T — w1 w2

with certain polynomials P;(z,u) in z and u for 1 <4 < 7. Of course,
these solutions are obtained with assistance of a computer algebra
System.

5 Extracting coefficients
To obtain the desired expectations E(Q ;) of the parameters con-

sidered, we have to extract coefficients from the generating functions
computed in Section 4. We will use the following identities.

gt = () (")

for 0 <j<mnandn >0,

ny,j u oo L |
[ ](l—uz)(l—z) ogl_ ntl—j all
[2" ](1—uz)(1—z) 08 1— 2 nt+1—j nt1—j
for 1<j<nandn>1,
[zu](l_uz)(l_z) S — o an
"u? log® g2 g®
[ZU]“*“Z)(:[*Z) 1wz J i

for 1 <j<nandn>1.
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5.1 Ordinary quickselect
5.1.1 Explicit results

Extracting coefficients from G(z,u) resp. G(z, u) as given in Table 2,
we obtain the following explicit results for E(Qy ;).

e Inversions:

1

E(Qnj) = ~(n+1—7)(n—4—j)+=j(—5)+ =

8 3 g Hn+1-j + §Hj.
(25a)

e Fixed points:
E(Qn,j) = 2Hn+1—j + 2HJ - 3. (25}))

e Cycles of length up to m when m —1 < j <n—m+ 2:
E(Qng) = (L4 Hyn) (Hypr—y + Hy) = (14 H + HE) ) (250)

e Cycles:
1 1 2 1 1 2
(25d)

e Expected cycle length:

B(@ny) = 1 (00 1=0) =)+ 3G~ 1) =1+ Husa ;).

4 4
(25€)
e Distance to the identity permutation:
1 1 . .
E(Qn,j):E(n?)—n) —6(n—1)j(n+1—j). (25f)

5.1.2 Grand averages

The grand averages are defined by

1 n
E, =E(—- i).
i =E( D Quy) (26)
Jj=1
They can be obtained by

Ep = 2["G(z, 1) (27a)
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for all parameters except the expected cycle length, where we have

LG ). (27b)

E, =
n2

The required generating functions are given in Table 4.

Table 4: The functions G(z, 1) resp. G(z,1).

Inversions G(z,1) = ﬁ log i + %Eﬁ:?f
Fixed points G(z,1) = ﬁ log i - (137;;)2
Cycles up to length m | G(z,1) =2(1+ Hy,) (1_12)2 log ﬁ
— ((1+2H,)2
+ 23700, ¢ (Hm — kal)zk>
Cycles G(z,1) = (1_%)2 log? %Z - ﬁ
+ 2(1%)2 log é
Expected cycle length | G(z,1) = 2@ log l—iz + %
Distance to identity | G(z,1) = %%

Extracting coefficients leads then to the following explicit and
asymptotic results for the grand averages E,.
e Inversions:
n?—6n—19 n?

1
E, = (1 —)H pommeln 2

e Fixed points:

1
En:4<1—|—ﬁ>Hn—7~4logn. (28b)

e Cycles up to length m:

1 1
By = 2(1+ H) Hy (1+ E) —2(1+ Hp) — (14 H)H?n

1

—(1+—)1LL§$>—1+2m for n >m —2 (28¢)
n n

~ 2(1+ Hy,).
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1y 2
E, = (H,% . H,(f)) (1 + E) +H,—1~log’n.  (28d)

e Expected cycle length:

2
En:—(1+
n

1 1 19 n
E>Hn + 6n<1 - ﬁ) ~ T (28¢)

e Distance to the identity permutation:

n3

! m+1)(n—1)(n—2)~ 36

E, = —
" 36

(28)

5.2 Quickselect with median-of-three pivoting
5.2.1 Explicit results

By extracting coefficients from ®(z,u) resp. ®(z,u) as computed in
Subsection 4.2, one can obtain explicit results for E(Q, ;) also for
quickselect with median-of-three pivoting. For the sake of complete-
ness, we give these lengthy formulae in the appendix.

They are obtained by using formulse (3) and (4) under heavy
usage of a computer algebra system to simplify and manipulate the
resulting expressions. As an example, we consider the instance of
cycles, where the formula for ®(z) is given as (24), in a bit more
detail. Picking for instance the summand

Py(z,u)
(1—2)2(1 —u)"(1 — uz)?

