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Abstract. We give an alternative treatment and extension of some
results of Itoh and Mahmoud on one-sided interval trees. The proofs
are based on renewal theory, including a case with mixed multiplica-
tive and additive renewals.

1 Introduction

Itoh and Mahmoud [2] have studied some one-sided versions of binary
interval trees. These are obtained from full binary interval trees (see
Section 2 for definitions) by pruning one of the two subtrees at each
node; in other words, we are left with a single path in the binary
interval tree.

Five different such trees, defined by different pruning policies, are
studied in [2]. Using an analytic method, Itoh and Mahmoud find
explicit or implicit expressions for the moment generating function of
the size of the tree, and they derive in each case asymptotic normality
and asymptotic expressions for the mean and variance of the size.

We will here give an alternative treatment using renewal theory,
which enables us to generalize the results. In particular, the results
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150 Janson

cover also the incomplete m-ary interval trees studied by Javanian,
Mahmoud and Vahidi-Asl [3].

We will also treat the case of one-sided car-parking, for which Itoh
and Mahmoud only give a partial result. While the standard version
of one-sided interval trees leads to a multiplicative version of renewal
sequences, where standard results from renewal theory are directly
applicable, the car-parking version leads to a mixed multiplicative
and additive (or rather subtractive) renewal sequence, which requires
some new arguments.

2 Definitions and results

Consider repeated divisions of an interval I as follows. If I has length
≥ 1, it is divided into two subintervals I0 and I1 by a random division
point, which we assume is uniformly distributed in I. The same
procedure is then applied recursively to each of the subintervals, until
all remaining intervals have lengths less than 1. All random choices
are independent.

This construction naturally defines a tree, the binary interval tree:
The nodes are the intervals that appear, with the original interval I as
the root. The intervals of lengths ≥ 1 are internal nodes, each having
two children (the subintervals that it is split into). The intervals
of lengths < 1 are external nodes or leaves; these are the intervals
remaining in the final partition of the original interval.

A one-sided interval tree is defined by a similar recursive con-
struction, but each time an interval is split, we now choose one of
the two resulting subintervals by some (possibly random) procedure.
The chosen subinterval is then divided again (if it has length ≥ 1),
but the other subinterval is left undivided, regardless of its length,
and is thus represented by a leaf in the tree.

The one-sided interval tree thus consists of a single path of internal
nodes with attached leaves. A one-sided interval tree with height H
thus has H internal and H + 1 external nodes; hence the total size is
2H + 1.

When we split an interval J in the construction of a one-sided
interval tree, its two subintervals have lengths U |J | and (1 − U)|J |,
where U has a uniform distribution on (0, 1). We then choose one of
them according to some policy. We consider only policies where the
choice depends only on the relative lengths of the two subintervals,
i.e. on U only, possibly with further randomization. Let p(u) be
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One-Sided Interval Trees 151

the probability that we choose the first (left) subinterval, given that
U = u. The chosen interval then has length R|J | where R equals
U or 1 − U , and conditioned on U = u, the probabilities are p(u)
and 1−p(u), respectively. It follows that R has a probability density
function

fR(u) = p(u) + 1− p(1− u), 0 < u < 1. (2.1)

Let the original interval have length x ≥ 1. Since different intervals
are split independently, the first chosen subinterval has length R1x,
the second chosen subinterval has length R2R1x, and so on, where
R1, R2, . . . are independent copies of the random variable R with the
density function (2.1). Remember that we stop when the interval
length becomes less than 1.

We state our first theorem for a general process of this type. We
let Hx be the (random) height, or equivalently, the number of internal
nodes, when we start with an interval of length x. We further let
Tx = 2Hx + 1 be the total number of nodes. We state most of our
results for Hx while Itoh and Mahmoud [2] state most results for Tx

(there denoted Sx); we leave the trivial translation between these to
the reader. We are interested in asymptotics as x →∞.