Sn,j = [2"]

where Py(z,u) is a polynomial in z and wu, it is apparent that it is
sufficient to compute

1 s 1

tnj = [2"0/] (1—2)2(1 —u)7(1 —uz)?

since the required coefficient s, ; is obtained by a linear combina-
tion of such shifted expressions: s, ; = ZmSM,lgL Qm itn—m,j—1, With
certain bounds L, M and coefficients ay, ;.


http://jirss.irstat.ir/article-1-111-en.html

Downloaded from jirss.irstat.ir at 3:42 +0330 on Tuesday December 11th 2018

Measuring Post—Quickselect Disorder 239

Using (3), we obtain immediately
1 log? 1
11— 221 —w)(1l—uz)? 2 1_2

_ i: (n—k+1)(‘j_n—gk+6>(l€+1)x

k=n—j

ERd

x ((Hpp1 —1)* = (ngr)l —1)).

To obtain a closed formula for this expression, one requires closed
forms for sums > p_; kPHZ, >} kPHy and > p_; ka,?) for non-
negative integers p < 8. Such identities like

n
D Hi = (n+1)Hp = (2n+3)Hyp +2(n+ 1),
k=1

can be computed by standard manipulations of harmonic numbers
and are also generated “automatically” by computer algebra systems
like MAPLE.

The given explicit expressions in the appendix were checked by
the authors for a lot of “small” numbers j and n.

5.2.2 Grand averages
The grand averages F,, can now be obtained by
1

n2

E, = =[2""1®(z,1) (29a)

for all parameters except the expected cycle length, where we have

E, = = [z""1®(z,1). (29h)

1
n3
The explicit and asymptotic results obtained here are summarized
in the following.

e Inversions:

6 6 1 1 793 9 n?
Ep=(z+—)H,+—n>—-n—— 4 —~
n (7+7n> n ™ T 5" T ks T osn T 12

for n > 6,
(30a)

1 3
E].:O) E2:07 E3:O7 E4217 E5:g
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e Fixed points:

24 24 38 255 24
n= 7 T )T g, T a9 ~ 7 logn forn 26,
(30b)
7 101
Fi1=1 EFy =2 FE3= Fy=—, Fy = —.
1 , Ea , B3 =3, Ey 5 b5 =5
e Cycles:
6 6 30 114 6 6
E,=(2 —)H2 (7 “N\p, - (= 7>H(2)
(7+7n nt 49+49n) (7n+7 "
65 618 6
_ — =2~ Zloe?n f >
313, 343 ~ plog n forn 2 6, (30c)
15 112
EFi=1 FEy=2 FE3=3, F,=—, By = —.
1 , o , b3 » Ba= o By = o2

e Expected cycle length:

1 1 121
B L, 1939 (4

1
—i——>Hn~ﬁ for n > 6,
n 6

6" 294n Tagn2 T 7 \2
(30d)
9 31
Fi=1 FEy=1 E3=1 Ej=—, By = —.
1 ) 2 5 3 5 4 8, 5 25

e Distance to the identity permutation:

(n+1)(14n3 — 49n? 4+ 14n + 36)  2n3

E, = ~ — f >6
n EoEm - forn =6,
(30e)
1 36
E1207 E2:07 E3:O, E4:§, E5:275

6 Variances

6.1 Explicit results

In principle, it is also possible to obtain explicit expressions for higher
moments of @, ; from equations (20), in particular for the variance
V(Qn,;)- It turns out that the explicit expressions that we obtain for
the second factorial moment E(Qy ;(Qn; — 1)) for ordinary quickse-
lect are already of daunting complexity. Defining

82

H(zu) = (WF(z,u,v)) 2

resp. H(z,u) = (&F(zz,u,v))

v=1
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the second factorial moments are given by E(Qy ;(Qn,; — 1))

= [2"uw/]H (2, u) for all parameters except the expected cycle length,
where we obtain E(Qy;(Qn; — 1)) = [z"uw/]H(z,u). For the sake
of completeness, we give these findings in the appendix. We refrain
from doing such calculations for the more complicated instance of
median-of-three partition.

6.2 The variance of the mean

Of particular interest is the variance of the mean

v, =v(t Z Q) (32)

for our parameters. This quantity can be obtained by evaluating at
u = 1 at the level of generating functions and extracting coefficients.
One gets

1 1
V= —5[z"[H(2,1) + —Ep — E? (33a)
for all parameters considered except the expected cycle length, where
we get

1 ~ 1
Vo= ["H (2, 1) + —5 B — E2.

The appearing FE, are the grand averages as computed in Subsec-

tion 5.1.2.

Next we summarize the obtained explicit and asymptotic results.

e Inversions:

V_n4+5n3_11n2+247n+4607_<1 i)HQ
720 0 432 216 432 2160 n n2/ "
n 1 11 1
S 2)H, - (1 —)H(z), >1
+ ( 6 37 6n> t o) n=
4
n
~ 4
720 (342)

e Fixed points:

1 16 1
V, = —(16+ —G)H,(f) - (—6 + —G)Hg + (ﬁ + 10)Hn
n n

n = n?
19 5)
- % + g, for n > 2, Vl =0. (34b)
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2 2 2 4 2
V, = —4—74~—)H%ﬂ”+(7—4—+~—>ﬂ3
n 3 n? 3n

n
s A (b 2 (o dy
B R
+(%+8yﬂH9+4& for n > 1 (34c)
2 3
~ glog n

e Expected cycle length:

1 7n* +25n° — 185n* + 1895n + 6898 4(n + 1)

n = 54 H,
720 n? who "
4 1 2 —2
LAt D) gy 204502 e o (344
n3 3 n?
2
720

e Distance to the identity permutation:

(n —1)(n —2)(n + 1)(145n3 + 836 n% + 53 n — 398)
226800 ’
forn>1

Vi =

2016
45360

(34e)

7 Conclusion

In Table 5 we collect our basic findings. Note for instance that the
number of cycles is increasing, since we are “closer” to the identity
permutation, which has the most number of cycles.

At first glance it might seem surprising that the parameters “num-
ber of fixed points” and “number of cycles” are smaller after the
median-of-three algorithm than after the ordinary quickselect algo-
rithm, which means that for these statistics the permutations are
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Table 5: Averages and variances with/without one round of quickse-
lect (leading term only).

Aft
Random After quicks(zect Variance
permutation quickselect (median-of3)
grand fixed
average p=3j/n
2 2 2 )2 2 2 4

Inversions o i (o4 —p))n” +(18 p)")n 15 750
Fixed points 1 4logn 4logn % logn 10logn
Cycles logn log?n log?n g log?n % log® n
Expected n n (P*+0-p)Hn n n?
cycle length 2 6 4 6 720
Distance to 5 R (1—3p(1—p)ym® R o
. . n n —3p(1l—p))n 2n 29n
identity ) 6 36 18 5 15360
permutation

on average more disordered in the median-of-three case. The reason
for this is that with median-of-three partition the number of recursive
calls in the algorithm decreases and thus the requested element can be
found “faster.” Because every recursive call places one pivot element
in the correct position and on average in every segment between the
pivots we have one additional fixed point (these segments are random
permutations), one expects that the average number of fixed points
will asymptotically behave like twice the average number of recursive
calls in Quickselect, a parameter that was studied in [6]. With the
heuristic that for large n almost no pivots are neighbors, we get that
asymptotically the number of fixed points is twice the number of piv-
ots (or recursive calls). On average we make in the median-of-three
case asymptotically 1/7 fewer recursive calls and thus we have about
1/7 fewer fixed points.