Theorem 2.1. Let Hx be the height of a one-sided interval tree,
for an initial length x, where each time the chosen subinterval of an
interval J (with length |J | ≥ 1) has length distributed as R|J |, for
some continuous random variable R with 0 < R < 1, and we stop
when |J | < 1. Suppose that X = − ln(R) has finite mean µ and
variance σ2. Then, as x →∞,

E Hx = µ−1 lnx +
σ2 + µ2

2µ2
+ o(1), (2.2)

VarHx =
σ2

µ3
lnx + o(lnx), (2.3)

and
Hx − µ−1 lnx√

lnx

d→ N(0, σ2/µ3). (2.4)

For the one-sided interval trees considered here, where R has the
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152 Janson

density (2.1), the parameters µ and σ2 are always finite and given by

µ = E(− ln(R))

=
∫ 1

0
(− lnu)p(u) du +

∫ 1

0
(− ln(1− u))(1− p(u)) du,

σ2 = E(− ln(R))2 − µ2

=
∫ 1

0
(lnu)2p(u) du +

∫ 1

0
(ln(1− u))2(1− p(u)) du− µ2.

Itoh and Mahmoud [2] also considered a car-parking version. We
begin as above with an interval of length x, but now park cars in it.
Each car has, for simplicity, length 1. The cars arrive one by one,
and each car parks at a random free place. The first car thus leaves
two free subintervals of total length x− 1, and the process continues
recursively in each of the subintervals until all remaining free intervals
have lengths less than 1.

Rényi [4] studied the total number of cars parked by this scheme,
i.e. the size of the resulting binary interval tree.

Itoh and Mahmoud considered the corresponding one-sided inter-
val tree, where we each time a car is parked continue in one of the
two resulting subintervals only, and ignore (or block) the other subin-
terval. Thus, if we at some stage have an interval J , with |J | ≥ 1,
we park a car at random in it and obtain two subintervals of lengths
U(|J | − 1) and (1 − U)(|J | − 1); we then choose one of them, again
according to some policy depending on the relative lengths only. The
chosen subinterval thus has length R(|J | − 1), with R as above.

We let H̃x denote the height of the one-sided interval tree in
the car-parking version. Since the cars use some of the space (as
can be observed in any city), we obtain smaller intervals in the car-
parking version, and thus stop earlier (or at the same time). Thus
H̃x ≤ Hx. Nevertheless, as shown in Lemma 3.3 below, the difference
is small and asymptotically negligible and we obtain the same first-
order asymptotics for both versions.

Theorem 2.2. Let H̃x be the height of a one-sided interval tree,
for an initial length x, where each time the chosen subinterval of an
interval J (with length |J | ≥ 1) has length distributed as R(|J | − 1),
for some continuous random variable R with 0 < R < 1, and we
stop when |J | < 1. Suppose that X = − ln(R) has finite mean µ and
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One-Sided Interval Trees 153

variance σ2. Then, as x →∞,

E H̃x = µ−1 lnx + O(1), (2.5)

Var H̃x =
σ2

µ3
lnx + o(lnx), (2.6)

and
H̃x − µ−1 lnx√

lnx

d→ N(0, σ2/µ3). (2.7)

Remark 2.3. The constructions of one-sided interval tree above can
be generalized in several ways.

One possibility is to choose the division points with some non-
uniform distribution. (I.e., we replace U by another random variable
in (0, 1).) This leads to the same general setup as above, with some
random R (although (2.1) no longer holds). If R has a continuous
distribution, this is thus covered by the theorems above. In fact, an
inspection of the proofs below shows that we do not really need the
assumption that R is continuous; the theorems are valid for any ran-
dom R ∈ (0, 1) with finite µ and σ2, except that if R is concentrated
on a geometric sequence {rn} for some r < 1, the constant term in
(2.2) has to be replaced by a term periodic in lnx, or more simply
by O(1), cf. [1, Theorem II.5.2(ii)].