8 Appendix

8.1 Explicit results for median-of-three pivoting
We use here the abbreviation E,, j := E(Qp ;).

e Inversions:
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6 9
B, = —an(S'rﬁ —6jn —3n+4 — 65 + 652) + gHj(sz —6j+5)
+ 2w (2n? — 2n — 4jn + 252 + 25 + 1) 6 5
—H,411-;(2n" — 2n — 435n J J -
35 i 75 Tn+1-—3j)
5 18 167 814 921 , 153
+—=n"+—jn— —nt+ ——-—j — —j
28 35 140 245 2450 70
3 485 — 25 — 3652 + 353 3 (j%2 -2 +10)(j — 1)?
35 n 35 n(n —1)
L L GG =2 - 3)(34° — 95 + 50)
175 n(n —1)(n — 2)
3 (-1 —3)(% — 45 +25)( — 2)°
175 n(n —1)(n — 2)(n — 3)
3 (-DE -G —3)@ — (25 —5)(G* — 55 +35)
245 n(n —1)(n —2)(n — 3)(n — 4)
1 (j—1)(G —2)G —4)(G — 5)(352 — 185 + 140)(j — 3)2
n G-DG=-20G-H0 -5B) J 4+ 140)(7 — 3) for5<j<n—4,
490 n(n —1)(n —2)(n — 3)(n — 4)(n — 5)
87 1 525n° — 4900n* — 131843n2 + 48556n> + 104042n — 13440
Epng4=——Hp+ —— for n > 8,
35 4900 n(n —1)(n — 2)
5 . B o 13
4= 5,4—20’ 6,4—20, 7,4—10,
P 1 105n* — 77003 — 2090n + 275512 — 588
8T T T 980 n(n— 1)
1 2 17
form > 7, EF3 3 =0, Egq3= 7 Es,3 = 5 Ee,3 = 30’
E 32 10 L > 6, E 0, E 0, E L 13
= —"n — —n— — — or n N 2 =0, 2 =0, = - = )
n,2 28 28 175 5 n = 2,2 3,2 4,2 1 5,2 20
E 8,2 10 ! + S,k >5, E 0, E 0, E 0, E !
= —n" - —n - — - orn = = = ==
n,1 Py 2 175 5 Hn >5, E11 , Ea1 , Bz ; Ean 2

¢ Fixed points:
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B a8 Jr36H +36H N 24 N 24
B R SR b —
™I T s T35 T3 T I T s T 35t 1 — )
583 123j—5 24 (j—1)° 8 (-1 -2)(2i—-3) 12 G-1)(E-3)(G —2)?
175 35 n 35 n(n — 1) 35 n(n —2)(n — 1) 35 n(n —2)(n —1)(n — 3)
n 122/ =50 -DE-DG-30G -4 8 (-50-DU-DG -G -3)?
35 n(n—2)(n—1)(n—3)(n—4) 35 n(n—2)(n—1)(n —3)(n —4)(n —5)
for5 < j<n—4,
12 1 —537n2 4+ 17903 + 1618n — 1680
Epa4=—Hp — for n > 8,
5 175 n(n —2)(n —1)
7 23
Egq4=—, Es54=4, Ega=—, E74 =05,
2 5
B 12 1 209n2—209n+420f 7 B s B L. 2t 23
= — - formn 3,3 = = - — = —
n,3 5 n 175 n(n _ 1) =Z 0 3,3 i 4,3 2a 5,3 5 ) 6,3 5
37 12 7
Ep2=——+ —Hpforn>6, Eg2=2, E32=3, B42=—, E52 =4,
25 ' 5 2
37 12
Ena= o5 + ?Hn form >5, E11 =1, Eg1 =2, E31 =3, B4 1= —
e Cycles:
5 2, + 2y g N (34 12 12 ) N 2, 5
A n PEntl=i T35 T 355 35(n+1-— ) 35 4 " 35 mtlod
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— —H;H, 1_;+
35 7 n+l—j

12 12 12 103
( - + Bl 11y y—
355  35(n+1—j) 175

245

12 j 6 j(G—1) ij(jfl)(jf2)

35n 35 n(n,1> T 35 n(n— 1)(n—2)

3 JG-DUE-2)(E-3) 6 JG-DE-2)0-3)G -4

7£n(n—l)(n—2)(n—3) 35 n(n—1)(n—2
2 G0 -DE -2 -3 -HE —5) )H_
35 n(n—1)(n—2)(n—3)(n—4)(n—5)/ "7

)(n —3)(n —4)

(£+ 12 2 65-1 6 (-1DG-2) 4 G-1DG-2(G-3)
355  35(n+1—j) 176 7 n 35  n(n—1) 35 n(n—1)(n—2)
B3 (G-DE=-29G-3)GE -4 6 G-DE-20-3)G -G —5)
35 n(n—1)(n—2)(n—3) 35 n(n—1)(n—2)(n—3)(n—4)
73(j—1)(1‘—2)(3'—3)(1'—4)(3'—5)(1'—6))H )
35 n(n—1)(n—2)(n —3)(n — 4)(n — 5) nl=
3y _3ue 1 17Tn 45 1 17n+5 6221 1 2j+23
5 J 5 "T1=3 " 35 (n4+1)(n+1—3) 35(n+1)j 5250 175 n
1 Gi=-NE-1) 1 (8 -9G -G —2)  1(95-28) -1 —2)(5 —3)
35 n(n — 1) 105 n(n —1)(n — 2) 35 n(n —1)(n —2)(n — 3)