Remark 2.4. Javanian, Mahmoud and Vahidi-Asl [3] generalized
the problem to random m-ary interval trees, where each interval is
randomly divided into m subintervals, where m ≥ 2 is a fixed integer.
Again, they consider the one-sided version where after each division,
one of the subintervals is selected and we continue recursively by
dividing this interval, as long as its length is at least 1, while the
other subintervals are left undivided. With the division and selection
rules considered in [3], this becomes another instance of the situation
in Theorem 2.1, see Example 4.8 below.

Remark 2.5. Another generalization is to consider car-parking with
cars of random lengths. If the cars have a constant length l 6= 1, a
simple scaling shows that Theorem 2.2 still holds. If the lengths are
random (and independent) and lie in an interval [a, b], with 0 < a <
b < ∞, the same holds by comparisons with the cases of constant car
lengths a and b. More generally, if the lengths are random, bounded
below by some positive number, and have a finite expectation, then
Theorem 2.2 still holds by a simple modification of the proof below.
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3 Proofs

Proof of Theorem 2.1. By the argument before the theorem, the
intervals corresponding to the internal nodes have the lengths x, xR1,
xR1R2, . . . , where {Ri}∞1 are i.i.d., and we stop when the length
becomes less than 1. Hence, recalling that Hx equals the number of
internal nodes,

Hx = 1 + max
{

n : x

n∏
i=1

Ri ≥ 1
}

. (3.1)

We define Xi = − ln(Ri) and rewrite (3.1) as

Hx − 1 = max
{

n : xe−
∑n

i=1 Xi ≥ 1
}

= max
{

n :
n∑

i=1

Xi ≤ lnx
}

.

(3.2)
The quantity in (3.2) is the number of renewals in the interval (0, lnx]
of the sequence of partial sums Sn =

∑n
1 Xi. Since the variables

Xi are i.i.d. and non-negative, the results now follow from classical
results in renewal theory, see for example [1, Theorem II.5.2].

Proof of Theorem 2.2. The lengths of the chosen intervals are

L0 = x,

L1 = (L0 − 1)R1 = (x− 1)R1 = xR1 −R1,

L2 = (L1 − 1)R2 = (xR1 −R1 − 1)R2 = xR1R2 −R1R2 −R2,

and in general, when k cars have parked, by induction,

Lk = x

k∏
i=1

Ri −
k∑

j=1

k∏
i=j

Ri = xe−Sk −
k∑

j=1

eSj−1−Sk .

We continue until Lk is less than 1. Let

Yk := xe−Sk ,

Zk :=
k∑

j=1

eSj−1−Sk = e−Sk

k−1∑
j=0

eSj ,

M := min{k : Yk − Zk < 1},
N := min{k : Yk < 1}.

Then Lk = Yk − Zk and H̃x = M , while N = Hx, the height of
the corresponding one-sided interval tree under the simpler rule of
Theorem 2.1. We prove some lemmas.
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One-Sided Interval Trees 155

Lemma 3.1. There exists a constant A < ∞, depending on the
distribution of R but not on z, such that for every z > 0,

E

 ∑
j≥0: eSj≤z

eSj

 ≤ Az. (3.3)

Proof. Let t = ln z. If U is the renewal function of {Sn}∞0 , i.e. the
sum of the distribution functions of Sn, n ≥ 0, then

z−1 E
∑

j:eSj≤z

eSj = E

∑
j≥0

eSj−t1[Sj ≤ t]

 =
∫ t

0
e−(t−s) dU(s).

By the Key Renewal Theorem [1, Theorem II.4.3], this converges, as
t →∞, to µ−1

∫∞
0 e−s ds = µ−1 < ∞. Hence (3.3) holds for large z,

say z ≥ z0, with A = 1 + µ−1. Evidently, (3.3) holds for 1 ≤ z ≤ z0

too, if A is large enough, and the case z < 1 is trivial.

Lemma 3.2. There exists a constant B < ∞, depending on the
distribution of R but not on y, such that for every y > 0,

P(YM ≥ y) ≤ B/y. (3.4)

Proof. Let y > 1 and assume that y ≤ YM ≤ 2y. Since LM =
YM − ZM < 1, then ZM > YM − 1 ≥ y − 1. Moreover, for j ≤ M ,

eSj ≤ eSM =
x

YM
≤ x

y
.