2 (3L —90)( - DG -G —3)( —4)
175 n(n —1)(n — 2)(n — 3)(n — 4)
62 (j—1)(G—2)(G -3 —4)( —5)

4+ — for 5
525 n(n —1)(n —2)(n — 3)(n — 4)(n — 5)

6 4n® —12n% —7n +20

<j<n-—a,

3 3
Ena=-Ho+ — Hp — —H@

5 25 n(n —1)(n — 2) 5

3 53760 n + 701 n® + 4353 n* — 11200 + 24348 n® — 66356 n2 — 4206 n°

3500 n2(n —1)2(n — 2)2

. 5o 89 2 59
4,4 = 4 » 5,4 = 207 6,4 = 4 i 7,4 = 101

5 5 6 4n?2_—4n—5 3 2
n,3 = 7 —_—— — —H}
" 5 " 25 n(n—1) 5" 875

15 23
forn >7,E33 =3, B43 = T Es 3 = 5 Eg
24

forn > 8,

—525 — 282n°% — 454n? + 141 n* + 1645 n

n2(n —1)2
21

,dfzy

3 3 1
Ep2 = *H;‘:+ an - gHy(,,z) + 125 forn > 6, B2 2 =2, E32=3, BEgo=—, E52= —,

5

3 2

5 24 3 (2 15
Ep1=—-H, + T_)Hn ——H + —forn>5, E11=1, Eg1 =2, E31 =3, E41 = T

5 2 5

e Expected cycle length:

35 n 77 35 n

123n276jn73n+6j276j+4H 12 1

n,j =

§2j276j+5H +§2n274jn72n+2j2+2j+1

Hpy1-j

12 1 3 36

————— St

35 n 7 jn 7 (n+1—-j)n 14 35
97 1628 921 j2 153 5 6 48  — 25 — 362 +35°

N + -
70 245n 1225 n 35 n 35

n2

6 (j2-2;+10)G -1 2 (-1 —2)(25 —3)(35% — 95 + 50)

6 (-1 - 3)(% — 45 +25)( - 2)°
175 n2(n —1)(n — 2)(n — 3)

6 (G -DE -2 -3~ (2 -5 -

35 n2(n — 1) 175 n2(n —1)(n — 2)

55 + 35)

245 n2(n —1)(n — 2)(n — 3)(n — 4)

1 G =D =26 - DG - 5)(352 - 185 + 140)(j — 3)2

245 n2(n —1)(n — 2)(n — 3)(n — 4)(n
174 H,, 1 525n° — 2450n% + 41206n3

for5<j<n—4,

— 126943n2 4 104042n — 13440

Bpa=——0— 4 ——

for n > 8,

35 n 2450 n2(n —1)(n — 2)
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5 o L 63 L. 48
4,4 = = 5,4 = —» 4= 4 = >
AT A T 5 Tt T 60 T T 35
6 Hy 1 105n% — 280n3 + 226502 — 2090n — 588
Enz=—2-—+— forn > 7,
’ 7T n 490 n2(n — 1)
P
3,3 — 1, 43—87 5,3—25a 6,3—601
E 6Hn  3n 5 f >6, E 1, E 1, E ) 63
= — - — = or n N 2 =1, 2 =1, 2 = T 2 = T
2T E T T 14 14 17sn = 22 32 42T T2 T R
6 H, 3n 5 2 9
Eni= Pl + 711 17 form >5, E11 =1, Eg1 =1, E31 =1, E41 = 5
e Distance to the identity permutation:
Bo i = 2 Ho(Tn® — 21502 — 902 + 21520 + 2n + 18jn — 18 — 3952 + 39
i n(Tn” —21jn° — 9n” + 215%n 4 2n 4 18jn — 18 — 395° + 39j)
6 ) ) ) 6 ) ) )
- EHj(J -G —2)(75-9) — £H7L+17j(77L —2-T7j)(n—j)(n—1-3j)
1 5 6., 143 5, 3419 9 , 279 255 70743 21 5 BT o
iy M g i R R ey iy - =+ —
24 5 140 840 4 140 28 4900 10 196
108 108 3 495% — 21852 + 80352 — 8505 + 360
355 35(n+1—j) 140 n
6 (557 —10j+18)G — 1> 6 (-1 —2)(2j —3)(G* = 3j +6)
35 n(n — 1) 35 n(n —1)(n — 2)
6 (G —1G-3)(* -4 +9( —2)°
35 n(n —1)(n — 2)(n — 3)
6 (=D =2 —3)( — (2] — 5)(55° — 255 + 63)
245 n(n —1)(n — 2)(n — 3)(n — 4)
3 (j—1G—2)G—4)G —5)(552 — 305 +84)(j — 3)2
G-DGE -2 -40G -5 (5] j =37 <j<n_a
245 n(n —1)(n —2)(n — 3)(n —4)(n — 5)
684 1 1226n* — 5250n3 — 12722512 — 711282n + 302400
Ep4=—H, for n > 8,
’ 35 29400 n
E L ) 2, B 16
4,4 = —» 5,4 = —» 3,4 = 4 A4 =
s 2 5, 5 6, 7, 5
5 Loa_5 0 228 144, 13177 o B . 4 )
3=_—n" ———n" ———n 4 — - orn > 3,3 = 43=—, Es3=—, Eg3 =2,
Y 28 168 35 " 4900 ’ T 2 5’
E 5 24 ! 34 29 Lo > 6, E 0, E 0, E ) 8
= ——n —n —n — — forn > = < = = — 50 = —
n,2 28 21 o8 120 > 6, E22 ; B3 2 s Ea2 5 Fs2 5
E 52y Ly 20 Loy >5 E 0, E 0, E 0, E !
= ——n —n ——n — —— forn N =0, =0, = = —.
n,l 28 24 168 140 = 1,1 2,1 3,1 ’ 4,1 2
Due to the symmetry E,; = E,41—j;, this parameter is fully

described by the above values.

8.2 Explicit expressions for the second factorial mo-
ments for ordinary quickselect

We obtain the following results for the second factorial moments
2

M7 = E(Qn(@Qnj — D).

e Inversions:

- 1 1
M@ - g _ g
n,j 47 4 mtl=g
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1 Hp(n+ 1)(n%j —an?52 +3n2j + 65%n — 852n — 10jn + 952 — 35 — 12 4+ 65° — 125)
24 j(n+1—3)

1 5, 1 4 1
+ ZHj + ZHn+17j + EHnJrlfjHj

1 H;
24 j(n+1— 4)
. .4 .3
— 285 — 55 +195° — 12)

3n25 — 12n25 — 9252 +125%n — 4520 + j*n — 12n — 43jn + 1552 — 5°

1 Hppoj
— Tt 7n®5 — 4n®52 — 210252 — 183025 + 6n25% — 12n — 535n + 552n
24 j(n+1—j)

+245%n — 45%n — 105* — 345 + 3252 +115°% + 4% — 12)

1 1 .4 .5 .3 .2 . .6 .5
+ —— ——— (16265 + 7025° — 442253 — 429632 + 66245 — 234;° 4 1728 + 7025°n
3456 j(n + 1 — 5)

+63jn° + 9382jn — 805025 + 3783n252 + 2191n25 — 50945°n — 8345%n + 2468;5%n

— 175045 + 304n352 — 9545402 + 66n25°% — 315n%52 + 738n35°%) for n > j > 1.