Hence, with z = x/y,

y − 1 ≤ ZM =
YM

x

M−1∑
j=0

eSj ≤ 2y

x

∑
j: eSj≤z

eSj .

Consequently, taking the expectation and using Lemma 3.1,

(y − 1) P(y ≤ YM ≤ 2y) ≤ 2y

x
E

∑
j: eSj≤z

eSj ≤ 2y

x
Az = 2A.

For y ≥ 2, this yields

P(y ≤ YM ≤ 2y) ≤ 2A

y − 1
≤ 4A

y
,
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and hence

P(YM ≥ y) =
∞∑

j=0

P
(
2jy ≤ YM < 2j+1y

)
≤

∞∑
j=0

4A

2jy
=

8A

y
,

which shows (3.4) if B ≥ 8A. For y < 2, (3.4) is trivial provided
B ≥ 2.

Lemma 3.3. There exists a constant C < ∞, depending on the
distribution of R but not on x, such that for every x > 0,

E(Hx − H̃x) ≤ C,

E(Hx − H̃x)2 ≤ C.

Proof. Observe that if we continue after M , then the lenghts YM+i,
i = 0, . . . , N−M , are the interval lengths for a one-sided interval tree
as in Theorem 2.1 with an initial (random) length YM . Hence, condi-
tioned on YM = y, N −M has the distribution of Hy in Theorem 2.1.
Since (2.2) and (2.3) imply, for some C ′ < ∞ and all y ≥ 0,

E Hy ≤ C ′(1 + ln+ y),

E(Hy)2 ≤ C ′(1 + ln+ y)2,

it follows that

E(Hx − H̃x) = E(N −M) ≤ C ′ E(1 + ln+ YM ),

E(Hx − H̃x)2 = E(N −M)2 ≤ C ′ E(1 + ln+ YM )2.

By Lemma 3.2, these expectations are bounded by some constant
C.

Using Lemma 3.3, Theorem 2.1 easily implies Theorem 2.2: (2.5)
follows from (2.2), while (2.6) follows from (2.3) and Minkowski’s in-
equality in the form |(VarHx)1/2− (Var H̃x)1/2| ≤

(
E(Hx− H̃x)2

)1/2;
finally, Lemma 3.3 implies (Hx − H̃x)/ lnx

p→ 0, and Cramér’s theo-
rem yields (2.7) from (2.4)
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One-Sided Interval Trees 157

4 Examples

We begin by considering the five versions studied by Itoh and Mah-
moud [2], giving alternative proofs of their results. (Recall that they
state the results in terms of Tx = 2Hx + 1, their Sx.)

We let hn :=
∑n

k=1 1/k denote the harmonic numbers. Similarly,
h

(2)
n :=

∑n
k=1 1/k2.

Example 4.1 (left preference). If we each time choose the left
subinterval, R = U . Hence X = − ln(U), which has an exponential
distribution Exp(1). In particular, µ = E X = 1 and σ2 = Var X = 1,
and thus Theorem 2.1 yields, as shown in [2],

E Hx ∼ lnx,

VarHx ∼ lnx,

and the asymptotic normality

Hx − lnx√
lnx

d→ N(0, 1).

In this case, we can say more. Since X1, X2, . . . are i.i.d. random
variables with an Exp(1) distribution, their partial sums S1, S2, . . .
are the points of a Poisson process with intensity 1 on (0,∞). Since
Hx equals 1 plus the number of these points in (0, lnx], we see that,
for every x ≥ 1, Hx − 1 has a Poisson distribution

Hx − 1 ∈ Po(ln x), x ≥ 1.

This is also implicit in [2]; it is equivalent to the formula

E etTx = E et(2Hx+1) = e3txe2t−1

derived there.
In particular, we have, for x ≥ 1, the exact formulas E Hx =

lnx + 1 and VarHx = lnx, or equivalently E Tx = 2 ln x + 3 and
VarTx = 4 lnx, as shown in [2].

Note also that the logarithms of the lengths of the intervals cor-
responding to internal nodes are {lnx−Sn}Hx−1

n=0 ; omitting the point
lnx, these random points form a Poisson process in [0, lnx] with
intensity 1. By a change of variables, the lengths of the intervals cor-
responding to internal nodes, except the root (which has length x),
form a Poisson process in [1, x] with intensity dy/y. Equivalently, the
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division points except the last (which is less than 1) form a Poisson
process in [1, x] with intensity dy/y.

Let us end this example by noting that the left preference one-
sided interval tree is related to records in an i.i.d. sequence, as studied
by Rényi [5] and many others. Indeed, let x be an integer and let
ξ1, . . . , ξx be a sequence of independent random variables with a com-
mon continuous distribution. (As is well-known, it is equivalent to
consider a a random permutation of {1, . . . , x}.) The set of record
times is {i : ξi > ξj for j < i}. To find the records, we may start
by finding the largest value ξi, noting that its index i is uniform over
{1, . . . , x}. This index i is the last record time, so to find the other
records, we continue recursively in the interval {1, . . . , i−1} to the left
of it. We thus find the largest value there, continue with the interval
to the left of it, and so on, until the left interval is empty. Conse-
quently, the records are found by a discrete version of the left pref-
erence one-sided interval tree (or perhaps rather of the car-parking
version of it), with the height corresponding to the number of records.

It is therefore not surprising that the results above for the left
preferecne one-sided interval tree have analogues for records; for com-
parison we briefly quote some well-known results, see e.g. [5], [6] for
details and proofs. For example, the expected number of records in
{1, . . . , x} is the harmonic number hx = lnx + O(1), the variance is
hx − h

(2)
x = lnx + O(1), the distribution is asymptotically normal

and is well approximated by a Po(ln x) distribution. More precisely,
if we let Ii = 1 when i is a record time and Ii = 0 otherwise, then
P(Ii = 1) = 1/i, and the random variables Ii are independent. The
number of records equals

∑x
i=1 Ii, which yields the results just stated.

It follows also that the random set of record times can be obtained
from the points of a Poisson process on (0, x) with intensity dy/y
by rounding each point to the nearest larger integer (ignoring repeti-
tions). After suitable rescaling (division by x), the set of record times
thus converges to a Poisson process on (0, 1) with intensity dy/y.

Example 4.2 (min preference). If we each time choose the small-
est interval, R = min(U, 1 − U). Thus R has a uniform distribution
on [0, 1/2], and 2R

d= U . Hence X = − ln(R) = Y + ln 2 with
Y = − ln(2R) ∈ Exp(1).

We have µ = E X = 1 + ln 2 and σ2 = Var X = Var Y = 1.
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Consequently, Theorem 2.1 shows that Hx is asymptotic normal with

E Hx =
1

1 + ln 2
lnx +

1
2(1 + ln 2)2

+
1
2

+ o(1),

VarHx ∼
1

(1 + ln 2)3
lnx.

We have recovered the result of [2], and found a sharper estimate of
E Hx.

Example 4.3 (max preference). If we each time choose the largest
interval, R = max(U, 1 − U). Thus R has a uniform distribution on
[1/2, 1]. Hence X = − ln(R) has the density 2e−x on [0, ln 2]. (Here
X is an Exp(1) variable conditioned to be less that ln 2.) A simple
calculation yields µ = 1− ln 2 and σ2 = 1−2 ln2 2. Consequently, Hx

is asymptotic normal with

E Hx =
1

1− ln 2
lnx +

2− 2 ln 2− ln2 2
2(1− ln 2)2

+ o(1),

VarHx ∼
1− 2 ln2 2
(1− ln 2)3

lnx.

We have again recovered the result of [2] with a sharper estimate of
E Hx.