¢ Fixed points:

=) _ &) (2) Hn(n+1) 2 2 -
M"0 = —4H;” —4H, ), + 8m +4H; +4H, |+ 8Hp i1 jH,

B H;(—952 4 9jn + 9j + 8n + 8) B Hpp1—j (=952 +9jn + 95 + 8n + 8)

(n+1-4)j (n+1-35)j
11185 + 23n252 — 4653 + 47n2j — 465%n — j%n + 235* + 60n — 9552 + 72 + 165jn + 12n?
3 Jjn+2-7)0+1)(n+1-7)
forn—12>j52>2,
4 5
MP® =an? —am® —H, 4+ = -2
’ n 2
(2) _
for n > 2, M;"] = 0.
e Cycles:
) 1oy
M(Z),=( 2 B 2 _2Hn+1_j L Hp_ ik +(3—3—2ﬂ)nz P Hpqj-1
n.d (n+1—35)2 n+1—3j n+1-—j /= k 52 j i &= k
(3) 3 (2 ) 3 (1) 3 (@)
+2Hp 1o HY 4 2H;HY —4H;H —4Hp 4 HY, - 51Hrn+l_]. - 5Hj
8 (3 8403 3. g@y2, 3 4@ 2 3.9 (2 3 o @)
T a7 - SHGHT = S
Loy 1 4 4.3 4.3 1 2.2 L) 1 (2)
Tt e T S S e+ SHH L+ SHH T
12,2 1.2 @ , L 2) 1 2
~ i~ g HT (G DHGH L+ (e = D 1y

11 1 1
+(=1+ ; - ﬁ)Hn+1—j +(=1+

(2)
— H;
n+1—3j (n+17j)2) J

1 2 1 2
+ (1 - ;)HanJrl,j + (1 - fj)Hnﬁ—l—jH‘j

n+1
TSR L oiym?
27 (n+1-52 n+l—j J
n 2 2 7L1 1+1)H2
(n+1-7)2 n+l-j 52 g
2(2 1 2 2 2(2 1
b2 @ity ; N ___2en4y
(n+)(n+1-35) (+1-352(n+1) (n+1-4)3 (n+1)j
n 2 +2)H
(n+1)52 377
2(2n+1 2 2 2(2n+1
L ( ) 2 )

T A Dmtl-0) A1t t1-38  (nt1;
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2 n 2)H
(n+n)g2 g
e 2n 2 2n 2)HH
(m+D+1-j) (+1-2 (nt1) g2 20"
+<2 +2 2 n 2 VHnH
27 (m+1-5)2 at1-50"
y 2 b2 2 D H.H
(n+1—5)2 myi—j g2 5 ontd
J'_<2+ VH, H H 4+ 2 4 2 . 4 \H
G I T T 1= k14
2(2n — 1) 2(2n — 1) 2 2

_ _ _ forn >4 > 1.
nt1j i Dmtl-) (D (miDmi1_gg ern=dzt

¢ Expected cycle length:

M3 Iﬁ Hig1oj _ ﬁ _ H,(fll_j +2H1Hn+1—j
n,j n2 n2 n2 n2 n2
1 n3 —3jn% 4+ 3n2 +35%n — 6jn — 10n + 352 — 35 — 12 2 2
7<E n2 7j?7n2(n+1—j)>Hn
13n2 —6jn — 9n + 53 + 652 — 135 — 18 2 2 .
6 n? _j?_'rﬂ(n«!»lfj)) i
1n3 —3jn% 4+ 6n> +35%n — 12jn — 13n — 53 + 952 — 25 — 24
G n?
B RN R
jn? n2(n+1—j) nl=g
+ 7212 (6n* — 24503 — 2n% 1+ 455202 — 9jn? — 72n2 — 425%n 4+ 2720 + 147jn + 68n + 2154
— 4253 — 11152 + 1325 + 432)

2 2
+ +
jnZ(n+1) n2(n+1—j)(n+1)

forn > 5 > 1.

e Distance to the identity permutation:

2 ; :
M3 = 25 Hnn 1 (n* = 5n%5 4+ 4n® + 100?52 + n? — 15025 + 20520 — 10j%n — 6n + 105 — 552
4 3 2. . ; : ;
+55% — 10y )—EJH]'(]—1)(J—2)(]+2)(J+1)

—  Hna 1= = D= 1= ) (n+3 = §)(n+2— )

45
31n8  nP(—27+625) n*(343 + 46552 — 6935) n°(2588; + 5805 — 198652 — 687)
6480 2160 6480 6480
N n2(202 + 3455% — 246653 + 556252 — 23495)  n(46285% — 1053;* + 665° — 2365 + 1344 — 390952)
6480 6480
L 4 .3 .2 . )
+ ——4(j —1)(115° — 225° + 6915° — 6805 — 252) forn > j > 1.
3240
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