Example 4.4 (proportionate preference). If we choose between
the two subintervals with probabilities proportional to their lengths,
we have p(u) = u and (2.1) shows that R has the density function
2u, 0 < u < 1. Thus, P(R ≤ u) = u2, 0 ≤ u ≤ 1, and for y ≥ 0,

P(X > y) = P
(
R < exp(−y)

)
= exp(−2y).

In other words, X = − ln(R) has an exponential distribution Exp(1/2)
with mean µ = 1/2 and variance σ2 = 1/4.

Since X has an exponential distribution, we have as in Exam-
ple 4.1 that the partial sums S1, S2, . . . are the points of a Poisson
process (0,∞), this time with intensity 2. Hence, for every x ≥ 1,
Hx − 1 has a Poisson distribution

Hx − 1 ∈ Po(2 lnx), x ≥ 1.

(This is implicit in [2].) In particular, we have, for x ≥ 1, the exact
formulas E Hx = 2 lnx+1 and VarHx = 2 lnx, or equivalently E Tx =
4 ln x + 3 and Var Tx = 8 lnx.
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Similarly to Example 4.1, the lengths of the intervals correspond-
ing to internal nodes, except the root (which has length x), form a
Poisson process in [1, x] with intensity 2dy/y,

Note that one way to generate a proportionate one-sided interval
tree is to choose a single random point Y (with uniform distribution)
in (0, x), and then always choose the subinterval containing Y . Since
the conditional distribution of Y given the first k steps in the building
of the one-sided interval tree remains uniform on the next interval to
be split, this gives the required independence between different steps,
in spite of the fact that the choice of Y is made only once. Seen in this
way, the proportionate one-sided interval tree becomes a continuous
analogue of the FIND algorithm for finding the element of a given
rank in a set of distinct elements, if we choose the rank at random.
(Recall that FIND recursively chooses a random pivot, compares the
other elements to the pivot, and continues with either the elements
larger or the elements smaller than the pivot until the element of the
right rank is found.)

Example 4.5 (uniform preference). If we each time choose one
of the subintervals at random, we take R equal to either U or 1−U ,
with probability 1/2. This choice is independent of U , and since
U and 1 − U have the same distribution, it follows that R

d= U .
(This also follows from (2.1), with p(u) = 1/2.) Thus R is as in
Example 4.1, and hence all results there hold for uniform preference
too, as observed by Itoh and Mahmoud [2].

We add one more example of the same type.

Example 4.6 (anti-proportionate preference). If we do the op-
posite to Example 4.4 and choose the subinterval to be discarded
with probabilities proportional to the lengths of the subinterval, we
have p(u) = 1 − u and (2.1) shows that R has the density function
2(1−u), 0 < u < 1. Simple calculations show that X has the density
function 2e−x − 2e−2x, with mean µ = 3/2 and variance σ2 = 5/4.
Consequently, Hx is asymptotic normal with

E Hx =
2
3

lnx +
7
9

+ o(1),

VarHx ∼
10
27

lnx.

It follows from the results of [3], see Example 4.8 below, that actually,
for every x ≥ 1,

E Hx =
2
3

lnx +
7
9

+
2
9
x−3. (4.1)
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Example 4.7 (car-parking). In all the examples with different
policies above, the corresponding car-parking version has, by The-
orem 2.2, the same asymptotic normal distribution and the same
leading terms in the asymptotics of the mean and variance of H̃x.
This was shown in [2] for the mean of H̃x (there denoted Sx) for left
(or uniform) preference.

Example 4.8 (one-sided m-ary interval trees). Javanian, Mah-
moud and Vahidi-Asl [3] studied a generalization to one-sided m-ary
interval trees, where intervals are split into m subintervals, using
m − 1 independent and uniformly distributed division points. Here
m ≥ 2 is a fixed integer; m = 2 gives the binary splitting considered
above. In the case studied in [3], one of the subintervals is chosen at
random, according to some arbitrary distribution but independently
of the interval lengths. As observed in [3], all such selection rules give
the same result, since the m spacings defined by m− 1 independent
uniformly distributed division points in an interval are exchangeable.
We may thus just as well assume that we always select the left in-
terval and continue by dividing it until we obtain an interval with
length less than 1.

This can be regarded as another instance of Theorem 2.1, where R
now is the smallest of m−1 independent random variables U1, . . . , Um−1

with a uniform distribution on (0, 1). As is well-known, for 0 ≤ u ≤ 1,

P(R > u) =
m−1∏
i=1

P(Ui > u) = (1− u)m−1,

and thus R has the density function (m − 1)(1 − u)m−2, 0 ≤ u ≤ 1.
(A Beta(1,m − 1) distribution.) To find the mean and variance of
X = − lnR, we compute its moment generating function: for t < 1,

E etX = E e−t ln R = E R−t =
∫ 1

0
u−t(m− 1)(1− u)m−2 du

= (m− 1)B(1− t, m− 1) = (m− 1)
Γ(1− t)Γ(m− 1)

Γ(m− t)

=
(m− 1)!

(1− t) · · · (m− 1− t)
=

m−1∏
i=1

1
1− t/i

.

Hence X has the same distribution as
∑m−1

i=1 Yi, with Yi ∈ Exp(1/i)
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independent. Consequently (or by differentiating E etX at t = 0),

µ = E X =
m−1∑
i=1

E Yi = hm−1,

σ2 = Var X =
m−1∑
i=1

VarYi = h
(2)
m−1.

Consequently, by Theorem 2.1, as shown in [3] by another method,
Hx is asymptotically normal with

E Hx =
1

hm−1
lnx +

h
(2)
m−1

2h2
m−1

+
1
2

+ o(1),

VarHx ∼
h

(2)
m−1

h3
m−1

lnx.

Javanian, Mahmoud and Vahidi-Asl [3] further gave an exact formula
for E Hx.

For m = 2, we have the left preference binary one-sided interval
tree treated in Example 4.1. For m = 3, the density of R is the same
as in the anti-proportionate binary one-sided interval tree treated in
Example 4.6. Hence the heights Hx have the same distribution in
both cases. In particular, (4.1) follows from the exact formula for
E Hx in [3].

Several variations are possible. For example, we can choose the
selected subinterval according to some other policy, depending only
on the relative lengths. We give the results for two cases, omitting
the calculations.

For the proportionate version, with subintervals chosen with prob-
abilities proportional to their lengths, it is easily seen that R has the
density m(m − 1)u(1 − u)m−2, 0 ≤ u ≤ 1, and a calculation of the
moment generating function E etX = E R−t similar to the calculation
above shows that X now has the same distribution as

∑m
i=2 Yi, with

Yi ∈ Exp(1/i) independent as above. Consequently, µ = hm − 1 and
σ2 = h

(2)
m − 1. Thus, by Theorem 2.1, for the preference m-ary one-

sided interval tree generalizing Example 4.4, Hx is asymptotically
normal with

E Hx =
1

hm − 1
lnx +

h
(2)
m − 1

2(hm − 1)2
+

1
2

+ o(1),

VarHx ∼
h

(2)
m − 1

(hm − 1)3
lnx.
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For the minimal version, R has the density m(m−1)(1−mu)m−2

on 0 ≤ u ≤ 1/m. Hence R has the same distribution as R′/m,
where R′ is the corresponding variable in the left preference case.
Consequently, X = X ′ + lnm, where X ′ =

∑m−1
i=1 Yi with Yi as

above, and we now have µ = hm−1 + lnm and σ2 = h
(2)
m−1. Thus,

by Theorem 2.1, for the min preference m-ary one-sided interval tree
generalizing Example 4.2, Hx is asymptotically normal with

E Hx =
1

hm−1 + lnm
lnx +

h
(2)
m−1

2(hm−1 + lnm)2
+

1
2

+ o(1),

VarHx ∼
h

(2)
m−1

(hm−1 + lnm)3
lnx.

Another variation, covered by Theorem 2.2, is to consider parking
where m− 1 cars, each of length 1/(m− 1), park at the same time.
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